mirror of http://CODE.RHODECODE.COM/u/O/O/O
0000OOOO0000
4 years ago
committed by
GitHub
1 changed files with 0 additions and 462 deletions
@ -1,462 +0,0 @@
|
||||
# ##### BEGIN GPL LICENSE BLOCK ##### |
||||
# |
||||
# This program is free software; you can redistribute it and/or |
||||
# modify it under the terms of the GNU General Public License |
||||
# as published by the Free Software Foundation; either version 2 |
||||
# of the License, or (at your option) any later version. |
||||
# |
||||
# This program is distributed in the hope that it will be useful, |
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
# GNU General Public License for more details. |
||||
# |
||||
# You should have received a copy of the GNU General Public License |
||||
# along with this program; if not, write to the Free Software Foundation, |
||||
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
||||
# |
||||
# ##### END GPL LICENSE BLOCK ##### |
||||
|
||||
import bpy |
||||
import threading |
||||
import numpy as np |
||||
import multiprocessing |
||||
from multiprocessing import Process, Pool |
||||
from mathutils import Vector |
||||
try: from .numba_functions import numba_lerp2 |
||||
except: pass |
||||
|
||||
weight = [] |
||||
n_threads = multiprocessing.cpu_count() |
||||
|
||||
class ThreadVertexGroup(threading.Thread): |
||||
def __init__ ( self, id, vertex_group, n_verts): |
||||
self.id = id |
||||
self.vertex_group = vertex_group |
||||
self.n_verts = n_verts |
||||
threading.Thread.__init__ ( self ) |
||||
|
||||
def run (self): |
||||
global weight |
||||
global n_threads |
||||
verts = np.arange(int(self.n_verts/8))*8 + self.id |
||||
for v in verts: |
||||
try: |
||||
weight[v] = self.vertex_group.weight(v) |
||||
except: |
||||
pass |
||||
|
||||
def thread_read_weight(_weight, vertex_group): |
||||
global weight |
||||
global n_threads |
||||
print(n_threads) |
||||
weight = _weight |
||||
n_verts = len(weight) |
||||
threads = [ThreadVertexGroup(i, vertex_group, n_verts) for i in range(n_threads)] |
||||
for t in threads: t.start() |
||||
for t in threads: t.join() |
||||
return weight |
||||
|
||||
def process_read_weight(id, vertex_group, n_verts): |
||||
global weight |
||||
global n_threads |
||||
verts = np.arange(int(self.n_verts/8))*8 + self.id |
||||
for v in verts: |
||||
try: |
||||
weight[v] = self.vertex_group.weight(v) |
||||
except: |
||||
pass |
||||
|
||||
|
||||
def read_weight(_weight, vertex_group): |
||||
global weight |
||||
global n_threads |
||||
print(n_threads) |
||||
weight = _weight |
||||
n_verts = len(weight) |
||||
n_cores = multiprocessing.cpu_count() |
||||
pool = Pool(processes=n_cores) |
||||
multiple_results = [pool.apply_async(process_read_weight, (i, vertex_group, n_verts)) for i in range(n_cores)] |
||||
#processes = [Process(target=process_read_weight, args=(i, vertex_group, n_verts)) for i in range(n_threads)] |
||||
#for t in processes: t.start() |
||||
#for t in processes: t.join() |
||||
return weight |
||||
|
||||
#Recursivly transverse layer_collection for a particular name |
||||
def recurLayerCollection(layerColl, collName): |
||||
found = None |
||||
if (layerColl.name == collName): |
||||
return layerColl |
||||
for layer in layerColl.children: |
||||
found = recurLayerCollection(layer, collName) |
||||
if found: |
||||
return found |
||||
|
||||
def auto_layer_collection(): |
||||
# automatically change active layer collection |
||||
layer = bpy.context.view_layer.active_layer_collection |
||||
layer_collection = bpy.context.view_layer.layer_collection |
||||
if layer.hide_viewport or layer.collection.hide_viewport: |
||||
collections = bpy.context.object.users_collection |
||||
for c in collections: |
||||
lc = recurLayerCollection(layer_collection, c.name) |
||||
if not c.hide_viewport and not lc.hide_viewport: |
||||
bpy.context.view_layer.active_layer_collection = lc |
||||
|
||||
def lerp(a, b, t): |
||||
return a + (b - a) * t |
||||
|
||||
def _lerp2(v1, v2, v3, v4, v): |
||||
v12 = v1.lerp(v2,v.x) # + (v2 - v1) * v.x |
||||
v34 = v3.lerp(v4,v.x) # + (v4 - v3) * v.x |
||||
return v12.lerp(v34, v.y)# + (v34 - v12) * v.y |
||||
|
||||
def lerp2(v1, v2, v3, v4, v): |
||||
v12 = v1 + (v2 - v1) * v.x |
||||
v34 = v3 + (v4 - v3) * v.x |
||||
return v12 + (v34 - v12) * v.y |
||||
|
||||
def lerp3(v1, v2, v3, v4, v): |
||||
loc = lerp2(v1.co, v2.co, v3.co, v4.co, v) |
||||
nor = lerp2(v1.normal, v2.normal, v3.normal, v4.normal, v) |
||||
nor.normalize() |
||||
return loc + nor * v.z |
||||
|
||||
def np_lerp2(v00, v10, v01, v11, vx, vy): |
||||
#try: |
||||
# co2 = numba_lerp2(v00, v10, v01, v11, vx, vy) |
||||
#except: |
||||
co0 = v00 + (v10 - v00) * vx |
||||
co1 = v01 + (v11 - v01) * vx |
||||
co2 = co0 + (co1 - co0) * vy |
||||
return co2 |
||||
|
||||
|
||||
# Prevent Blender Crashes with handlers |
||||
def set_animatable_fix_handler(self, context): |
||||
old_handlers = [] |
||||
blender_handlers = bpy.app.handlers.render_init |
||||
for h in blender_handlers: |
||||
if "turn_off_animatable" in str(h): |
||||
old_handlers.append(h) |
||||
for h in old_handlers: blender_handlers.remove(h) |
||||
################ blender_handlers.append(turn_off_animatable) |
||||
return |
||||
|
||||
def turn_off_animatable(scene): |
||||
for o in bpy.data.objects: |
||||
o.tissue_tessellate.bool_run = False |
||||
o.reaction_diffusion_settings.run = False |
||||
#except: pass |
||||
return |
||||
|
||||
### OBJECTS ### |
||||
|
||||
def convert_object_to_mesh(ob, apply_modifiers=True, preserve_status=True): |
||||
try: ob.name |
||||
except: return None |
||||
if ob.type != 'MESH': |
||||
if not apply_modifiers: |
||||
mod_visibility = [m.show_viewport for m in ob.modifiers] |
||||
for m in ob.modifiers: m.show_viewport = False |
||||
#ob.modifiers.update() |
||||
#dg = bpy.context.evaluated_depsgraph_get() |
||||
#ob_eval = ob.evaluated_get(dg) |
||||
#me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg) |
||||
me = simple_to_mesh(ob) |
||||
new_ob = bpy.data.objects.new(ob.data.name, me) |
||||
new_ob.location, new_ob.matrix_world = ob.location, ob.matrix_world |
||||
if not apply_modifiers: |
||||
for m,vis in zip(ob.modifiers,mod_visibility): m.show_viewport = vis |
||||
else: |
||||
if apply_modifiers: |
||||
new_ob = ob.copy() |
||||
new_me = simple_to_mesh(ob) |
||||
new_ob.modifiers.clear() |
||||
new_ob.data = new_me |
||||
else: |
||||
new_ob = ob.copy() |
||||
new_ob.data = ob.data.copy() |
||||
new_ob.modifiers.clear() |
||||
bpy.context.collection.objects.link(new_ob) |
||||
if preserve_status: |
||||
new_ob.select_set(False) |
||||
else: |
||||
for o in bpy.context.view_layer.objects: o.select_set(False) |
||||
new_ob.select_set(True) |
||||
bpy.context.view_layer.objects.active = new_ob |
||||
return new_ob |
||||
|
||||
def simple_to_mesh(ob): |
||||
dg = bpy.context.evaluated_depsgraph_get() |
||||
ob_eval = ob.evaluated_get(dg) |
||||
me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg) |
||||
me.calc_normals() |
||||
return me |
||||
|
||||
def join_objects(objects, link_to_scene=True, make_active=False): |
||||
C = bpy.context |
||||
bm = bmesh.new() |
||||
|
||||
materials = {} |
||||
faces_materials = [] |
||||
dg = C.evaluated_depsgraph_get() |
||||
for o in objects: |
||||
bm.from_object(o, dg) |
||||
# add object's material to the dictionary |
||||
for m in o.data.materials: |
||||
if m not in materials: materials[m] = len(materials) |
||||
for f in o.data.polygons: |
||||
index = f.material_index |
||||
mat = o.material_slots[index].material |
||||
new_index = materials[mat] |
||||
faces_materials.append(new_index) |
||||
bm.verts.ensure_lookup_table() |
||||
bm.edges.ensure_lookup_table() |
||||
bm.faces.ensure_lookup_table() |
||||
# assign new indexes |
||||
for index, f in zip(faces_materials, bm.faces): f.material_index = index |
||||
# create object |
||||
me = bpy.data.meshes.new('joined') |
||||
bm.to_mesh(me) |
||||
me.update() |
||||
ob = bpy.data.objects.new('joined', me) |
||||
if link_to_scene: C.collection.objects.link(ob) |
||||
# make active |
||||
if make_active: |
||||
for o in C.view_layer.objects: o.select_set(False) |
||||
ob.select_set(True) |
||||
C.view_layer.objects.active = ob |
||||
# add materials |
||||
for m in materials.keys(): ob.data.materials.append(m) |
||||
return ob |
||||
|
||||
### MESH FUNCTIONS |
||||
|
||||
def get_vertices_numpy(mesh): |
||||
n_verts = len(mesh.vertices) |
||||
verts = [0]*n_verts*3 |
||||
mesh.vertices.foreach_get('co', verts) |
||||
verts = np.array(verts).reshape((n_verts,3)) |
||||
return verts |
||||
|
||||
def get_vertices_and_normals_numpy(mesh): |
||||
n_verts = len(mesh.vertices) |
||||
verts = [0]*n_verts*3 |
||||
normals = [0]*n_verts*3 |
||||
mesh.vertices.foreach_get('co', verts) |
||||
mesh.vertices.foreach_get('normal', normals) |
||||
verts = np.array(verts).reshape((n_verts,3)) |
||||
normals = np.array(normals).reshape((n_verts,3)) |
||||
return verts, normals |
||||
|
||||
def get_edges_numpy(mesh): |
||||
n_edges = len(mesh.edges) |
||||
edges = [0]*n_edges*2 |
||||
mesh.edges.foreach_get('vertices', edges) |
||||
edges = np.array(edges).reshape((n_edges,2)).astype('int') |
||||
return edges |
||||
|
||||
def get_edges_id_numpy(mesh): |
||||
n_edges = len(mesh.edges) |
||||
edges = [0]*n_edges*2 |
||||
mesh.edges.foreach_get('vertices', edges) |
||||
edges = np.array(edges).reshape((n_edges,2)) |
||||
indexes = np.arange(n_edges).reshape((n_edges,1)) |
||||
edges = np.concatenate((edges,indexes), axis=1) |
||||
return edges |
||||
|
||||
def get_vertices(mesh): |
||||
n_verts = len(mesh.vertices) |
||||
verts = [0]*n_verts*3 |
||||
mesh.vertices.foreach_get('co', verts) |
||||
verts = np.array(verts).reshape((n_verts,3)) |
||||
verts = [Vector(v) for v in verts] |
||||
return verts |
||||
|
||||
def get_faces(mesh): |
||||
faces = [[v for v in f.vertices] for f in mesh.polygons] |
||||
return faces |
||||
|
||||
def get_faces_numpy(mesh): |
||||
faces = [[v for v in f.vertices] for f in mesh.polygons] |
||||
return np.array(faces) |
||||
|
||||
def get_faces_edges_numpy(mesh): |
||||
faces = [v.edge_keys for f in mesh.polygons] |
||||
return np.array(faces) |
||||
|
||||
#try: |
||||
#from numba import jit, njit |
||||
#from numba.typed import List |
||||
''' |
||||
@jit |
||||
def find_curves(edges, n_verts): |
||||
#verts_dict = {key:[] for key in range(n_verts)} |
||||
verts_dict = {} |
||||
for key in range(n_verts): verts_dict[key] = [] |
||||
for e in edges: |
||||
verts_dict[e[0]].append(e[1]) |
||||
verts_dict[e[1]].append(e[0]) |
||||
curves = []#List() |
||||
loop1 = True |
||||
while loop1: |
||||
if len(verts_dict) == 0: |
||||
loop1 = False |
||||
continue |
||||
# next starting point |
||||
v = list(verts_dict.keys())[0] |
||||
# neighbors |
||||
v01 = verts_dict[v] |
||||
if len(v01) == 0: |
||||
verts_dict.pop(v) |
||||
continue |
||||
curve = []#List() |
||||
curve.append(v) # add starting point |
||||
curve.append(v01[0]) # add neighbors |
||||
verts_dict.pop(v) |
||||
loop2 = True |
||||
while loop2: |
||||
last_point = curve[-1] |
||||
#if last_point not in verts_dict: break |
||||
v01 = verts_dict[last_point] |
||||
# curve end |
||||
if len(v01) == 1: |
||||
verts_dict.pop(last_point) |
||||
loop2 = False |
||||
continue |
||||
if v01[0] == curve[-2]: |
||||
curve.append(v01[1]) |
||||
verts_dict.pop(last_point) |
||||
elif v01[1] == curve[-2]: |
||||
curve.append(v01[0]) |
||||
verts_dict.pop(last_point) |
||||
else: |
||||
loop2 = False |
||||
continue |
||||
if curve[0] == curve[-1]: |
||||
loop2 = False |
||||
continue |
||||
curves.append(curve) |
||||
return curves |
||||
''' |
||||
def find_curves(edges, n_verts): |
||||
verts_dict = {key:[] for key in range(n_verts)} |
||||
for e in edges: |
||||
verts_dict[e[0]].append(e[1]) |
||||
verts_dict[e[1]].append(e[0]) |
||||
curves = [] |
||||
while True: |
||||
if len(verts_dict) == 0: break |
||||
# next starting point |
||||
v = list(verts_dict.keys())[0] |
||||
# neighbors |
||||
v01 = verts_dict[v] |
||||
if len(v01) == 0: |
||||
verts_dict.pop(v) |
||||
continue |
||||
curve = [] |
||||
if len(v01) > 1: curve.append(v01[1]) # add neighbors |
||||
curve.append(v) # add starting point |
||||
curve.append(v01[0]) # add neighbors |
||||
verts_dict.pop(v) |
||||
# start building curve |
||||
while True: |
||||
#last_point = curve[-1] |
||||
#if last_point not in verts_dict: break |
||||
|
||||
# try to change direction if needed |
||||
if curve[-1] in verts_dict: pass |
||||
elif curve[0] in verts_dict: curve.reverse() |
||||
else: break |
||||
|
||||
# neighbors points |
||||
last_point = curve[-1] |
||||
v01 = verts_dict[last_point] |
||||
|
||||
# curve end |
||||
if len(v01) == 1: |
||||
verts_dict.pop(last_point) |
||||
if curve[0] in verts_dict: continue |
||||
else: break |
||||
|
||||
# chose next point |
||||
new_point = None |
||||
if v01[0] == curve[-2]: new_point = v01[1] |
||||
elif v01[1] == curve[-2]: new_point = v01[0] |
||||
#else: break |
||||
|
||||
#if new_point != curve[1]: |
||||
curve.append(new_point) |
||||
verts_dict.pop(last_point) |
||||
if curve[0] == curve[-1]: |
||||
verts_dict.pop(new_point) |
||||
break |
||||
curves.append(curve) |
||||
return curves |
||||
|
||||
def curve_from_points(points, name='Curve'): |
||||
curve = bpy.data.curves.new(name,'CURVE') |
||||
for c in points: |
||||
s = curve.splines.new('POLY') |
||||
s.points.add(len(c)) |
||||
for i,p in enumerate(c): s.points[i].co = p.xyz + [1] |
||||
ob_curve = bpy.data.objects.new(name,curve) |
||||
return ob_curve |
||||
|
||||
def curve_from_pydata(points, indexes, name='Curve', skip_open=False, merge_distance=1, set_active=True): |
||||
curve = bpy.data.curves.new(name,'CURVE') |
||||
curve.dimensions = '3D' |
||||
for c in indexes: |
||||
# cleanup |
||||
pts = np.array([points[i] for i in c]) |
||||
if merge_distance > 0: |
||||
pts1 = np.roll(pts,1,axis=0) |
||||
dist = np.linalg.norm(pts1-pts, axis=1) |
||||
count = 0 |
||||
n = len(dist) |
||||
mask = np.ones(n).astype('bool') |
||||
for i in range(n): |
||||
count += dist[i] |
||||
if count > merge_distance: count = 0 |
||||
else: mask[i] = False |
||||
pts = pts[mask] |
||||
|
||||
bool_cyclic = c[0] == c[-1] |
||||
if skip_open and not bool_cyclic: continue |
||||
s = curve.splines.new('POLY') |
||||
n_pts = len(pts) |
||||
s.points.add(n_pts-1) |
||||
w = np.ones(n_pts).reshape((n_pts,1)) |
||||
co = np.concatenate((pts,w),axis=1).reshape((n_pts*4)) |
||||
s.points.foreach_set('co',co) |
||||
s.use_cyclic_u = bool_cyclic |
||||
ob_curve = bpy.data.objects.new(name,curve) |
||||
bpy.context.collection.objects.link(ob_curve) |
||||
if set_active: |
||||
bpy.context.view_layer.objects.active = ob_curve |
||||
return ob_curve |
||||
|
||||
def curve_from_vertices(indexes, verts, name='Curve'): |
||||
curve = bpy.data.curves.new(name,'CURVE') |
||||
for c in indexes: |
||||
s = curve.splines.new('POLY') |
||||
s.points.add(len(c)) |
||||
for i,p in enumerate(c): s.points[i].co = verts[p].co.xyz + [1] |
||||
ob_curve = bpy.data.objects.new(name,curve) |
||||
return ob_curve |
||||
|
||||
### WEIGHT FUNCTIONS ### |
||||
|
||||
def get_weight(vertex_group, n_verts): |
||||
weight = [0]*n_verts |
||||
for i in range(n_verts): |
||||
try: weight[i] = vertex_group.weight(i) |
||||
except: pass |
||||
return weight |
||||
|
||||
def get_weight_numpy(vertex_group, n_verts): |
||||
weight = [0]*n_verts |
||||
for i in range(n_verts): |
||||
try: weight[i] = vertex_group.weight(i) |
||||
except: pass |
||||
return np.array(weight) |
Loading…
Reference in new issue