0 2 2 1 0 7 31b1add1-7b3f-4f98-88a3-7d313fa8b584 Shaded 0 255;191;191;191 255;201;201;201 638461061089269088 XHꓨ.⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪ᙁ⚪ߦ⚪ᗱᗴ⚪ᴥ⚪⚪ᙁ⚪ᗩ⚪ᗝ⚪Ⓞ⚪ИN⚪⚪ᗱᗴ⚪ᙁ⚪✤⚪ᴥ⚪ᑎ⚪✤⚪⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪⚪✤⚪ᑎ⚪ᴥ⚪✤⚪ᙁ⚪ᗱᗴ⚪⚪ИN⚪Ⓞ⚪ᗝ⚪ᗩ⚪ᙁ⚪⚪ᴥ⚪ᗱᗴ⚪ߦ⚪ᙁ⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪.GHX 0 105 -220 1 0 0 1 Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null 0.4.0.0 Mateusz Zwierzycki 4442bb24-c702-460c-a1e4-fcdd321eb886 Anemone 0.4 11 7cd2f235-466e-4d30-bd3c-3b9573ac7dda 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop Start Loop Start true 2e7efa8d-b8e9-4f90-aef1-1caa434b30e4 Fast Loop Start Fast Loop Start 147 636 40 84 167 678 3 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 4 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 Loop iterations 846ff1ea-a5fa-48e4-b29b-ca83ce05c10e Iterations false 7f0b70fc-fda4-4a39-aee2-a596d3546690 1 149 638 6 26 152 651.3333 1 1 {0} 0 2 Data to loop 24af9ad2-1789-4e79-a617-d69f8746f874 Data true 0 149 664 6 27 152 678 1 1 {0} 0 0 0 Grasshopper.Kernel.Types.GH_Point 2 Contains a collection of generic data 22e24aac-c928-4848-a120-d4df76cb9993 Data true 0 149 691 6 27 152 704.6666 1 1 {0} Grasshopper.Kernel.Types.GH_Vector 1 0 0 Connect to Loop End ae8f37b8-d481-4f63-8c91-9a5e37b213a1 > false 0 179 638 6 20 182 648 Counter 1331a0f1-e59a-4e1a-b9df-feadbd8b0e69 Counter false 0 179 658 6 20 182 668 2 Data to loop 97ea24b6-2d1d-4178-ae0b-5e40ac9a9747 Data false 0 179 678 6 20 182 688 2 Contains a collection of generic data 6ebba677-342a-409a-b6ff-228d05cd7743 Data false 0 179 698 6 20 182 708 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop End Loop End true e9c856d5-0a09-4e5d-a93e-2b8aaac539df Fast Loop End Fast Loop End true 0 147 127 40 84 167 169 4 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 cb95db89-6165-43b6-9c41-5702bc5bf137 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 Connect to Loop Start 28d500cc-6337-4293-ae0a-ed927ba2f731 < false ae8f37b8-d481-4f63-8c91-9a5e37b213a1 1 149 129 6 20 152 139 Set to true to exit the loop 928e0628-4f73-474c-b4d6-51b23139b1b2 Exit true 0 149 149 6 20 152 159 1 1 {0} false 2 Data to loop 375ce881-27d0-412e-b1eb-f7504775489b Data false 6d23312d-ac71-4bc5-8ffd-341bb116d75c 1 149 169 6 20 152 179 2 Contains a collection of generic data 12340db3-1565-4b9c-b123-fdbce662ab44 Data false 10b5aac7-f8e9-4eb9-86ee-63fd28dbacfd 1 149 189 6 20 152 199 2 Data to loop b4ee2f5a-7b9b-4ce1-b0c0-d4c526acdb9d Data false 0 179 129 6 40 182 149 2 Contains a collection of generic data 838d934e-c17a-439e-96d3-998585639a96 Data false 0 179 169 6 40 182 189 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7f0b70fc-fda4-4a39-aee2-a596d3546690 Digit Scroller false 0 12 11 256.0 42 739 250 20 42.90437 739.5415 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true 19fa85b3-7cbd-409f-b25f-a3db5a2a2a5c Line SDL Line SDL 147 329 40 64 167 361 Line start point a265c459-687c-415d-b7c8-241f2e1ca064 Start false 97ea24b6-2d1d-4178-ae0b-5e40ac9a9747 1 149 331 6 20 152 341 Line tangent (direction) f59225b6-a8ad-40e9-9cb1-3296c1674a77 Direction false 0b952bc9-0467-4f2f-a5cf-1a9c8e13d7e1 1 149 351 6 20 152 361 1 1 {0} 0 0 1 Line length 5757783f-5f73-4fb7-801e-7827ab350017 Length false 7b5273b3-e87c-4cc2-9df3-65aa04056f74 1 149 371 6 20 152 381 1 1 {0} 1 Line segment b0e91f52-dbb4-4a96-bed9-a1677e2d3b3a Line false 0 179 331 6 60 182 361 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7b5273b3-e87c-4cc2-9df3-65aa04056f74 Digit Scroller false 0 12 1 0.03125000000 42 412 250 20 42.6764 412.7328 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 2dd3f27a-6c16-4d04-a3b0-6386e92eef7b Rotate Rotate 139 451 56 64 175 483 Vector to rotate 90a72e14-67ad-4c25-910c-5f99a1843f9c Vector false 6ebba677-342a-409a-b6ff-228d05cd7743 1 141 453 22 20 160 463 Rotation axis ec180e1d-32bf-45e3-9606-c3c75db7b853 Axis false 0 141 473 22 20 160 483 1 1 {0} 0 0 1 Rotation angle (in degrees) e026b985-d849-48e5-ab7a-a4a935bfcb5a Angle false a6c2a3ad-15c0-4bc0-8ba8-214b3445eb92 1 true 141 493 22 20 160 503 Rotated vector 0b952bc9-0467-4f2f-a5cf-1a9c8e13d7e1 Vector false 0 187 453 6 60 190 483 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 3a6c9da0-0848-45fd-8be3-cb9b980b7468 Evaluate Length Evaluate Length 147 246 40 64 167 278 Curve to evaluate 325ff801-8360-4c57-a035-3f904831fe6f Curve false b0e91f52-dbb4-4a96-bed9-a1677e2d3b3a 1 149 248 6 20 152 258 Length factor for curve evaluation e1e0a3f7-c72f-4ef8-b5be-90443907ee9f Length false 0 149 268 6 20 152 278 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 5c920e2f-5a3d-4977-835c-15939e6b8065 Normalized false 0 149 288 6 20 152 298 1 1 {0} true Point at the specified length 6d23312d-ac71-4bc5-8ffd-341bb116d75c Point false 0 179 248 6 20 182 258 Tangent vector at the specified length 10b5aac7-f8e9-4eb9-86ee-63fd28dbacfd Tangent false 0 179 268 6 20 182 278 Curve parameter at the specified length 1c1af345-9089-4dec-94a2-aceab1f84715 Parameter false 0 179 288 6 20 182 298 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true bf0e7c52-5d65-49ee-b2b5-0769ae2c50af Multiplication Multiplication 147 534 40 44 167 556 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 4cca783e-d89f-48a0-9664-b2960b6b2731 A true 1331a0f1-e59a-4e1a-b9df-feadbd8b0e69 1 149 536 6 20 152 546 Second item for multiplication fc41e576-b434-4ca0-90e1-f2a16be322db B true 0b85665d-3139-400a-88e1-a6ffa6d18a45 1 149 556 6 20 152 566 Result of multiplication a6c2a3ad-15c0-4bc0-8ba8-214b3445eb92 Result false 0 179 536 6 40 182 556 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 0b85665d-3139-400a-88e1-a6ffa6d18a45 Digit Scroller false 0 12 1 0.12500000000 42 597 250 20 42.62403 597.3182 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. 75248c26-5ceb-42db-8f72-4b516c13790b Interpolate Interpolate 131 24 72 84 167 66 1 Interpolation points 7aa5a70a-6ef8-4dac-a7e5-70c850030263 1 Vertices false b4ee2f5a-7b9b-4ce1-b0c0-d4c526acdb9d 1 133 26 22 20 152 36 Curve degree b30cc93d-d6e6-4dc2-9309-2adec4a3b83f Degree false 0 133 46 22 20 152 56 1 1 {0} 3 Periodic curve 3c8c1e0d-106d-4255-8c5c-63d6ce9731b0 Periodic false 0 133 66 22 20 152 76 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 18da0eb1-aa1c-40eb-b789-57e3be32eab9 KnotStyle false 0 133 86 22 20 152 96 1 1 {0} 2 Resulting nurbs curve 50064e15-a221-46a4-9162-4bdbf0c92b40 1 Curve false 0 179 26 22 26 182 39.33334 Curve length 2308584a-de81-4ca3-bdf5-567a99488623 Length false 0 179 52 22 27 182 66 Curve domain 0fb2d401-d2c7-4424-9c6b-12f50850d814 Domain false 0 179 79 22 27 182 92.66667 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 3 255;255;255;255 A group of Grasshopper objects 2e7efa8d-b8e9-4f90-aef1-1caa434b30e4 e9c856d5-0a09-4e5d-a93e-2b8aaac539df 7f0b70fc-fda4-4a39-aee2-a596d3546690 19fa85b3-7cbd-409f-b25f-a3db5a2a2a5c 7b5273b3-e87c-4cc2-9df3-65aa04056f74 2dd3f27a-6c16-4d04-a3b0-6386e92eef7b 3a6c9da0-0848-45fd-8be3-cb9b980b7468 bf0e7c52-5d65-49ee-b2b5-0769ae2c50af 0b85665d-3139-400a-88e1-a6ffa6d18a45 75248c26-5ceb-42db-8f72-4b516c13790b 10 c6789bec-d6d8-48ac-b2c1-78f1d30e5ce0 Group iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA3NSURBVHhe7Z1dUxPLFob9a+f+/BhvvT7eWOdiX3LlPmJJAZuCEiEoIB+S4vvDYCAkUTTKkfARQgABYSOcJ706QzsJyWQ4Jd3WPBep7s7MpNMv7+q1JgHuRfwOXEU4y7WE/3Wcjx8//vjxgzeSSCRmZ2fVu6tNLpf7/v07jePj4w8fPnz9+lVfwkF4F7+VhBcXF2WJlDZnBqenp+fn59JGPFEavn37FkloEevr656E8HcFBk9OTkqlEg0Z0UdEEtqGT0IfxWIRL+pOhUhCu0BC02EC/kM5ILQeHBz4ND46OookvHvyip2dHZIUtrrDw8NCoYBya2trCwsLl5eXSqwyCIztdEeBqJGEd4mIt7KykkwmR0dHHz9+TEYzMzMzPj6OikMKpZQGCT99+mQacX9/H+9GEt4BLPr29jY+i8fjra2tlBCZTObdu3dESyWNhszT58K2tjbTiCgdSXgHsOK7u7vd3d1dXV2fP39GS8COWJDAqKQpw8jY2JjuKAizxFvdUXAMvtTXdRPehZMSTk5Ozs3Nodzm5qY3iIRIq6QpQ5BcXl7GhYTTlpaWN2/e0PYqQmFjY4MfArmCo/AuHJMQkQYHB3t6elBID1XATyiqpNHILRgSlvv374sjMaJ6RsMpqKjPdxPehWMSbm1tTUxMsIF5/vP4olDSlMFefX190pY90ldykNdwHX2ys/BGXJIQ2UhbRkZG2NL00M8QS738hVqeg6UtnJ+fk/54QlIsul5RAG/EJQmxYCKR6OjoIJPUQwaIgSReqEQwjChtgRHk51G6pVIpkvBXw3IT+hYXF8kk9ZCBPIv5lEBXOPL58+fSFvCfWWNwfC6X0yc7C2/EMQkxFrmM7ldBeoK6SqDy/U8OZsPDdjyiH9mNZ0FAP9dzGeCNuCQhUEh0dnam0+nqdAZQxUxKCZUIeXh4SPqKeKZ+8Buko8AbcUxCTLa6uppMJtkX9VAFPIoqjCuByhA2ias8oqVPP8CjZLD6ZGfhjTgmISZ7//59a2srgumhCr69UEA5UXFvb89X13MpJNcnOwtvxDEJgYri1atX2WzWl9QgIRmmlPMmJycnR0dH7IWEUz2koBtlpHcDi04MHBwc9ElIVGQvVOpcIymMfPyEZuZ9cMYjCe8MjNjW1jYzM+PV+BJFkUqpU4awSfBEJ9JRyUgpGdHMK+0hukd6Z7CNUfZNTk6aRkRCUx72uRcvXuiOAiHb29uxo+5HX7y4W3DY0NBQLBbb3d1FAxT1fZBELWHeMgVcyIm6U4FjnDYib8FVCZGN1e/t7cWR4IuQwLYn90gvr66mR0eX43Hy0uXlZd+HFSjttBF5C65KCERRuYsmFbpS5BpGXr58SSM1PT3655/7hQIad3V1+VJWdOUi6npOwltwWEIgeHZ3d4+MjPi8JZDLoNCHROLb3h5djmE7lKdMMLG7BSLzd1tCAuDW1tbw8DBbo5LjGkbm5+d1R4GiU1NTvngLTn+Pjfm7LSEgIVKxKfq0waATExO6o0BCMiAedb8CI5GEdwbrzuqTktAApcg1lIanp6dsfkdHRzz6vt9m4m5eyuQdlhDNWHe2MfEfnkulUmVBDNgLoVQqoR8NPVoFz/Kj4OIHF0zeVQlFv1wu5wVGfDY9PS1tD2TDi2QxhULBd5vbB2X++vq6cyoycyclRD+5I+rLMLEj2alXNqCfBFJyURSC6lzGBC+ion4NR2DaTkoIrHXNQiKZTCYSCRq7u7uTk5MyKKB3zVNMnKv0mbN7ErK+ksKoNa8BwTCTySBhdUZKXqM7N7O9vU2x74qKTNg9CYmfrK9a7dpgtVgsRqT17mhjWaoO9sJ8Pl+zujch/JIiubIpMmHHJBQLNoyHGC4ejyMbbWr8R48esUfS7uzsND+puAmHin1m65iE+AMnqXVuAALIH00gnE5NTWFBcpl0Ol0/L/XA604Ykam6JKFYkCRTLXIDEIxYqjuK+umoj2KxSPi134hM1SUJkcSnSh3wqwRSjyAZqQcHO1FgMFVnJBQLlkoltcKNIWVFA5zHvkiGAhSITRmRiG3/JxjM0xkJAUka5pMmlOo7OzvkJouLiysrK5QZ/ARQVzAucqKrPrQW31z4WgbzdEbChrVENYRN1GLvRMi5uTkEI5fBlIwwjpY4FTxRecqX7FAgWp7UMEk3JDSjKGstS98QUhKcVygUMOLW1tbq6ipqyZ02NBMVeWp/f59j5Le9eS00o8HpyMlZlsdSxySU0MfiUuqx7kFAIbQhAmcyGa5DNiRXQ6fP6gv5gvcU4zQQPpvNyt9fsDyWOiMhy8qKM0mcgYSYg9gYBMTAUsiABeU6nMuISCWXFS3lURr8iCQSiaWlJV4xkvD/ACtINMNMTBIXEgYZCQgn8shF1tbWJEKS2tDmaozLt998MI7MhGteDkRamYmFMEM3JMQKhES1pM2B3pLE8sjOR4PYSFANeH8AZDuUnwMLYYbOSOjZIjjsnQiPcugHhEdRDlf19fUxIofVhxzK5ts0zNABCYHkvn4NV83JyQmqC1QXQAML0uBZwiOqyJH14To2b4fM0AEJJcVQ6xmUdDr9+vVr3THg5wAhpR2Px5PJpLTrgJUjF96WEEU9kpOC6o7Bj4sLElppU8jPzs4GMTd7IamQno1lMD3bJUQ8oqiko8Ehi/FOOTu7TA3963jtj6u/ywkRV/NyGRyGWSW01qFcatialDI9ByQkjpGJqMUMysrKysDAgLSPTy//8+9/Zgf+8frlX3Tb29spFuUpoH5vGE6ZBpFA5mMbTM8BCckmgn9AIWAsdPJueOa/fhyKPdvZ3WeE0tAXPJGHUKk7teAUDtATsgym54aE3gYWENJIjEiQHBsbEyFFNNrVtQRRt6enh2RV96sgJltbGjI9NySUqjw4qVTq6dOn/f393d3dpufMjNQEl7NH6k4VOzs7PBtJGBKREKOoxQwKliIpxTqsfrkkPDsj/wSpEfVBP0ONwb6oOz9DTI4kDE84FwJSEQCJqKSdxWJRJKStn64CdRcXF3XnZyIJb0VoCeHg4IBUVj6cClL/cdjMzIzuGESB9FaIhM2mMwKZCxGYc8WOlINejloTnh0cHKy+n87pkYThCS0h4qXTadN8BNKbNkIPwillqO5UiDLSWxFaQnwTi8VoICThMZPJsBGS4zT8gAIjbmxs6I4icuGtEAlD7IV4jlIBF46Pjz948GB+fh4LtrW1EVH1ETcggumOItoLb4VI2GxRAaSR8o8NVldXp6en5S/OYK8gec3bt2/NSr9g8X8kYXpuSNjQOtV8+fJldHRU2hI8g4gnzM7Omr/zbfOX85meGxLWvKVSH9JLvEt6CURUZKBm4EchyIf1nLhl/GnafYv/7CXTc0BCHFCnJK8Pm+jm5iblBPqhIl3kFEiRkIqn2DV9xQYvZ/56KUdGEt4KUglziYmHweFElh6d8LEXjRnHi2yNjCAqNpUvnaIrbUaQdnh4mMPkePbFSMLwkIDkjD8Uy7KyxPIF0SCQieBC+TiJRj6fl0cgVJowzstRdWB6XhQ4XVRE7EjC8Mgn5mX1FLgKCSUGBgEDET+REJATqVACteRRGtLmtWQEeAmSUjMbitKZ8LD0rJ1ayTJISLgjtAYH/1HdLy0t0UaJhmBEMSsvJC+KF7kIvtRzsgmmZ7WEiMe6EzbVSmrINdjDgsNGiBG5FC7ElDIimG2BmEkdiQX1i1WQYKCnZRPMzXYJsQUCqGW8FbiK6zSsKDgsFosRSHW/AuPEAz0tm2ButktIHsGWppaxaYi6GItcFMhN2Aj1E1VwwNraWn9/vxm0TTideMCzembWwNwckJDgppaxadAeFdnJJLGk/kulUviJyEzxkEwms9kswvT29jJOnKw2nwfH25mUMjerJQSWGBnUMjYHknj/glJAwidPnlDwJRKJ7e3thYUFjmE7xIL6iJuxtjRkblZLSBLIDqTWsGkIfcvLy7qjQMI6sbQ+1paGzM1qCXEJKb5awzBIFNUdlcoODAywO+p+M3AuiVUkYdOgH0ZUa9g0REgJwmNjYxSFREJkINsMt7OSynI1PS2bYG6/rYScLp/aEzxbWloePnxIIN2r+v9pAYkkDMltJAScJ4EURxIDcWFHRweJDFrKAcGJJAzJLfdCVU38tBeShSKnfCjRlJDRXhgSLPip7i+s1KFQKPj+VDdOQgO5QUMhUSwWERJt5Nn6cHyUkYaEn/1wuxf1ezwe1x0Faj179gwX6r761/bsjpTtomsdorowJCwZCxek9K4JmgHyCAi2afyzZg9ERcjDw0OO0UNV4NdIwjCIhHXue9UHSZDfo345gc9EyJqmt/Z7iMzNdglZOHY1tYy/ApyK4ZBT9yswGRIrmZVVMDerJQRZOLWMGsykPpAPCnro1g1wgEBEBUyP53AkQVhekbTWzooCmJ7tEgLL5wU3GmQfrC/5ZEA4mFoQVXiUhrSlAfl8nuqF7JdHsqdsNstZvGgymZSaBF3t3AiB6dkuoWyHeKUsYOW7M/K9poDIJ4U3gZbkOJ6E6JdKpYilS0tL8tfZgSvYWRQC07NdQqA0ZK3VYupvsBFdgyP3B4KAivy4ZDIZfInz5BUhl8txET0by2B6DkgIZiz9xZDgWBtFgRk6IKHEUrZAtaS/GgIAYUBPxT6YoQMSggRDtaS/FCpLfnr0JKyESbohoRgxdI0fGvJVYri1URSY5LWEEY6iJYxwmHv3/gfOoqw7d1HaAQAAAABJRU5ErkJggg==