diff --git a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀ᗝᗱᗴᙁⓄᴥИNᑎ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑎИNᴥⓄᙁᗱᗴᗝ⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀ᗝᗱᗴᙁⓄᴥИNᑎ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑎИNᴥⓄᙁᗱᗴᗝ⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX index df0ce691..c3d7a879 100644 --- a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀ᗝᗱᗴᙁⓄᴥИNᑎ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑎИNᴥⓄᙁᗱᗴᗝ⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX +++ b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀ᗝᗱᗴᙁⓄᴥИNᑎ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑎИNᴥⓄᙁᗱᗴᗝ⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX @@ -48,8 +48,8 @@ - -1188 - -752 + -1353 + -868 1 @@ -85,9 +85,9 @@ - 43 + 41 - + 9445ca40-cc73-4861-a455-146308676855 @@ -2693,14 +2693,14 @@ - 1526 - 974 + 1530 + 963 117 64 - 1566 - 1006 + 1570 + 995 @@ -2718,14 +2718,14 @@ - 1528 - 976 + 1532 + 965 23 60 - 1541 - 1006 + 1545 + 995 @@ -2744,14 +2744,14 @@ - 1581 - 976 + 1585 + 965 60 20 - 1611 - 986 + 1615 + 975 @@ -2770,14 +2770,14 @@ - 1581 - 996 + 1585 + 985 60 20 - 1611 - 1006 + 1615 + 995 @@ -2796,14 +2796,14 @@ - 1581 - 1016 + 1585 + 1005 60 20 - 1611 - 1026 + 1615 + 1015 @@ -3308,7 +3308,7 @@ Y coordinate Y coordinate false - 27e4b84c-82e3-4fb7-bbd7-c63d57fb2253 + 5edcabb9-3bc7-48bc-aab5-ce1b7eedb172 1 @@ -4544,13 +4544,13 @@ - 1625 + 1627 1165 118 64 - 1680 + 1682 1197 @@ -4569,13 +4569,13 @@ - 1627 + 1629 1167 38 20 - 1647.5 + 1649.5 1177 @@ -4596,13 +4596,13 @@ - 1627 + 1629 1187 38 20 - 1647.5 + 1649.5 1197 @@ -4645,13 +4645,13 @@ - 1627 + 1629 1207 38 20 - 1647.5 + 1649.5 1217 @@ -4694,13 +4694,13 @@ - 1695 + 1697 1167 46 30 - 1718 + 1720 1182 @@ -4720,13 +4720,13 @@ - 1695 + 1697 1197 46 30 - 1718 + 1720 1212 @@ -4754,14 +4754,14 @@ - 1455 - 1208 + 1458 + 1183 125 28 - 1519 - 1222 + 1522 + 1197 @@ -4773,21 +4773,21 @@ Numbers Numbers false - 9e1c2db2-3fed-4bfe-ae5f-c35369acfb42 + 87e58dad-e540-4380-a263-7ec4f42be8fd 1 - 1457 - 1210 + 1460 + 1185 47 24 - 1482 - 1222 + 1485 + 1197 @@ -4806,14 +4806,14 @@ - 1534 - 1210 + 1537 + 1185 44 24 - 1556 - 1222 + 1559 + 1197 @@ -4840,14 +4840,14 @@ - 1517 - 1112 + 1452 + 1111 103 28 - 1566 - 1126 + 1501 + 1125 @@ -4865,14 +4865,14 @@ - 1519 - 1114 + 1454 + 1113 32 24 - 1536.5 - 1126 + 1471.5 + 1125 @@ -4891,259 +4891,14 @@ - 1581 - 1114 - 37 - 24 - - - 1599.5 - 1126 - - - - - - - - - - - - 797d922f-3a1d-46fe-9155-358b009b5997 - One Over X - - - - - Compute one over x. - e6781702-a4e1-4951-920f-60887c3060b5 - One Over X - One Over X - - - - - - 1358 - 1141 - 103 - 28 - - - 1407 - 1155 - - - - - - Input value - b4e762ed-4c00-4cb4-9326-72d2d5135c0c - Value - Value - false - e19d849e-b13e-4f49-9f80-e7e055d7f067 - 1 - - - - - - 1360 - 1143 - 32 - 24 - - - 1377.5 - 1155 - - - - - - - - Output value - 9e1c2db2-3fed-4bfe-ae5f-c35369acfb42 - Result - Result - false - 0 - - - - - - 1422 - 1143 + 1516 + 1113 37 24 - 1440.5 - 1155 - - - - - - - - - - - - 5e71df64-fca2-45cc-88c7-d7f6772fa7a5 - 1c9de8a1-315f-4c56-af06-8f69fee80a7a - Reparameterize Numbers - - - - - Reparameterize a set of numbers to have a domain range from 0 to 1, or an inverted domain range from 1 to 0. - 90d45483-7fce-4938-bc03-414c534e330d - Reparameterize Numbers - Reparameterize Numbers - - - - - - 1648 - 1258 - 166 - 44 - - - 1712 - 1280 - - - - - - 1 - Set of numbers to reparameterize - 9665000e-91ad-491c-8089-67fea4b32084 - Numbers - Numbers - false - 5edcabb9-3bc7-48bc-aab5-ce1b7eedb172 - 1 - - - - - - 1650 - 1260 - 47 - 20 - - - 1675 - 1270 - - - - - - - - Invert the domain range to be from 1 to 0 instead of 0 to 1 - 4d932abe-7017-4a68-a9b6-a629b93358ef - Invert - Invert - false - 0 - - - - - - 1650 - 1280 - 47 - 20 - - - 1675 - 1290 - - - - - - 1 - - - - - 1 - {0} - - - - - false - - - - - - - - - - - 1 - Resulting reparameterized set of numbers - 27e4b84c-82e3-4fb7-bbd7-c63d57fb2253 - Reparameterized - Reparameterized - false - 0 - - - - - - 1727 - 1260 - 85 - 20 - - - 1769.5 - 1270 - - - - - - - - The original domain range of the set of numbers - 6893f545-17ef-434d-af11-38de410802a6 - Original - Original - false - 0 - - - - - - 1727 - 1280 - 85 - 20 - - - 1769.5 - 1290 + 1534.5 + 1125 @@ -5160,7 +4915,7 @@ - iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABu8SURBVHhe7V1pcFvXdWY6iUQRNi3HluzYkhzHcezpNJNMm2misTt10sn0RzvTP57Gdp3OeNokk2nTTJxJk8k0cWzZrew4tuVIimwtFMVVJMV9XwEQBLESO7HvO0Bs3EBwQ7+HSz1hIwiQDAQ6OPP09PDefdv57jn3bPexoqJMnwAOxMt0YDmw1f328flXt6dYEm1ubqrV6uHhYWaZ9sABALf/EObfG8oQ7gG7rVPvMoQajaYshXtEMQXCZC1XnG2lUjkyMrLHd/gTPz0FQlZxCayfmJj4Ewdg76+fAiEYWmTa+wuUr5ACYZkdB5EDZQgPImopz1yGsAzhgefAgX+BshSWITzwHDjwL1CWwjKEB54DB/4FylJYhvDAc+DAv8B+SiGLzd71cuAZefdeYP8gZLGGBoYHeocG+gZzLIN9g1hSGvQODvYPMVmsu8eEg33nfYKQzR4ZHNIOX/UKG7y8Oh+/LiCo8yU2sGAPvbimarEnKKyfE9zeKai3jF8Z6mpnc6YONi/v0tPvAGHWxEXmo4L7bTdbfXX/GO/923j3t+Id31y++Vy861ub7d+Md36L2kOW/r8z/eEbU2//tej909oLz2zt7Hluo/3v333tF0NjE0h23SU+HODbZoGQJA3ZCZpMEOc2TW1DPIHwrTfedPz+L+M3Ho/f+NLipSf4vz4pfP0U8xePTr92Mt7wVLzmyXjDl3Boo+bJ0MUnfOe/MH/piXjtk4nliejlP6859/YYi1OGcBddKQXCZIBo2AiKBFFQWlaY3HJyitvS2Oz6/deAR7wGgD21euVLq1ee2qx5au3qU/G6p33vPsH8/uc2rid+1j4dr38aO6kNLID8D08Nt9ayufxdvED5lPSsPc2RNBWam1OsSc7IwKD/wtfiVx+LX/kitVxNLNi4/qTp7GNdP3roF//whPbsV5zvnBT86qT4tZNjrz7S/5NHuL88wf2fR2NXnn77lz8eHIVNU1akBffJfTBnADZrcmqgu8f73l9sXDoRv/J4/OrjW+trj8cvP77x0eOut060P//AwrnHNi59Pvz+qaUPH5v/4FTgvVORD04t/v7k8oefb/rDu+OT3IIffw8n4LHH90ylUDiyJwgp8FgsqFmMhb87e9b79hcVv3xw6L+OD/74OO/nD3NefajzB8dUv/lc/ONTq++fWP/wRPyjU9EPTqyfP7l58WT8wsk41tRyYundR/rqLjGniqdI8eR4bD6fz9uGxGKxKEFCoXC7NtiPi+yhF+3PqSkQjt4m9M4dL0+4MD09zeVyp/nCyxcvuN56bO3ccfuZh4y/ech39mHnmYd0vzoefOdz8fOPUsuFR+MXHzW/dpz/s2Oinx8b/Y8H+n74wNSrD3J/9uDauUfe/u8fjrG5GGt3vO++NMALSqVS1M/Js5FCLuvp7hoeHYWgMtmTCkWWZjKZTKVSAel8eLUvz7zdRVIgpF9HIBDkvivwA7uBH6SQUiYYC/v6PL9+aPPsofg7DGp5O7H+LSN+lrHxv4yN/9ta1t6qWni9KvZm1cqZqsU3qpbPVK28dWThV5+5efEsRzCD3lAc1YS7AELqfWXUAjywVsgVoMRPaU9Xx5Vr1+pu1N1s71SpZtE4k9B4ZmamtCCkq7DRv3p6enIYF2AB2A0p3OI4izU+PjFW++7E1deZ197IuZxh15xhXTvDqkls1JxB4/Frb7LGRljsSVzzj9ph6Yvj1WByd3Z2NDU3NjY3tba2NDQ31tRdx9J8s6n5ZnPbrbbG5vraxrq2ttbWtrZONM2grq4u2PDFeeAcd8lezQ1grl69imEgx5lgd4regy3JFU5wxbtbmAlHtGhSCNGBBOp1umk+VygWSaWSEdboMHO4ufsmm8eVyqQiEb9j8FbPaL9oZkar1aElCs/TyGAwSCSSEpVCnU43NDSE4Xo7QQTG6ID7OJiTC3KmpkaZTEyTyX8ZT7iqhYoCSsitVtvm5obb6zQ5zZHF+blQwO33WJ0Wi92ks+o1Zo3Nbff63TqzVmvRLcdiWSeKaLXau16NniKFy9EoeVD0UChSQLgda8Bx4vvv49CF242OjEy2tAg7OwXt7WmLtKND2t4uaW8Xt7fT26LOTlZbGwR4FxDabIBw02TRi5Qiq9uh0Cv5CvGEcKxnvKtzouvW6K1bI62dY53dzJ728U5fOHwwILQ5HORB0a9rampgreRgDdrkbpA/W7eMWz6/t6vL+Moriy+9FH755eQl8vLLnOefF7zwgvKll7QvvMB6/nnpiy8qXnwx+OKLwu9972p9faFjEkTHbDavr6+HIyGb2xaenw+Fg8FwwOV1eALeuaAfP5eWF31Brz/o9wd90ZWV9bUUwvw7MEqv15eWFNIdzWQyjY2N5ZYwYtFgANu7IBItOsXj9fX0yL7wBWtlpam6Goulutpx3322xEZHZeWVw4ebKiu5jHuGjhxprKxsP3JE8ZnPML/61XcvXeLm7G2ZnQnek9FoWlqMCGamx3njCo1yWsof5zHrOmobepvr+lp6J7pah9pvjbT1MQfGueN2j2clGl1Momg0iuEGnXjvr59/X8/aMkWR+v3++YVF7IKt3NramnuoI6KzLwYI6Q2c6enBvr6ZJ5+0Hz1qP3bMcuyY7sEHR+67T/bAA+Zjx9zHjweOH/ceP+48dgyLgyz33DP17LMjMAsLHA4JhGurq8FgwBvw+YNzLo/L5XXZXFajzWS2W4x2k8Fq0Fn0/jmf1WGJLCwAwuUkgkg2NzfDKN1Hg2B3WKZAaDSZfHMB7MIgd/ny5XxMfHTDvfvjpDcIxOILH3wgPHmSyajqrK6W3H9/F4Nxpbq6gcFQHT16q7q6pbq6u/o+gMo/etRw//3a++83V1UNf+UrVxob+Ts5smncgfbDWLi+vqo2qLhSrsPr1lsNcq18gDMkVAqYIvaMSiyU86VqyYRgYnBqJLxI9ew0cjgccKBLyyKFfl9ZWUFXm52dRT/dsVPsoyDiXhwe772zZ7kPP8yuPNzOYPDvvbfvyJHLDEbDkSPye+8dveee2qqqDgbjFoPBvudebXX1bHW14fDhvqefvlhTAwcd0bL8TdOERWoFJOFI2O62uue8drfd4rIKVUKpRibTKWfNs7MmldVttzqtYo10aWUlqzkDv+KuT3HNEiPNnxEE430RRFwHXuFAZyfn2DHtoUNaSF5VlbyqaqiyUlBVpayq0jEYFgbDxGCYGYzZqipZ4qj6U58a+/KXx7hcoUiUw37OOhaaTOZodMlkNYiVYrfPa3fZDVajxqiWqGZmTVro0lmDSmPWKrQyiVoWjERWYzGMf8kEXYqJ5vn09R2FYS8NUiBEhyKETrojkUffR0EEhH3t7ZOf/azi05+WVlZKKiuxVlZWyhNL66FDLYcPNx46XHvoEDmERfVnf9Z56tTHN27MSCQFcQEPbzAYl5cW1FrVpJAt180K5SKmcHJawpvgjnSyhmbk4u7x7s6xnn72QMtQm8XpjEVXks0ZbENjlRyEsLMtCYJFuiPh6WljjARLC2JiZmNA2NvayqyokFdUSDKW0YqKvoqK2oqKzooKceLoTEWFsqKi4+jRS9evcwqMzBGnYm1t1R/w2T32+YWFQHAO226f2+VzWpxWl9fp9DhMDpPT6/L4PXAqMr/iAZ8E8ZrScipWV9cwEC4tL2fV+2k70QdJjJu4+XAK9mheI2s1PDDQ8e1v9339672nT6ctA6dPD3zjG0OnT48+80z/M88MPPssFrTs+M53WMCvkA6E54TLZLPZNzbWtQZVP7tfazXJdXKeTNDc38RXiFQ6RWt/0xBnhCflXOu6MTg9OheJZOUJ/Apcao99d4+npyhSp9PlcjpNZsv6xib9xJvxpO3NDXp/OBymO+B+ufmIs4wLhaNYBAJqSWyMJJYxkYgpkbClUrZMxpHLJ+XyCbF4RCicEAjyFH/Sw2A/Y9RsaGiAvY13WVpahFMRCIfgy0fmwy6/M7wwH1uJ2r12XygwvxBxep0OnxMyuJFBOB1hyKamJvTgPcKwl9NTIMza0WKxFaNBr9Mb9FqdRquLra6RZnAi33vvPeIVpScu9vJEOBcidVuqqJQyhwPPHQvl/iM3OT0Nkd+6Q37Ch8fDdXA2yW7CdoVLh0utrCwKJbxJEcdks4iVMyzhZPtoZ/tYT+tIB5PPbOppGOGOD7EHByaHnV5PbGVlKZWAKeyGlpaWu+sapkAIRycQCMzNBdbWKWlb26DWmxsb6KrRlSgOxVZXEVckEAaDQbj/ZAjcL11KgKHFhTAda1J5Be6DtjKUhfQSch3ICv20cOZMJuNqbMXjdc8Fgwvz8waLQWPUCpViqUap0Kvg6Su1MoPNYnfZZtQSfzAI1z4NQnzXBWHu0vIL/X6fy+32+fzr6xv+QKDxymXD9NR24yLeJznMvfdUURpyJB9JkKIKAxIxhIKGWyJ8pBPQPYNckPiFa2sxs80oUgpdPo/D4zQ6zEarwWzTS2YlCsOsTC2dNc7qbXq1Sb2wvAyZQ/dNo5LLVNBoQfFP3WoxTAyHfN7tIIRVTWwZwp1dQ0guQnKwRM6IuJArEwGi1XX+skfjdycvnXQyic7g1Txel0wtMTmsequerxSr9CqxnNvLGZxSCFki5vD0yISIrbfDOLhjBCQzpOQg9Lg98CU8Xp/Z7rh5/lxuuxRSCO5AjRAMCKPzl5KsyJFYHW3lZhWgfFAkXQpmy3aCC78QTsXqaszjc+ltBpgzvjlESv0uqCFfIljqtCBfSNkyLpvD7YhGKaci7YtYxKkoLdceo53DbkeYFI+7sLTlWuDJYXzChQDhHTAkYAP6JBQKdXd3k0Jhmtd58hfNSIicHupo5GiB3t2wR6uEHPihTSLMbUSmQiIX9zF7+HIRXyroYw+1DrU1dddfa6+9fqumkzkkkPHrum4MT45ivIS7dQBc+6xitxJdhkGqVCrUWi3GD6VCoZpVQ7HMJSxSxHmJubGj/GUaKWnqMU1z7njBrN1lR/kjZxEI4dpHIpFAaA6RUvj1gWDA7aWk0OFxIGTq8XvdfjfJJpIenEYIsJWcFOoMBrPFbDCaiUWamyCF/f39aWZCJluzGil0TIBuT1i/a81JrkNfZMculRgL4dqv8YSspoEWo8upNKimZPyByf5JMZslZk9JOAqNQjwrGp0ecc35tmNFyY2FkXlQJDK/sBN81HEo1RycymGkZIoX9hBbBiMrmJtWzoqj9J7tKl2Th898vA7KIrVQmYpgyKex6ELz85BCl8+NiJrNY0Wa0Ol3LS4tRRbCJpeJpCkyzVHsLDkI3W63y+XCP3sehDxLVl1HdmYd6rZTfWgMbYyyWq/Xm3BMoaQpciJUZDJZrRafz0fvx1H8RJkkgY2WcuK276gV7ihSkwl5+BmZQCDhe31etVEj1yqYvAmOkCNRSwVSHkc0OS3lsYQcgVQQisynpXwxNMJiKLkw947ZieQGmZYYseMhT4Sb+XsCMD1wZZi26NeLizCkljHMYBvDFS5YX1+PhDnUw/JyFGMw0j04hMJcUsZJx1x2VJ7JHSiRqTCsxWJShZAnFaDLyDUKnlQ4Oj06zBlmi7gaowYh01n9bD9nWK5WQjVlmjPQQyUHYT72ZA4jgg6mZA51ua+ME2HcNjQ0Ahur2aTSaAxGYyg8jz7x8ccfoyv4fF6X04HqaZPFYrXZ0QzBZUALwcVROuaS//OjxyAhA3PG6XZYnJZQJAynAsFSq8ticZot2OdxIH0Iv8LmsFhd1qVoFC5EGkG1llymIn8WpJkhxCglIxmdbgSXQZmSnTW0D7FA5XHaGAwtCgEFm0i5WDJhJ24Hid9dfIuYMxjghJIpxEUdPo9Sr5wQTcK7l6lFt4ZbUYfYNdE7JprsHu/smxyCBshqH5TcWLgLCIkZAkZD6cHlAJGMIxxnJGKAAbbp/eQoJqNkNVxxHWpOQxIBJ2gqVIFg5EvejysgVJ1eTl7I09NFiMhOwG2AHZfIVMDBCKDkEHWIlI8RDoYiQc+cG1IYjcXSihCh6hFyO9hSSMxIgIcNcASdlMrGbG4FwWFxYLhqa2tDNBz6CgeIUYc1gulZJ2xktTwzbVHswe12Hc9L8gtNsejSKGugZaBFbdDwZYJh7nh954367rprHddrO+paB1ub+5q6xrqb+1vsXi/KitLC3NANJecXFtKPqbYYhEgR4oULF9ArHXYrJgvpDQa31wfpuXjx4uDgIATR53Vj7gGcTqPRHFtdhwydP39+x8lTuR+GVCEXOsWTvib6AZQE8keIn6mMsy6vx+a0mWxmpV6lM+v0WCx6vUWnNaF2RgkfIxAKAb+06AwMK6iH0gqwFQohaQ8+4jXShgp4JXD8of0QAcg81NfXV1C1UvKD0U4kMX2TiUTJsxLtciQHARK5Q4FIKOJN86CZBYltoUBILyKBSJzYQ07PpL0XYO6O58lngb13/tTI7i4HnuLdYKMnl9uQAhyM9hgU08pwgCtxBHcdQsPtYBPBhYXmhmVPhiVQssVIVDedaYcORzNYsLQxhbsXKsSZ7Xf3Crvj83Zn7QOExJvOtDzJMJbVIiUx6N29Ce4FiYEqRi/B00NLo4jUaDYTZ4MmuJLhcAQAk+JYEA5Bsd91vbe7t85x1v5AmP9jEZHd45QowN/e3u7xeBImEuXsg5BGWY+trgTnVwLzqyuxwJwPhiymaGl1OoxYFqsDEnnp0iX4PLvuPfm/ZjFbFhVCehjbu/6BPCECByEjNjCxdQd4rOd+/N2/+dG/3BrpJ+KI/bSRjG1SaVdM/hbhXsWDELCRNCwd28x/I82cgSI9d+5DOJ92mxUGMEwnnVbrcnoMITej/9/u6/p3g2drll2aJYVheO+9pwioFHSL4kGIx8pR/4JDcDNyTCqm3ypRxsaFTYuYOMkekJoWrIU8/nd/+oN//cn3mxuaiHFzB8JEG5y7u2hOQTwtcuMiQYi+DysUegxRNFLKjqjx1hiW2AYqqMmE74WdZE0fxU+kLEjclZrMnSjaRHAAinRtNbawsJiwWagVLrsUnF8MYSrZQigQMBgNao0G0+ThiUbmFwHhRx991Nvbu/fC8yKDlPt2RYUQGCC9AL7DEgGQCNwghQQklqMoVTW0NjTWXb0O9bi8tIhCSFR7hEJBn98P7wAQIqgNMSXlOcD7/fffR/0SJA0VBXKFUiaVOZzuZLUJ4wWIInKGtB+I+BgA/q7Xz+87/EWCEM+Nvg8bpK6ubnNj3W6zuVFl5fMBBniNyMYJ5DKOy9jAHVAoFUuLCw6H0+vzOx12M1UquAH/AbEeekotLoW4AbFIQQjgkeRUclY2bRQkR0vhMzEHGEISx4ElQhcTJ3N5Rq+7rhNcV4/bnSnuHWkDsNPyG6RAFFejoioJIl/jgqJGMA8uPDmUTDk+4LHvbC3mBYsnheStwPpM5mKPTCLRzMg0EkUm9wEPScenEToEyWcRwk8y3KJZ8v7kBsXkbNHuVWwIt+NvVqbnyX1iK5GSe1z/k+c2lIQ588frkqTUAx4nSS9nTU7lufOAYp8ihfn72kVomSfq0LHICcOshXFLCIYuiFRMwawF4SiKpsh+QnQzsoHaGbSHsZP1vfJ8krvVLAVC9OgSoXz0IdgN5YlgKdZI3sLCJWgBDLfHgymS60sri57AojcIGxilNy63B0dhx8LWBXCYSYlm/rkA6vYWFpeo+NzAAHweUriVRmRqVWk6lCkQFuevaOdzFzA6HwcOKrSxsRHMXV2Jwg8BHpAnVAUg5LYSW32j/uLXf/TPf/Wf39EZ9ZFwiCoNsdmwADq/z48aELvDAUAtVks4UToL/PC1QzKmJhOJB8GghdlFUs0lRSkQZvpSd2sPlFs+EBK9B2yyPmezZLyi65+eG3qdZJp2JCQ0CDboE8S4JUWOdKaXVHmVFH54mBKFEENUPhCCy4jaAEUCD2pQXS6P0+HAnAIkn5pr619+9fvv/O63mMvjtOOjTsgp4jNzDqvdntU3RSEkBJEUVpFIHoBM1p+lae8cSAhpowMspqZcT9HzWDcRWcWUglCY+roBYmzx2PrGGhXsRgYYRgyGQ8CMut6sEomxECMrKSmmqdRkLvN5ShRCKFLkZpN7PbGziIpL1nLADxYpshYYPilTxUvF7SiLxu0m21jT2+Qn1ijaSCO0QVSh9AErOQipJFEiLYQgJ5mDSRIUYCgpj8skMj4Rc4PAScIF29V55D/LoDT15I696o8lhVmxoT5qkyjlQzIIRM2juk34if2kUBPWB2QFATMyDqWZ8mmu245v+IlvUDCEmdiQ5F8ObGh4IF6kHonUnGW1KcgoRRTpJ577+/KCKRAm6zQAA47vKDdEdKjqo8Q0bsADrZgDHrpOMPUbu3d+4Qo4PU+LdF9YcNAvkgIh0Wq00JDEep7Y7Oh1ASVcmWBFkAbWZBQka5rwE2GUfJyKg879fXn+ghXpjlBt1wAmOyqDyVGMh0j2okZYqVRR9UsOFPXeOQ8Ktgxh/ugWBiGYmznNbsc9uAfEDjEUqEcCFIQO6pcun8HgmAx8GcL88Ss4OgO9Sn/TESPf7WFvg+wE69O++Eh95ATfll9fJyMrYEuTUexGTQtVMJF0oAzh7iGknTPCekLEUQM2MO4xF4uwGu4cXGOE/BPxKgcFA8zI+eVkJEhLKkSSIJSO0afTePl9bkQmEQ9L/rxSGcLdQ5hcGEjwI1kFYiUiCEI+erU1ni0thSOJcr9QGAB47aY3f/rKgt+B9kjO4XsuOARbiJwIKwlTnLAzc6SEZ0/DfLt/lMfCAkBMGQuJcUjbh7RWpCP92KAchkwc4nEnt/7jV+51MS/E1tYxmRffGUJeB2kdiNTNmzcBKhDNhBDuJKxeUn8GQpEggiy4RdmcyR/DFAgTfw8OhUgzWr2Rcr9vW//gPqlpgEm5MB+mJk+rZw1GahI2/mAc0m4Aoq25aVYmX11O/2MAxMnDpfDHxzIVqcflmFWr8bFTyPvg4MCZM2dQf1ZWpPnjl27OkK+9IAocDIWTvTRAiOI+zJTH+AfME58QwUc8KM+fbOSIs5CSXDTAGnGAbAJM7cPtUPeAuFpioC0r0gJATJHCO58uxh/hSCXaNiFTMmllSzaSE/EkWg2diZGVmEVkqEMagXYq8BOtAD/lWiSibvT8ozKEBaCXaJoCYXI1dNZtWobIUcLuNMEiURjygZ9kwpSJZEWKr/PBmkXRAz7KD9c++atvZSksCMUUCEmmLQchB4SJ15jhgMQcpArf+kLFEQAjWEL+yAcFUqYUJcGYiWtWvVqGcPcQBoOh5Eq9lO1QCKVFao0WQRZ8B8bpcjudDngLqG9oamoEnOQvUtG2ZSY2OBHZVqQH4YqEQ2H0A5T/zaFiKYgPviwkC3MZwt1DiE8eEAK7CaXsSfyY5vHgjOMPdGEbBiq8hcTf7EiJkGWVLeT/cMHo8hI+JYRpMSgyg5ep1xtQz+Lx+ssQFgRbcuMURbqduVjeX+Ic2PpoSfm/A82B/wevNpEGB/sGhAAAAABJRU5ErkJggg== + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABTFSURBVHhe7V1ZbFvXmVaAGI5saawMlHgc27GTOMEkT2lRp5i0D32ZQYMB0ikGA0xfOsCkeYmDpi2QNm3SZmkmdZImrpNmcWwt1mJrsbVTFCVK4iKKFClu4ibu+75rsXZxPurYzOUim5QlypLujwPq8N5z7+X9v/uv5z9XJSU07QIOJGjasRy4+fjh97P6hwptwxwuh6Zt5QCA+xZC1XCbergNn5ltqE3DaTfw2/W8dj2/PTVmYvAaj9nJ449s6y3s9YunQZjg/iIx/FKC/4uE4OXE6MvJr6TxX55j/I+y5r9d13/uaPn5KvulBA/bX0oI/rfzs9dbO3r5fP5eZ+T23X8ahCu1jyvfO6r+4Jj03aP8N48sVj+RuPxE4sqpRP2puW8eM549NvH+Uf3Z4zcuPpbcXvt4ouFE07s/q2/uEggE23cLe/3K6VJ4+Z9jXz7lPn8q+PcnHZ+eWr38dKL+adObj65cOpVoeCbR+Eyi6ZlE8zOJq88kGp5Ofq15VFT7BkcoHx4e3uuM3L77T4ew6slEzVOJ2qcSNU8m6p6a/eqU8K1jH//Hkb7Xn537+rGJ906YPnpM/d4JwR+OG8+elLz96ErVibY//+xqG3NkhDaH24ZhOoTVjyeq1ho61Y8vfvWY+S/Hq//zIf6vn1j65qT1g+PmD45b/u+49M2jhvePa949tnzhaNs7/1V8CCH0d0nbxu8tuHAahOp3HtG/84j1z49MvHnE8N4jq189mvjqUe8f/ynxxbHE1ycSF04kqk4kqk8mak8mOzUnE5//o+jCLzkiRZEVKY/HgwOFz2yCPgBh7xrlHJI8lsvdPbFQGoQDv6wc++3DE78/zHqlUvjbh1eB3N+PJi4cS3x5LPbhEenvDmv/dFj6u4cHXq1Uv3WY95uHlj+rbP39v19pYxbNnRkaGhIKhRqNZiIXqdVqkUgolkiwU6FQKJXKnMNUKhV2bYE8bM8p0xXp5+WJz8qSjXQ+KUt8eqt9dDD0dmnw7dLw26XWNx7w/6nU88fSxMf3df3hxx0s/tjYWHEEERCKxWJAJZfLARIh4AFCR6vRMHq6/nb+3KWq6i8vfCOVKyfWtmcTUNw1gpgGoeKvL67XlJ+8qDmXbOpzL+r+9pO1/k/kZ/+N2/gpTygZHR0FR7g8XmGtcG2GBwVSCCD7QKy1DxaL2dfH7GMO9Pfja39/P6Onp72zo6urC7vWI/zgXRPLpkHI4kkKbNJhvhBWhUDYx2b3Dgww82sYyR4aKlQUiCIViURdXW1tne2M3t7WtuZLjbXnvzlXdaWui9Hd3dNV3Xjxr19/0trRBjwFI4Lks5VOsJAQ5UIvvT1aMo+rpkGYx/gcQ8AR4dgYq7tbWV1tbGzU19dnNFN9vaOhwd7QYKyvJ31bQ4O1sZFXWztYoCAODg5KpdKVlZWp6Zg36I1Nx2PxaDga9vid3qAvHItEYmFfyBefjociIbS5+fnlLFpdXQ0GgzjVxu73XjvqbiGEZoMHOCoW97a02H/0o8j3vx98/nnSQmg/+IH/+X9pevbZ9u99j/3cc+LTp9u+8x3m6dODzz0XOH26/6c//eLy5VGhMH+mgO8ymQw/2u4wipUiuVFjcZoECjFXMtzL6W7pa77CvNLU19Qx2H6dda2x94pUr845/RAOh2kIb7IdEMIdHRGLmc3NmiNHbAcPWioqLIcO2Ssq0BxrfW55ee/Bg+yyMvWhQ+J/KB8sK+OVl1v272f88IfV164V5M0SKYQYLSzMhyLBQCQ0NR0PRkKBsM/hgyB6PQF3IOx3+53uoMfld0an4xhMJUgwQI1EIjSEaRAKx8e7GxqUR45YKypslZVo4w8+2FxWJn7wQWtlJZr/oYdclZXOykr7reY4cGD4hRcGxeL8RRAjwffx8fHFxQWDUT0qG5VrJ/RmvUQt6+f29vH7GXyWQCrgirm8cW6/YGBcKTHYzQsLi7MUunHjxvT0tMlkKo4LXdDdbWzw3SpSXBW2EFL44RtvqA4f7jhw4HJ5+dihQ42lpbUVFXUHDkxUVFSVlX1ZVtZYXt5SXi44dMhUUTEJpEtLW7/73S/q6+FZ5P/TCYQLCwsBv9fhcuitBovdrDLo5FqpUC4akYkk6nGBbESoEE3oVZMGjclpn5+fp0IIy4gQqL6+Hi5Y/te9l0duAoS4Pa5QePHDDyUVFeOlpbyyg8ryclZp6TcPPNBVWqotLxeXlfUfPMgrKxs6eFBaVoYtmvJy4/33d5w+3cRgjEul+TuHKXfGH/AYbHpvKAh16vS5dCaNzWMz2vUWp9XuslqdZp0FuCp84SAwg/JMEW7YZrMNDAzgybuXgcn/t20OhDyRiHXligjw7N+vOXBAtdaEpaUT6CQ/SycPHNCtNWxXlpaiaUtK+p5/niuTFWoLiTsTCLh1JrVEp3R47FLdxICgr2+U3Sfo58r4fBlPpBpTTirbhzoNLltOdyYWi9G2MO0p4Y2N9dTWju7fr7z/fvn+/aQp9+9XrHVq9+1DO79v34V9+7CR7NXed1/9qVPna2oQ5+X/xBEphGDF41Gn1xmORqOxaDAc9Ae9ZofZ7ff4gj5PwOMOePwhv8PriE1PLS8tLaYTDg8EAjSE6RCKxd1VVZySEklJyRilidf6IyUlgyUl7SUlw5RdspKSqydOtPT1FTRRlbKFuskJNp/VP8pR6ZQswSCLzxrgs+q6r3DGRvqGe+q7r7QPdFRdr+LJxhYXl2bSaW5uzuPx0BCmQcjl89lMZvtrr3WeOZPdus6c6T5zpvfVV5mvvdb7q191vfoqxnS88grj44/5IlH+IvitR7qwODUVg/AheA+GgpA8yBwCfKPdGAyHXF6n0WZ0eF1uH8Q0At8HmFEJMunz+WgI0zk/PIzsKE8u5yoUXHxSGkcu5ykUAswhaLWjGg1Pqby5V6HgSSScAqf7wXdMPsC8OV0WrnhYpFE4k7ZQOcDv44h5GpOWLehn8Vjjasl19nWWcNDqduS0hYgL4UPtjrhic9yZnJIEBoFN8FZg7fC5MZaRqd2k05vMovPgSTKZTPzoubnZQMhv9TjhkTp8boNNZ3E7VpZX7S7zhEmDBNukRasyawOxcE4I7XZ7c3Pz7sh0bz6EhOlgNwEPpm4D4BHYkhEnsne3CNlt4FdTU7Oysmx3mJWTCqPd4nA7Jq0GhVY+rpEL5EK5TiFSjI4pxcktKqnT64baRDhPpaWlJa1We/78+d0RGm4mhCm+E56TZ7xQZUVkN4UcOgAyFTiSmQpE6zabSW82ePx+vUnLl472cHq6OMwuDmNcLeeK2MyRAaVugiXoV5sm5+cXMtwZHO5wOCDQ+cejBRnsIg/eHAgJTsDsLsHDSTJkN+MJIGluRAWRaMjitPiQJY2GAxEEFT5EF4Ggz+X3uHxOX8AXjUdsbos/EoLMZRAOx0wFnoYi83qLLne3EBIWQ1YgHMCPpDwKlTxyCJ4AYjVvc4bUTIXLbRUrhDyZ0OqyDElGOBKeVClsZDR28hCmMJuYTd3c7hG5yB+N0DMV6z46m+KtELSg0Ij43tFqroX2MmTL4M4EI8HIVHxqKh6NRyFzcGEi8Yg/HPBjpiKAGN/rDweXsmcL1/Jte32+kArexryV1HOREj6cJx/ZvTlTsTCvm0wGEn2jQxq9mi3i9nIZ3YMdDZ0NzYzm1v4O+DVd7PaO/k6Lw4G4MDu093q9ezQuzABvYzqT4EcAg+RBed5R+FKQp7IzsVgkFA46PA6Pz2N12rRGrdakVRnUSv2ExjwJG6mzaPU2UywWR1Cf4ZEC1L0I4SaCR7V8BWXXSHaGTPkitOeJuVqbxet362wGlV6pMWt1Zq3WrDFZDcBPrpXZPC4YwowpX3zFxlAotOekkNTVAkj44qgSwyebzQYX8Il+Bq3n7KVCxjwtX7YdTrkzkbBveGxIZTV5A+4Jo1YgH5HoZGKVWGFUQTSRbFPoZUa3PacvsxchhJeIUkxkNAhhvg1ksVgMBoPVakUfYRbZTj5R5JkybAQ2atQBzYkHIh/LlxNCSCHmHvwBr9VhCYaRJw14Al67y2ZxWGwuq8lhQoLUaDPorUaz3RyJxRDaIxCkEmIMv9+/V6QQjCYpDHzi4cXNE0UEAmyYcO/o6ABDYV3IRlKZglJdBoNBKv+AFjXDsuGog8B5y51ZVKvHrzFb9WaTWo8QfqiV2dLEuHqN1SZSjPUMdo9IRq72trQPdNldLoC3p2cqCISdnZ0NDQ0wK2aTQaXRGI3GSCwOMKqrq6FCQ8GA3WZBPbXZarFa7UAYmraxsRFbcGyyOGotw3I3vg/VnYEUYv4IMxUodopOoewwHIlGAiGf3Wt3eJwIMtAPhIO+gNcX8k/NTOPxyqC9JYWEd4CESCGVNGo1ZALJRmSwMnbpdDrYSOJtbgpyVAjJrL3JpG5jXZMZNKix4EhHh8QcpV6BuKJjsKOVdY0xymZye673t5nWmanYc0WIkEXoTLPZDPtHCH3YPNSBEXOIr2QvMZaQP2L/SMJlExNLxJ1JFiHO30AFKWpnUIToDyGcD87OzTp9Dk/Qg+YN+Z0Bp8FujE5PZ3uke7QUmPiiGQRRA0FGQfBCifEDl1OeAo4ihnBjzktOd4YUISK0HxSwJ/Rqo8Ug0cg4wiEmh8HgMXqGe9iCQUwlcsU8tmBAbTIsphchopoN1nEvxoU5JYnqZ5IEaTZUxJrmmXy5o7wSd2Z1ZdXrsaNYVGPR25xWuU7FG+fxpPwRGZpgVDHKHedwUE0qHTG77CvLKxm2EEm3PeSRrsfTnODdRtSgTlMAYxiR1PwpFWgS5QyPF+ZWr9frtDqsNdRPThr0hltNj47JaNJPYvMkBmBwBuEQ+ESbpRju+Nht9YCCZyrykbyMH41DoGAxYUvCQXSQHEHpA7JfU/EkxaJR+Bcpwi4Q+Ur6sLvUQJMo8LuhXRMUgtUFQEikB8eQldD4ShI0tyfC+hSKGHz16lXiwbpdTofLhXrAmRtz66VRyHZADnObejKIr0SlrX7S7+Xz5wsh0WBIu8DbhBaSUIhshKMIK0XdTvpUKwhZxJrNpqamtfzAaiQc8ni9KCabnrlBhdBkNEyoVBqtzoDOhGpmdg5S+Pnnn+P8qSIMhJuEyPO0O+bfN/ag5AUhkSRE9NmygnQMEjRYUouiXPRvZm4o43AUhDUlMbBqJE+dcaqLjXXv/eXsOx+dhVpF6D07OxONxabX0iqY4HO5XK2trQAs9f6DWy9ESP4FilDO2LtrzFtBWOYFIXgEDkIHzk7HTSYzPHK73WGxWI1G09TMrMNs4TH7G6svB4J+j8ftcDrdbo/VYrbanTg7mF5XV4ewkkQXkMK6unpEdQgoIYEet8dkNi/PL78+Ul9y+cf/ev3d5cWl7AcFzweZkMpQniSBB/DW84cL4sUOHZwXhGDT9evX8YnR8D5uJKfg5pJuSDyOqKt+mN0eNXw10h4LhUlCEp9xyNBsUj0CvJaWFsJinAGRZXt7++rKClY1gKampuCzLC+t1FytO/nWC6+9/wZSr9kQYkzKoGaUtRHR3KHc35SfnReEuBIUIHxxrMzD9OnszAwCZDKPOjM9LTUZ2BYVVy/DJGxyB5TgzExy2OwsxsP1J6JDMADBQOKqJCGeonGxRMEVD/WzAwG/z4uFZy6YSZfLCZHGGNhC1B7iQGILAVvK/u1N5UnFPl8IUwBke4OI28d4I6KR5IRG9l4qiyEuPT09ly5dwjys3+fRTeomJ/VqtXZ6Ns0jRaSR1NUO4Ojy+vxJCK3WixcvkjmT1CU25RHeBScpAMLboJgTuZTwUdkEW9jd3U2ED0mTWDR2404RBUZC5eY82y4A4O5voTAIC7oeVVxIOT3xHuGRklw58uMkRQ6vFd7NeoS9WEdBK8z1mL85EGYotxRgxFfMCOaAJanYyFm0kZ1Mx5bdlEwpSAzyGVwwhOuhBfHKBiyjnJ42Y/lAUuiY20FYKFqkRIokSmi0CkViw+PTIEzZG6rpIrKFqQZScp/KaVFXq2z48vSBd8+B3FJIXUmUqjQkU7sgeJWpfnaH9jvuHpWCzpAGIZIgmDfAdChSz4jMqIQt+RDWsOdfml3QD6UH5+WRZme2NrAFmnbXrPvaEc9NmhRuALCMQ5A2gxdKQ1hM7GkIi8ntLbkWDeGWsLWYJ6UhLCa3t+RaNIRbwtZinpSGsJjc3pJr5Qsh9X2Q6/VREUN7pFuC0m1PmheEAAa1FKQmGrVJeN8AQQuE1XvUWml8pePCIqN4ZwgxdY76MBL/LS8voTAXGRwURKDMyef3z88vpkJDgjQN4b0FIaQNM7FIcBOc8OYsVOUGgwG3240C0GAotEApOKMhLDJ45HJpUpixoJm8iBWLSLLLPnPmcWgItx/CDGAAHrZgcQkpP6TS9FTMiLUnJjNKrWlFui3IpS6aKYX4npI5VIqikBC2kLwCNJ1WsZglGAwtLn1buYsDaVtYfDjTIMTrKlRqtdlihXhhB3kjITrwQjMBTK+oxywVXB7UjtIe6TZDCJwQIWANA5BA3+lwwP/EanoUIGUq0nhMq9MaDMbZG/Nwb86dO4dlKyjNhu6lPdIio3i7oAJAwkOBC5q9IAauKeq41zBbQZE1XlGCIn2ci1akRcYv0yMlb9mBPkxF60T4sIUqhURGs4n2SIuPXyaEkCS4MMCPZF4ISFgUQV6HTQjyh6UONrvNlHy/hSM+PUPZRYf22wBimiKF/5kdAkIE4ZRSZQ4oQhDh4wBsqltDS+E2AJgR2udUj/BQsLwPu8g/P8KbIZEuRQcQJteEUjCkIbxHIURon1Skq6uWtTcETep0cESxUE07OYlVEfBIqYoUckl7pEUG8nYeKcEGqKD8ECKITjLfBjW6fFOR4rXJ1IknyCXtkRYZv0x3JqciTQGZ8c+ryNeMmSagS1ewFRnFO0vhbXDNGVfQEO5sCAEqDeF2Qpj96s5CtyCyxLQGXQpcTBTTFCl5leHdEH46vSymmPhlujO3WTKf/64i3wB9uTQppNmxEzlAQ7gTUUv7zTSENIQ7ngM7/gZoKaQh3PEc2PE3QEshDeGO58COvwFaCmkIdzwHdvwNbPJkU0EzU/TgzeJACU27gAP/D/vTKIe+t04zAAAAAElFTkSuQmCC