diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX
new file mode 100644
index 00000000..dbd04ccb
--- /dev/null
+++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX
@@ -0,0 +1,242050 @@
+
+
+
+
+
+
+ -
+ 0
+ 2
+ 2
+
+
+
+
+
+ -
+ 1
+ 0
+ 7
+
+
+
+
+
+ - 0141bd6a-9454-4dc0-8c73-3979d84677f6
+ - Shaded
+ - 0
+ -
+ 255;217;217;217
+
+ -
+ 255;207;207;207
+
+
+
+
+
+ - 637917650197246944
+
+ - XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX
+
+
+
+
+ - 0
+
+
+
+
+ -
+ -3046
+ -6804
+
+ - 0.8950251
+
+
+
+
+ - 0
+
+
+
+
+
+
+ - 0
+
+
+
+
+ - 2
+
+
+
+
+ - Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
+ - 3.0.0.0
+ - Michael Pryor
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Pufferfish
+ - 3.0.0.0
+
+
+
+
+ - Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null
+ - 0.7.2.4
+ - Amin Bahrami [Studio Helioripple]
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - Heteroptera
+ - 0.7.2.4
+
+
+
+
+
+
+ - 2392
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fde3255c-a22e-4e12-a717-c573c914426d
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 959f42b6-9f27-447c-ad2e-ce1242d74400
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - aca130b6-7d71-401a-8538-59d8d28c145e
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 9c4b4d0a-421b-4c53-895c-1221d23a8c23
+ - af294dd2-b04a-4838-88c8-0277f80bc3b0
+ - a6eac927-8a3c-4732-b1a8-90e4b25850df
+ - 5bda71fa-0d3a-4287-94fd-b5d399b8202f
+ - d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
+ - eedba66f-c09e-4b6a-a6f6-e360e1607858
+ - a3be89c0-1a37-4050-ae27-b5fc88bad330
+ - 22
+ - 29331690-919f-48ab-ad76-1dc739965de3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 959f42b6-9f27-447c-ad2e-ce1242d74400
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - aca130b6-7d71-401a-8538-59d8d28c145e
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 6c6c28be-b01b-42e5-b60a-91c314905c9e
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - 13
+ - fde3255c-a22e-4e12-a717-c573c914426d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - bbb3902c-2630-4a7b-b951-351a62cef558
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 7ed3dd99-417d-4769-a70b-0badf48c5649
+ - 8f08f378-fe83-47ee-ba70-f262beab4dd0
+ - 3dc26939-4bac-457f-9c7c-219b4dc86741
+ - 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 077563a1-d2cf-43fe-a93d-642285cd95b7
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - 506eabeb-a640-43fd-9af7-b2232e3fa71b
+ - e86ea7ed-38b8-40b5-bb42-623a7c8059c6
+ - a6d884fb-514f-42c3-86a9-71ade0d41a40
+ - b379a0ac-4016-4778-8d99-3b57d052a769
+ - 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
+ - 82046283-082e-419e-a05f-023d3a681021
+ - 41ca37bd-04a2-4730-a104-ccfdfebcb019
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - baea9c8f-4e59-442d-b5b4-d125979bf466
+ - 12c0d088-f108-4075-bb85-315d570d97ea
+ - 41093a5b-4ba4-4dfb-a5f8-1bd792353689
+ - 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
+ - 42ced415-8369-4764-bd84-2655a9abcdd0
+ - 97be2d03-c12a-4c13-bcf1-179c5148fad7
+ - f9312303-3ba0-4d12-bf2a-4df8dd780ec7
+ - a0d0df39-1b14-428e-bf37-398cec030283
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - e9edf9da-696f-47bd-a5e5-79c7729f8e89
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - 5365386e-73e6-497c-b44a-34b85df3bb28
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 929e2d4c-e84d-4d02-91ac-5e7752c650a1
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - e73e0f67-8dcc-4b89-a973-43217655652f
+ - 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - e5bb3651-4fcd-4da1-9d37-64323a4cbaec
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 3f3172f7-bff5-4e81-85a2-58943326f0a7
+ - c9632403-1835-45bf-a8da-51dd473c2104
+ - 3579a27a-9991-4bf3-94de-84223b4b0a72
+ - b7462a41-d690-4e75-b5bb-082a0185ec77
+ - 5e698680-d615-4e2a-aed9-fd28b0220a65
+ - ca297271-f533-4d51-a8fc-bdb7b204740c
+ - 9e3117d6-b3b4-4adc-84f3-2835a988e21e
+ - c8c317c7-391f-4b40-93d8-4c1994caecef
+ - 3b490da6-b955-4f9c-bddc-980384007a01
+ - c2fc9a4e-ff43-4e6b-ba22-4562fab58558
+ - 99
+ - 61bcf775-8597-4b5c-a39e-6aa822a67ed7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - Number
+ - Number
+ - false
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - 1
+
+
+
+
+ -
+ 4293
+ 7003
+ 50
+ 24
+
+ -
+ 4318.785
+ 7015.021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 4249
+ 6833
+ 137
+ 64
+
+ -
+ 4319
+ 6865
+
+
+
+
+
+ - Curve to evaluate
+ - 19c1983b-2d95-47e4-8f56-f9ebcbdf4b86
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4251
+ 6835
+ 53
+ 30
+
+ -
+ 4279
+ 6850
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 115baf5b-eaad-418a-8025-23991d12e2ee
+ - Parameter
+ - Parameter
+ - false
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - 1
+
+
+
+
+ -
+ 4251
+ 6865
+ 53
+ 30
+
+ -
+ 4279
+ 6880
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6835
+ 50
+ 20
+
+ -
+ 4360.5
+ 6845
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - 0740a746-92bd-42a5-be7d-7c4afad1589c
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6855
+ 50
+ 20
+
+ -
+ 4360.5
+ 6865
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - cd58e8b9-06e1-45b4-a606-81544cb9262d
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 6875
+ 50
+ 20
+
+ -
+ 4360.5
+ 6885
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 4255
+ 6916
+ 125
+ 64
+
+ -
+ 4305
+ 6948
+
+
+
+
+
+ - Curve to divide
+ - d0f1a5a1-14fc-4928-a5ef-8feb9f1e8e65
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4257
+ 6918
+ 33
+ 20
+
+ -
+ 4275
+ 6928
+
+
+
+
+
+
+
+ - Number of segments
+ - c80889e9-7d20-4519-a4fe-c7d376ff0d17
+ - Count
+ - Count
+ - false
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - 1
+
+
+
+
+ -
+ 4257
+ 6938
+ 33
+ 20
+
+ -
+ 4275
+ 6948
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 798a9bca-31a3-4cc6-b5a7-d6320e4a9c6a
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 6958
+ 33
+ 20
+
+ -
+ 4275
+ 6968
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 8f938e34-0564-4935-842c-a035ea89a910
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6918
+ 58
+ 20
+
+ -
+ 4350.5
+ 6928
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - c11a93a5-d484-4a27-a79d-20a0c829c1b9
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6938
+ 58
+ 20
+
+ -
+ 4350.5
+ 6948
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ 6958
+ 58
+ 20
+
+ -
+ 4350.5
+ 6968
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 2
+ - Curve
+ - Curve
+ - false
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 1
+
+
+
+
+ -
+ 4291
+ 7432
+ 53
+ 24
+
+ -
+ 4327.5
+ 7444.836
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 4261
+ 6752
+ 114
+ 64
+
+ -
+ 4301
+ 6784
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 789da2de-584e-42a0-a38e-b29e6b35279e
+ - Arc
+ - Arc
+ - false
+ - cd58e8b9-06e1-45b4-a606-81544cb9262d
+ - 1
+
+
+
+
+ -
+ 4263
+ 6754
+ 23
+ 60
+
+ -
+ 4276
+ 6784
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - 35a8e793-f0c7-4e6d-921e-18109ea98ceb
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6754
+ 57
+ 20
+
+ -
+ 4346
+ 6764
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 3654a9c9-a7f1-48df-8fa7-73ed1663a837
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6774
+ 57
+ 20
+
+ -
+ 4346
+ 6784
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - 0a990d82-8970-40a7-827e-8fb7dedd1a8c
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ 6794
+ 57
+ 20
+
+ -
+ 4346
+ 6804
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 4268
+ 6256
+ 100
+ 28
+
+ -
+ 4317
+ 6270
+
+
+
+
+
+ - Input value
+ - 605ebcc2-3259-4435-82ad-d9a5c07f3466
+ - Value
+ - Value
+ - false
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 1
+
+
+
+
+ -
+ 4270
+ 6258
+ 32
+ 24
+
+ -
+ 4287.5
+ 6270
+
+
+
+
+
+
+
+ - Output value
+ - 65383476-e61d-4ddb-9403-69c36989070f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 6258
+ 34
+ 24
+
+ -
+ 4350.5
+ 6270
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4243
+ 6074
+ 150
+ 150
+
+ -
+ 4243.486
+ 6074.676
+
+ - 0
+
+
+
+
+
+
+
+
+ - 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
+ - Line
+
+
+
+
+ - Create a line between two points.
+ - true
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - Line
+ - Line
+
+
+
+
+ -
+ 4261
+ 6320
+ 114
+ 44
+
+ -
+ 4333
+ 6342
+
+
+
+
+
+ - Line start point
+ - d77174e3-2f21-4b5a-a69b-36c3db06d110
+ - Start Point
+ - Start Point
+ - false
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - 1
+
+
+
+
+ -
+ 4263
+ 6322
+ 55
+ 20
+
+ -
+ 4292
+ 6332
+
+
+
+
+
+
+
+ - Line end point
+ - bcccc128-d879-4b75-8cca-bb5aac27fe03
+ - End Point
+ - End Point
+ - false
+ - 35a8e793-f0c7-4e6d-921e-18109ea98ceb
+ - 1
+
+
+
+
+ -
+ 4263
+ 6342
+ 55
+ 20
+
+ -
+ 4292
+ 6352
+
+
+
+
+
+
+
+ - Line segment
+ - ee24630f-f4f0-4780-abab-e012c957d4c6
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 6322
+ 25
+ 40
+
+ -
+ 4362
+ 6342
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 5120
+ 122
+ 64
+
+ -
+ 4337
+ 5152
+
+
+
+
+
+ - Line start point
+ - e22555ed-ce09-4f6a-86b7-694208f85afe
+ - Start
+ - Start
+ - false
+ - 530f89ee-5568-4c47-990d-ddab27ed409e
+ - 1
+
+
+
+
+ -
+ 4259
+ 5122
+ 63
+ 20
+
+ -
+ 4300
+ 5132
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a5bec1ae-8462-420c-be22-d4988f1de771
+ - Direction
+ - Direction
+ - false
+ - 61f9e29f-feb3-4122-9ade-977c75c70121
+ - 1
+
+
+
+
+ -
+ 4259
+ 5142
+ 63
+ 20
+
+ -
+ 4300
+ 5152
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 20fc2090-edc5-4ea6-b00a-6537afd6b455
+ - -X
+ - Length
+ - Length
+ - false
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - 1
+
+
+
+
+ -
+ 4259
+ 5162
+ 63
+ 20
+
+ -
+ 4300
+ 5172
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 5122
+ 25
+ 60
+
+ -
+ 4366
+ 5152
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 4856
+ 144
+ 64
+
+ -
+ 4320
+ 4888
+
+
+
+
+
+ - Curve to evaluate
+ - 9629717c-17ba-4da9-b279-417bda8b5269
+ - Curve
+ - Curve
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4248
+ 4858
+ 57
+ 20
+
+ -
+ 4278
+ 4868
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 80b0ad13-9823-4b7a-b40a-3b34377e5d5e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4878
+ 57
+ 20
+
+ -
+ 4278
+ 4888
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a7b905ec-d2c6-4035-978f-8400334a8ca8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4898
+ 57
+ 20
+
+ -
+ 4278
+ 4908
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4858
+ 53
+ 20
+
+ -
+ 4363
+ 4868
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9b982a23-a369-4aae-89b4-1d10c80fafd6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4878
+ 53
+ 20
+
+ -
+ 4363
+ 4888
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2059ff87-cc57-4684-a6cc-860c3e9f8fd4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 4898
+ 53
+ 20
+
+ -
+ 4363
+ 4908
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 4754
+ 125
+ 84
+
+ -
+ 4322
+ 4796
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 7211f213-a1bc-47a9-a942-2e9f99f244ea
+ - Vertices
+ - Vertices
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4257
+ 4756
+ 50
+ 20
+
+ -
+ 4283.5
+ 4766
+
+
+
+
+
+
+
+ - Curve degree
+ - 1d00875e-8c8f-4255-8021-f9eace27906e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4776
+ 50
+ 20
+
+ -
+ 4283.5
+ 4786
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b55b69f0-6548-4440-86b5-e2c5bca673d1
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4796
+ 50
+ 20
+
+ -
+ 4283.5
+ 4806
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 5fa7d12e-58e2-4597-bf61-f6aac4ca69b6
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 4816
+ 50
+ 20
+
+ -
+ 4283.5
+ 4826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4756
+ 41
+ 26
+
+ -
+ 4359
+ 4769.333
+
+
+
+
+
+
+
+ - Curve length
+ - 321f9f82-5399-40aa-9b71-d9fded5fdfe2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4782
+ 41
+ 27
+
+ -
+ 4359
+ 4796
+
+
+
+
+
+
+
+ - Curve domain
+ - a58dd5b1-6de2-4a22-a4c9-b6e6bb4ea3ef
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 4809
+ 41
+ 27
+
+ -
+ 4359
+ 4822.667
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - b95d8a38-41aa-4736-824a-ba59abe8a164
+ - 93c43765-186a-4186-a1a9-e77f1750e486
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 65df7317-6c88-4fda-8fed-06e7d0688f08
+ - 6897aa6f-691a-4a9e-9c03-e572cb62cff8
+ - b707e471-1378-4bfb-bd26-10f57a654a96
+ - 42201d77-7bc4-437d-baaf-c8290f91a477
+ - 5af3936c-a114-48c9-97e6-a71d4495fe1c
+ - dc8b9948-0b61-495f-bb5c-30271010864e
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 1d60a251-59c1-4374-b24a-8b67b3ca92c6
+ - 90f74d47-d623-4b80-a1f4-bde635cc690f
+ - 5dab1729-964c-4894-9f64-653823a0fdac
+ - 9ed44b3d-ce1f-4cd3-8d86-8bb364de6405
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
+ - 42
+ - bbb3902c-2630-4a7b-b951-351a62cef558
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - cf4956f9-6a60-42d5-a932-0ea9a5d5ebed
+ - Number
+ - Number
+ - false
+ - 72d5d764-919b-4ea3-a858-fbc1bdff9ef5
+ - 1
+
+
+
+
+ -
+ 4293
+ 4405
+ 50
+ 24
+
+ -
+ 4318
+ 4417.974
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - Curve
+ - Curve
+ - false
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - 1
+
+
+
+
+ -
+ 4293
+ 4448
+ 50
+ 24
+
+ -
+ 4318
+ 4460.896
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 7ed3dd99-417d-4769-a70b-0badf48c5649
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 3101
+ 122
+ 64
+
+ -
+ 4337
+ 3133
+
+
+
+
+
+ - Line start point
+ - a6313991-5fed-473e-8203-12902cc0ca23
+ - Start
+ - Start
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4259
+ 3103
+ 63
+ 20
+
+ -
+ 4300
+ 3113
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c5b0bce5-96d7-447a-9757-7e6cc6e689aa
+ - Direction
+ - Direction
+ - false
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - 1
+
+
+
+
+ -
+ 4259
+ 3123
+ 63
+ 20
+
+ -
+ 4300
+ 3133
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e968eda2-2fd9-48da-99dc-b168c5ce158c
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 1
+
+
+
+
+ -
+ 4259
+ 3143
+ 63
+ 20
+
+ -
+ 4300
+ 3153
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 3103
+ 25
+ 60
+
+ -
+ 4366
+ 3133
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8f08f378-fe83-47ee-ba70-f262beab4dd0
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 2778
+ 144
+ 64
+
+ -
+ 4320
+ 2810
+
+
+
+
+
+ - Curve to evaluate
+ - 0d9a8a58-4d0a-4434-a450-8e98b436a412
+ - Curve
+ - Curve
+ - false
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - 1
+
+
+
+
+ -
+ 4248
+ 2780
+ 57
+ 20
+
+ -
+ 4278
+ 2790
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a1aca457-48b1-4d2a-a0cc-9aa18d7bfcdf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2800
+ 57
+ 20
+
+ -
+ 4278
+ 2810
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1188ad96-f0f1-40b7-810f-9b69492635d4
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2820
+ 57
+ 20
+
+ -
+ 4278
+ 2830
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 18921b3c-23a8-4466-aa33-85dea6f5193e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2780
+ 53
+ 20
+
+ -
+ 4363
+ 2790
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - aa8f58ce-50c4-4bf8-b24d-039a80bdcd54
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2800
+ 53
+ 20
+
+ -
+ 4363
+ 2810
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 59b0d0c9-4175-42e9-936a-02e0b1b5547b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 2820
+ 53
+ 20
+
+ -
+ 4363
+ 2830
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 3dc26939-4bac-457f-9c7c-219b4dc86741
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 1775
+ 125
+ 84
+
+ -
+ 4322
+ 1817
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 9ce862c7-e83a-44f6-a90e-5d01a0ac4cb2
+ - Vertices
+ - Vertices
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4257
+ 1777
+ 50
+ 20
+
+ -
+ 4283.5
+ 1787
+
+
+
+
+
+
+
+ - Curve degree
+ - 035ee24e-d16b-4cf3-b607-7bc2fd7f69d6
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1797
+ 50
+ 20
+
+ -
+ 4283.5
+ 1807
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 280d1a76-ca69-4ee8-9b1c-a3fce38ab5c9
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1817
+ 50
+ 20
+
+ -
+ 4283.5
+ 1827
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9bf7f1ee-f145-4fe2-beef-c59418629ac7
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 1837
+ 50
+ 20
+
+ -
+ 4283.5
+ 1847
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1777
+ 41
+ 26
+
+ -
+ 4359
+ 1790.333
+
+
+
+
+
+
+
+ - Curve length
+ - 38bf6ac5-4357-469b-9bba-7bba715cb5d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1803
+ 41
+ 27
+
+ -
+ 4359
+ 1817
+
+
+
+
+
+
+
+ - Curve domain
+ - 7a5c3ecf-7823-4983-873e-ab2b1c6c868c
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 1830
+ 41
+ 27
+
+ -
+ 4359
+ 1843.667
+
+
+
+
+
+
+
+
+
+
+
+ - dde71aef-d6ed-40a6-af98-6b0673983c82
+ - Nurbs Curve
+
+
+
+
+ - Construct a nurbs curve from control points.
+ - true
+ - 9b8fe626-a4bb-4fca-8d8b-ac2298cbf3cb
+ - true
+ - Nurbs Curve
+ - Nurbs Curve
+
+
+
+
+ -
+ 4259
+ 4672
+ 118
+ 64
+
+ -
+ 4319
+ 4704
+
+
+
+
+
+ - 1
+ - Curve control points
+ - 2af9f5bc-8bea-48f0-8d9a-d37a5ba2a29f
+ - true
+ - Vertices
+ - Vertices
+ - false
+ - c8092559-5804-445a-b39b-40959ab7673b
+ - 1
+
+
+
+
+ -
+ 4261
+ 4674
+ 43
+ 20
+
+ -
+ 4284
+ 4684
+
+
+
+
+
+
+
+ - Curve degree
+ - e692fbe6-a99c-4693-9a36-98b14d2f9d42
+ - true
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 4694
+ 43
+ 20
+
+ -
+ 4284
+ 4704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - b39e02b3-360a-4615-b920-7d6142b9ef32
+ - true
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 4714
+ 43
+ 20
+
+ -
+ 4284
+ 4724
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 901accb7-a63e-4aad-ad0b-1abd083399ab
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4674
+ 41
+ 20
+
+ -
+ 4356
+ 4684
+
+
+
+
+
+
+
+ - Curve length
+ - e999b44b-5986-4917-a835-77c4f9bb1c4a
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4694
+ 41
+ 20
+
+ -
+ 4356
+ 4704
+
+
+
+
+
+
+
+ - Curve domain
+ - 7d47fdce-c93c-4e8b-b930-65a7b9d2c548
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 4714
+ 41
+ 20
+
+ -
+ 4356
+ 4724
+
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 771bb5a4-0a8a-4a41-94bd-0e0b97b92304
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4254
+ 4259
+ 128
+ 28
+
+ -
+ 4307
+ 4273
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 2e382b39-db26-4f00-ad60-867949e375ae
+ - Values
+ - Values
+ - false
+ - c1cbf3cc-c305-48cc-a958-e9cacfba5960
+ - 1
+
+
+
+
+ -
+ 4256
+ 4261
+ 36
+ 24
+
+ -
+ 4275.5
+ 4273
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ 4261
+ 58
+ 24
+
+ -
+ 4352.5
+ 4273
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - Relay
+ -
+ - false
+ - 65383476-e61d-4ddb-9403-69c36989070f
+ - 1
+
+
+
+
+ -
+ 4298
+ 6240
+ 40
+ 16
+
+ -
+ 4318
+ 6248
+
+
+
+
+
+
+
+
+
+ - ab14760f-87a6-462e-b481-4a2c26a9a0d7
+ - Derivatives
+
+
+
+
+ - Evaluate the derivatives of a curve at a specified parameter.
+ - true
+ - 077563a1-d2cf-43fe-a93d-642285cd95b7
+ - true
+ - Derivatives
+ - Derivatives
+
+
+
+
+ -
+ 4226
+ -9539
+ 117
+ 144
+
+ -
+ 4296
+ -9467
+
+
+
+
+
+ - 2
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 7
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+ - 16ef3e75-e315-4899-b531-d3166b42dac9
+
+
+
+
+ - Curve to evaluate
+ - c5ce250c-64e3-46c4-be52-06c57f3ae50e
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4228
+ -9537
+ 53
+ 70
+
+ -
+ 4256
+ -9502
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 6da23971-dde5-4d70-8a0c-4a507c037d78
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 72571f4d-e390-4273-afe8-daa1b335cb89
+ - 1
+
+
+
+
+ -
+ 4228
+ -9467
+ 53
+ 70
+
+ -
+ 4256
+ -9432
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9537
+ 30
+ 20
+
+ -
+ 4327.5
+ -9527
+
+
+
+
+
+
+
+ - First curve derivative at t (Velocity)
+ - c9af63c9-0143-479e-9052-49ae8662e1b1
+ - true
+ - false
+ - First derivative
+ - 1
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9517
+ 30
+ 20
+
+ -
+ 4327.5
+ -9507
+
+
+
+
+
+
+
+ - Second curve derivative at t (Acceleration)
+ - 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
+ - true
+ - false
+ - Second derivative
+ - 2
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9497
+ 30
+ 20
+
+ -
+ 4327.5
+ -9487
+
+
+
+
+
+
+
+ - Third curve derivative at t (Jolt)
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - true
+ - false
+ - Third derivative
+ - 3
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9477
+ 30
+ 20
+
+ -
+ 4327.5
+ -9467
+
+
+
+
+
+
+
+ - Fourth curve derivative at t (Jounce)
+ - 533714a3-b663-4971-b5e9-26bce2a7de5c
+ - true
+ - false
+ - Fourth derivative
+ - 4
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9457
+ 30
+ 20
+
+ -
+ 4327.5
+ -9447
+
+
+
+
+
+
+
+ - Fifth curve derivative at t
+ - 8a09c8bb-c54e-4691-8429-43124dd1c8b3
+ - true
+ - false
+ - Fifth derivative
+ - 5
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9437
+ 30
+ 20
+
+ -
+ 4327.5
+ -9427
+
+
+
+
+
+
+
+ - Sixth curve derivative at t
+ - b52f3636-0270-4109-8b69-fa9470b344cd
+ - true
+ - false
+ - Sixth derivative
+ - 6
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -9417
+ 30
+ 20
+
+ -
+ 4327.5
+ -9407
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b6d0afa1-3dec-42e7-9c93-de08ed9790f2
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 5000
+ 144
+ 104
+
+ -
+ 4330
+ 5052
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e2ff4e85-df78-45d2-bba7-7721635df2c5
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5002
+ 67
+ 20
+
+ -
+ 4283
+ 5012
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 389e0ea6-4a20-40c9-a249-fa446921528d
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5022
+ 67
+ 20
+
+ -
+ 4283
+ 5032
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6f17d147-73f0-4c6e-aca7-231c42be2227
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5042
+ 67
+ 20
+
+ -
+ 4283
+ 5052
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a6119520-e999-41f2-84c5-06f39b44ca96
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5062
+ 67
+ 20
+
+ -
+ 4283
+ 5072
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - f9887e31-79e0-4d94-a182-2a888112f088
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 5082
+ 67
+ 20
+
+ -
+ 4283
+ 5092
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6a9f7cab-703c-4616-a796-ebccc137552c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 5002
+ 43
+ 100
+
+ -
+ 4368
+ 5052
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 4d6b9775-db5a-464b-b178-f930dd568ce2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 4938
+ 82
+ 44
+
+ -
+ 4345
+ 4960
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 6f52bd76-d249-4e5c-a489-b3503b532c14
+ - Geometry
+ - Geometry
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4279
+ 4940
+ 51
+ 20
+
+ -
+ 4306
+ 4950
+
+
+
+
+
+
+
+ - The material override
+ - 792abb0c-57ae-4335-8671-0166a55e35bb
+ - Material
+ - Material
+ - false
+ - 6a9f7cab-703c-4616-a796-ebccc137552c
+ - 1
+
+
+
+
+ -
+ 4279
+ 4960
+ 51
+ 20
+
+ -
+ 4306
+ 4970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 84e913bd-a348-462a-a472-eab93956daf2
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 7263
+ 144
+ 104
+
+ -
+ 4330
+ 7315
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 22e1a45c-bb8a-4800-aab5-ef60f9829b69
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7265
+ 67
+ 20
+
+ -
+ 4283
+ 7275
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9233dd38-b5f3-4109-8975-987c7ae940b3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7285
+ 67
+ 20
+
+ -
+ 4283
+ 7295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 07405682-f855-4989-8549-b94d930c00a3
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7305
+ 67
+ 20
+
+ -
+ 4283
+ 7315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 97f19c8e-e8a2-41d1-9c98-81c1b160b94c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7325
+ 67
+ 20
+
+ -
+ 4283
+ 7335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - ef7f93e7-3f0d-469b-862d-f8aca466008d
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 7345
+ 67
+ 20
+
+ -
+ 4283
+ 7355
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 7265
+ 43
+ 100
+
+ -
+ 4368
+ 7315
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - beb498f4-7162-49c3-842b-a972d8ad71d9
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 7202
+ 82
+ 44
+
+ -
+ 4345
+ 7224
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 8666d71b-9d2f-4e91-8d8a-210217567fa5
+ - Geometry
+ - Geometry
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4279
+ 7204
+ 51
+ 20
+
+ -
+ 4306
+ 7214
+
+
+
+
+
+
+
+ - The material override
+ - 62dec059-7971-4a48-932a-ffe71052b16a
+ - Material
+ - Material
+ - false
+ - 350a76f4-71b7-4b5e-854c-31a2ecaf6ee6
+ - 1
+
+
+
+
+ -
+ 4279
+ 7224
+ 51
+ 20
+
+ -
+ 4306
+ 7234
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - f9713408-b850-40b1-ac2d-56af5c03c800
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 4550
+ 144
+ 104
+
+ -
+ 4330
+ 4602
+
+
+
+
+
+ - Colour of the diffuse channel
+ - efb4e180-8efc-4284-8299-494c3de6e9f2
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4552
+ 67
+ 20
+
+ -
+ 4283
+ 4562
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 197f2502-11d7-49f9-9ca6-ac492a4514bf
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4572
+ 67
+ 20
+
+ -
+ 4283
+ 4582
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - e9dc0475-0054-474e-9957-8202366a4204
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4592
+ 67
+ 20
+
+ -
+ 4283
+ 4602
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 5cb49fe6-cfb0-49f8-bbaf-411d66898b82
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4612
+ 67
+ 20
+
+ -
+ 4283
+ 4622
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 705fb819-8775-4ed6-9b93-8645fbc5e6ed
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 4632
+ 67
+ 20
+
+ -
+ 4283
+ 4642
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fd31e66a-00fc-487d-8951-8d93283f87df
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 4552
+ 43
+ 100
+
+ -
+ 4368
+ 4602
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - 0b20088e-1be7-424d-ba3b-c0fdd9da23ae
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 4488
+ 82
+ 44
+
+ -
+ 4345
+ 4510
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ee9a19f8-4064-4d39-866c-85da768d1adc
+ - Geometry
+ - Geometry
+ - false
+ - fbc67f80-f848-4cb1-9d59-3b6dda9d43d1
+ - 1
+
+
+
+
+ -
+ 4279
+ 4490
+ 51
+ 20
+
+ -
+ 4306
+ 4500
+
+
+
+
+
+
+
+ - The material override
+ - 0df5bf50-74e4-431c-b6d2-cbaada924eb5
+ - Material
+ - Material
+ - false
+ - fd31e66a-00fc-487d-8951-8d93283f87df
+ - 1
+
+
+
+
+ -
+ 4279
+ 4510
+ 51
+ 20
+
+ -
+ 4306
+ 4520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 506eabeb-a640-43fd-9af7-b2232e3fa71b
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 2976
+ 144
+ 104
+
+ -
+ 4330
+ 3028
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3e896be4-47f0-40cd-b969-157ca5690c40
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2978
+ 67
+ 20
+
+ -
+ 4283
+ 2988
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ad00ff37-039f-4c69-a05c-2bcf6543f28a
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 2998
+ 67
+ 20
+
+ -
+ 4283
+ 3008
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 56dcd222-a962-4e25-a153-d0c165d4a30b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3018
+ 67
+ 20
+
+ -
+ 4283
+ 3028
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 0082b394-bd76-4cdb-9ec8-3851d681e34c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3038
+ 67
+ 20
+
+ -
+ 4283
+ 3048
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 4394475e-dcc9-4a08-89ce-7fe1812de379
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 3058
+ 67
+ 20
+
+ -
+ 4283
+ 3068
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6fa0a1de-70c2-4743-8be9-56400b02e090
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 2978
+ 43
+ 100
+
+ -
+ 4368
+ 3028
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - e86ea7ed-38b8-40b5-bb42-623a7c8059c6
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 2914
+ 82
+ 44
+
+ -
+ 4345
+ 2936
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 23652758-9150-4810-9501-94d6bb7427a5
+ - Geometry
+ - Geometry
+ - false
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - 1
+
+
+
+
+ -
+ 4279
+ 2916
+ 51
+ 20
+
+ -
+ 4306
+ 2926
+
+
+
+
+
+
+
+ - The material override
+ - f9d0f304-71ba-4d15-b680-4098daee205f
+ - Material
+ - Material
+ - false
+ - 6fa0a1de-70c2-4743-8be9-56400b02e090
+ - 1
+
+
+
+
+ -
+ 4279
+ 2936
+ 51
+ 20
+
+ -
+ 4306
+ 2946
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a6d884fb-514f-42c3-86a9-71ade0d41a40
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 1651
+ 144
+ 104
+
+ -
+ 4330
+ 1703
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 1d225664-df37-44d8-8293-fc65fcfaa053
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1653
+ 67
+ 20
+
+ -
+ 4283
+ 1663
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 55624669-9d88-4e19-8a54-d6b340b905ea
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1673
+ 67
+ 20
+
+ -
+ 4283
+ 1683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 07248625-ab72-43b8-bef8-3badfeb52fb2
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1693
+ 67
+ 20
+
+ -
+ 4283
+ 1703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ee9332dd-01f9-4de5-83cd-cf8d3516a179
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1713
+ 67
+ 20
+
+ -
+ 4283
+ 1723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 2e68d8ff-6779-4688-ad53-ea22a7ee0960
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 1733
+ 67
+ 20
+
+ -
+ 4283
+ 1743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ef37cf89-ca4c-487b-9404-0d7f2ac5f894
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 1653
+ 43
+ 100
+
+ -
+ 4368
+ 1703
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - b379a0ac-4016-4778-8d99-3b57d052a769
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 1591
+ 82
+ 44
+
+ -
+ 4345
+ 1613
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 5dd6a210-e7ec-4d78-b804-a7f2c5699174
+ - Geometry
+ - Geometry
+ - false
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - 1
+
+
+
+
+ -
+ 4279
+ 1593
+ 51
+ 20
+
+ -
+ 4306
+ 1603
+
+
+
+
+
+
+
+ - The material override
+ - 6d313118-895b-4546-9b3a-cd4b04e08f51
+ - Material
+ - Material
+ - false
+ - ef37cf89-ca4c-487b-9404-0d7f2ac5f894
+ - 1
+
+
+
+
+ -
+ 4279
+ 1613
+ 51
+ 20
+
+ -
+ 4306
+ 1623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1ceffb1c-921e-4c1d-ab03-e05135b9b5e0
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4224
+ -10802
+ 122
+ 64
+
+ -
+ 4304
+ -10770
+
+
+
+
+
+ - Line start point
+ - 0c39c823-a263-4a95-b445-16304aeba6ec
+ - Start
+ - Start
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4226
+ -10800
+ 63
+ 20
+
+ -
+ 4267
+ -10790
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2614b05b-f2da-4a47-a084-b87ce2de0cc8
+ - Direction
+ - Direction
+ - false
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - 1
+
+
+
+
+ -
+ 4226
+ -10780
+ 63
+ 20
+
+ -
+ 4267
+ -10770
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 562db1eb-3da9-4644-b300-679d6eabf7e0
+ - -X
+ - Length
+ - Length
+ - false
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 1
+
+
+
+
+ -
+ 4226
+ -10760
+ 63
+ 20
+
+ -
+ 4267
+ -10750
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -10800
+ 25
+ 60
+
+ -
+ 4333
+ -10770
+
+
+
+
+
+
+
+
+
+
+
+ - 71b5b089-500a-4ea6-81c5-2f960441a0e8
+ - PolyLine
+
+
+
+
+ - Create a polyline connecting a number of points.
+ - true
+ - 82046283-082e-419e-a05f-023d3a681021
+ - PolyLine
+ - PolyLine
+
+
+
+
+ -
+ 4259
+ 2675
+ 118
+ 44
+
+ -
+ 4319
+ 2697
+
+
+
+
+
+ - 1
+ - Polyline vertex points
+ - f1fc21bf-11ce-4976-bb26-c53a6549a2c4
+ - Vertices
+ - Vertices
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4261
+ 2677
+ 43
+ 20
+
+ -
+ 4284
+ 2687
+
+
+
+
+
+
+
+ - Close polyline
+ - 7a088eac-054c-4089-8375-2217cc10dcbd
+ - Closed
+ - Closed
+ - false
+ - 0
+
+
+
+
+ -
+ 4261
+ 2697
+ 43
+ 20
+
+ -
+ 4284
+ 2707
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resulting polyline
+ - 812209f4-d890-44eb-8174-2bf48726e54c
+ - Polyline
+ - Polyline
+ - false
+ - 0
+
+
+
+
+ -
+ 4334
+ 2677
+ 41
+ 40
+
+ -
+ 4356
+ 2697
+
+
+
+
+
+
+
+
+
+
+
+ - afb96615-c59a-45c9-9cac-e27acb1c7ca0
+ - Explode
+
+
+
+
+ - Explode a curve into smaller segments.
+ - true
+ - 41ca37bd-04a2-4730-a104-ccfdfebcb019
+ - Explode
+ - Explode
+
+
+
+
+ -
+ 4250
+ 2612
+ 136
+ 44
+
+ -
+ 4317
+ 2634
+
+
+
+
+
+ - Curve to explode
+ - 93669a73-ddb7-4a6a-82e1-f3247b83dab9
+ - Curve
+ - Curve
+ - false
+ - 812209f4-d890-44eb-8174-2bf48726e54c
+ - 1
+
+
+
+
+ -
+ 4252
+ 2614
+ 50
+ 20
+
+ -
+ 4278.5
+ 2624
+
+
+
+
+
+
+
+ - Recursive decomposition until all segments are atomic
+ - a3eca606-0c18-4bd5-83e4-e0bb1e60b1d6
+ - Recursive
+ - Recursive
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 2634
+ 50
+ 20
+
+ -
+ 4278.5
+ 2644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Exploded segments that make up the base curve
+ - 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
+ - Segments
+ - Segments
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 2614
+ 52
+ 20
+
+ -
+ 4359.5
+ 2624
+
+
+
+
+
+
+
+ - 1
+ - Vertices of the exploded segments
+ - 51a45158-c586-46f6-88d2-01c79c67669f
+ - Vertices
+ - Vertices
+ - false
+ - 0
+
+
+
+
+ -
+ 4332
+ 2634
+ 52
+ 20
+
+ -
+ 4359.5
+ 2644
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+ - Curve
+ - Curve
+ - false
+ - 1aa63b77-1b30-4cd2-9d7d-88d1999ec0d8
+ - 1
+
+
+
+
+ -
+ 4292
+ 2568
+ 53
+ 24
+
+ -
+ 4328
+ 2580.144
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - baea9c8f-4e59-442d-b5b4-d125979bf466
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4253
+ 2454
+ 130
+ 44
+
+ -
+ 4318
+ 2476
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 27eb4fd4-9a74-4641-903e-0228f03308d8
+ - Keys
+ - Keys
+ - false
+ - 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
+ - 1
+
+
+
+
+ -
+ 4255
+ 2456
+ 48
+ 20
+
+ -
+ 4280.5
+ 2466
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - 0947c0bb-6fd7-465f-bd09-c7c651b3e131
+ - Values Values A
+ - Values A
+ - true
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+
+
+
+
+ -
+ 4255
+ 2476
+ 48
+ 20
+
+ -
+ 4280.5
+ 2486
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - Keys
+ - Keys
+ - false
+ - 0
+
+
+
+
+ -
+ 4333
+ 2456
+ 48
+ 20
+
+ -
+ 4358.5
+ 2466
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - 020d407e-5a0d-434c-8f36-8ad74f04be54
+ - Values Values A
+ - Values A
+ - false
+ - 0
+
+
+
+
+ -
+ 4333
+ 2476
+ 48
+ 20
+
+ -
+ 4358.5
+ 2486
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 12c0d088-f108-4075-bb85-315d570d97ea
+ - Length
+ - Length
+
+
+
+
+ -
+ 4266
+ 2518
+ 104
+ 28
+
+ -
+ 4316
+ 2532
+
+
+
+
+
+ - Curve to measure
+ - 396fc4e4-3161-49f2-bcd1-3c3c12aaf411
+ - Curve
+ - Curve
+ - false
+ - 60ca1502-c3ae-43e2-a2b8-1b1e238e0ab2
+ - 1
+
+
+
+
+ -
+ 4268
+ 2520
+ 33
+ 24
+
+ -
+ 4286
+ 2532
+
+
+
+
+
+
+
+ - Curve length
+ - 6fa53b1f-925f-4bf9-a5d6-e49a44647f48
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 2520
+ 37
+ 24
+
+ -
+ 4351
+ 2532
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 41093a5b-4ba4-4dfb-a5f8-1bd792353689
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4281
+ 1977
+ 74
+ 64
+
+ -
+ 4329
+ 2009
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - f4a956fe-c4c8-4faa-ab37-46863b6ab8f7
+ - List
+ - List
+ - false
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - 1
+
+
+
+
+ -
+ 4283
+ 1979
+ 31
+ 20
+
+ -
+ 4300
+ 1989
+
+
+
+
+
+
+
+ - Item index
+ - 795f3412-014f-42a0-bb3e-68ed9d6519c3
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4283
+ 1999
+ 31
+ 20
+
+ -
+ 4300
+ 2009
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 94795b14-df1b-4254-875b-0b0c0f2f5fed
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4283
+ 2019
+ 31
+ 20
+
+ -
+ 4300
+ 2029
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4344
+ 1979
+ 9
+ 60
+
+ -
+ 4350
+ 2009
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
+ - Dot Display
+
+
+
+
+ - Draw a collection of coloured dots
+ - true
+ - false
+ - 39d1ba4f-7fac-4207-98a7-67ceea5ef36c
+ - Dot Display
+ - Dot Display
+
+
+
+
+ -
+ 4276
+ 1878
+ 83
+ 64
+
+ -
+ 4345
+ 1910
+
+
+
+
+
+ - Dot location
+ - true
+ - 00b953b9-3188-468d-93c1-becbe89ee898
+ - Point
+ - Point
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4278
+ 1880
+ 52
+ 20
+
+ -
+ 4313.5
+ 1890
+
+
+
+
+
+
+
+ - Dot colour
+ - f449e9ac-4676-4153-8107-1b77272d00ba
+ - Colour
+ - Colour
+ - false
+ - 0
+
+
+
+
+ -
+ 4278
+ 1900
+ 52
+ 20
+
+ -
+ 4313.5
+ 1910
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Dot size
+ - 37153672-679d-499c-85a8-bb1e26d25c8b
+ - X/2
+ - Size
+ - Size
+ - false
+ - 4d84ba38-35a7-4f3d-b366-8ad8331ebb7c
+ - 1
+
+
+
+
+ -
+ 4278
+ 1920
+ 52
+ 20
+
+ -
+ 4313.5
+ 1930
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 42ced415-8369-4764-bd84-2655a9abcdd0
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4213
+ -10926
+ 144
+ 104
+
+ -
+ 4297
+ -10874
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 23526173-3b15-42d7-a471-0759eadad650
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10924
+ 67
+ 20
+
+ -
+ 4250
+ -10914
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 428de005-cd25-40af-8285-d2bd9252f5b3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10904
+ 67
+ 20
+
+ -
+ 4250
+ -10894
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f9a525b9-eab9-4b11-9c82-5a6d53d7cba0
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10884
+ 67
+ 20
+
+ -
+ 4250
+ -10874
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7a04b174-5152-4d1e-9872-a9491f98995c
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10864
+ 67
+ 20
+
+ -
+ 4250
+ -10854
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 313e8f5e-fddb-487f-a280-06859fa8fad6
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -10844
+ 67
+ 20
+
+ -
+ 4250
+ -10834
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d7c0515a-62aa-41bd-a4bf-d5c02119a024
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -10924
+ 43
+ 100
+
+ -
+ 4335
+ -10874
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 97be2d03-c12a-4c13-bcf1-179c5148fad7
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4244
+ -10989
+ 82
+ 44
+
+ -
+ 4312
+ -10967
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 5c229870-d626-4d8a-8a53-2566190c6b40
+ - Geometry
+ - Geometry
+ - false
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - 1
+
+
+
+
+ -
+ 4246
+ -10987
+ 51
+ 20
+
+ -
+ 4273
+ -10977
+
+
+
+
+
+
+
+ - The material override
+ - adb526d8-1109-4c75-bc7f-8b1a63d26467
+ - Material
+ - Material
+ - false
+ - d7c0515a-62aa-41bd-a4bf-d5c02119a024
+ - 1
+
+
+
+
+ -
+ 4246
+ -10967
+ 51
+ 20
+
+ -
+ 4273
+ -10957
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f9312303-3ba0-4d12-bf2a-4df8dd780ec7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4213
+ -11073
+ 144
+ 64
+
+ -
+ 4287
+ -11041
+
+
+
+
+
+ - Curve to evaluate
+ - d8e6535f-993b-441a-8f18-57c297ab434a
+ - Curve
+ - Curve
+ - false
+ - a51b0be6-aa0f-4bdd-a5e6-a7d1e03f729b
+ - 1
+
+
+
+
+ -
+ 4215
+ -11071
+ 57
+ 20
+
+ -
+ 4245
+ -11061
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ebf67458-8b7c-48e4-aab4-2ce5c99336d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11051
+ 57
+ 20
+
+ -
+ 4245
+ -11041
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2e2b937b-fe29-4e76-8bf1-327ada239851
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11031
+ 57
+ 20
+
+ -
+ 4245
+ -11021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4232e5bd-4b43-4b68-86a3-1efca2b2863e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -11071
+ 53
+ 20
+
+ -
+ 4330
+ -11061
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5371f1e6-105b-42b3-9ca4-0f9e0a7f71f2
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -11051
+ 53
+ 20
+
+ -
+ 4330
+ -11041
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c00145c8-bbdc-48a3-9c41-13e1f360e786
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4302
+ -11031
+ 53
+ 20
+
+ -
+ 4330
+ -11021
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a0d0df39-1b14-428e-bf37-398cec030283
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4222
+ -11177
+ 125
+ 84
+
+ -
+ 4289
+ -11135
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 151139fa-fa76-48be-87f4-c5c527e4e1b1
+ - Vertices
+ - Vertices
+ - false
+ - 4232e5bd-4b43-4b68-86a3-1efca2b2863e
+ - 1
+
+
+
+
+ -
+ 4224
+ -11175
+ 50
+ 20
+
+ -
+ 4250.5
+ -11165
+
+
+
+
+
+
+
+ - Curve degree
+ - 6f60e97f-e266-4e90-ad4b-9550433bbb96
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11155
+ 50
+ 20
+
+ -
+ 4250.5
+ -11145
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 1dc9dddf-b84b-433d-aa60-521d302ee78d
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11135
+ 50
+ 20
+
+ -
+ 4250.5
+ -11125
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - d6c6ffbd-fd59-4f06-834c-dfdda0e3cde9
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4224
+ -11115
+ 50
+ 20
+
+ -
+ 4250.5
+ -11105
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ffa36bc2-d3b2-4655-954c-b3bb1caadc80
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11175
+ 41
+ 26
+
+ -
+ 4326
+ -11161.67
+
+
+
+
+
+
+
+ - Curve length
+ - a073906c-f67b-4209-925d-0db2835809d1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11149
+ 41
+ 27
+
+ -
+ 4326
+ -11135
+
+
+
+
+
+
+
+ - Curve domain
+ - a63f1658-8db8-4c8f-a21f-5e41ed15efe3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4304
+ -11122
+ 41
+ 27
+
+ -
+ 4326
+ -11108.33
+
+
+
+
+
+
+
+
+
+
+
+ - 7376fe41-74ec-497e-b367-1ffe5072608b
+ - Curvature Graph
+
+
+
+
+ - Draws Rhino Curvature Graphs.
+ - true
+ - 6717a073-4979-4ab7-8cca-94ec28dd910e
+ - true
+ - Curvature Graph
+ - Curvature Graph
+
+
+
+
+ -
+ 4277
+ 7081
+ 71
+ 64
+
+ -
+ 4334
+ 7113
+
+
+
+
+
+ - Curve for Curvature graph display
+ - true
+ - 726626fc-0121-4a36-ad40-950aa805020d
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4279
+ 7083
+ 40
+ 20
+
+ -
+ 4300.5
+ 7093
+
+
+
+
+
+
+
+ - Sampling density of the Graph
+ - e4e6c4d1-2571-43ab-bafa-ffc8e537aa7e
+ - true
+ - Density
+ - Density
+ - false
+ - 0
+
+
+
+
+ -
+ 4279
+ 7103
+ 40
+ 20
+
+ -
+ 4300.5
+ 7113
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scale of graph
+ - c4ca2177-0ce3-417f-aa30-2a48677eaa94
+ - true
+ - Scale
+ - Scale
+ - false
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - 1
+
+
+
+
+ -
+ 4279
+ 7123
+ 40
+ 20
+
+ -
+ 4300.5
+ 7133
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 105
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 1e7003ad-1005-4315-9274-8625081eb42d
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 87.0
+
+
+
+
+ -
+ 4193
+ 7171
+ 250
+ 20
+
+ -
+ 4193.743
+ 7171.873
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c7834162-f8d6-4396-a928-93ded1c673be
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ 3183
+ 40
+ 16
+
+ -
+ 4318
+ 3191
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 5430
+ 115
+ 64
+
+ -
+ 4315
+ 5462
+
+
+
+
+
+ - Value to remap
+ - 448a0515-aaa4-4e34-bf65-8331febff788
+ - Value
+ - Value
+ - false
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 1
+
+
+
+
+ -
+ 4262
+ 5432
+ 38
+ 20
+
+ -
+ 4282.5
+ 5442
+
+
+
+
+
+
+
+ - Source domain
+ - 2af67ffd-d96e-4eed-825b-992ce2c4715f
+ - Source
+ - Source
+ - false
+ - 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
+ - 1
+
+
+
+
+ -
+ 4262
+ 5452
+ 38
+ 20
+
+ -
+ 4282.5
+ 5462
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 13280d18-8cc4-4627-a46f-9fe1951b318f
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 5472
+ 38
+ 20
+
+ -
+ 4282.5
+ 5482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - a321ca1e-018e-41d6-8820-b2a1c8ac90ab
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 5432
+ 43
+ 30
+
+ -
+ 4353
+ 5447
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 91e0b348-1054-48d9-bf59-ae8461fa1fac
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 5462
+ 43
+ 30
+
+ -
+ 4353
+ 5477
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 5512
+ 122
+ 28
+
+ -
+ 4321
+ 5526
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 516ce2d0-b7ae-47b4-81cc-cdb8cfe44911
+ - Numbers
+ - Numbers
+ - false
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 1
+
+
+
+
+ -
+ 4259
+ 5514
+ 47
+ 24
+
+ -
+ 4284
+ 5526
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 82ffcc9e-d4c9-4de1-a8ad-4da568b3d8c7
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 5514
+ 41
+ 24
+
+ -
+ 4358
+ 5526
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - d49b543b-255e-4b1e-afad-506fdeb4a087
+ - 9033362e-88b7-4ca5-82ec-e83b690b9e1f
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
+ - 16
+ - e9edf9da-696f-47bd-a5e5-79c7729f8e89
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - aacff86f-b554-4395-9c67-12ea7491563a
+ - Relay
+ -
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 5559
+ 40
+ 16
+
+ -
+ 4318
+ 5567
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 501fc599-56aa-405b-ad58-777fa1c4d11c
+ - Relay
+ -
+ - false
+ - 95926409-f740-467c-80b4-734f46eb4123
+ - 1
+
+
+
+
+ -
+ 4298
+ 5203
+ 40
+ 16
+
+ -
+ 4318
+ 5211
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 47a743e6-2557-42d2-a2c1-210a6a941e82
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 5231
+ 82
+ 44
+
+ -
+ 4308
+ 5253
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - dcbd1da4-8f69-4b06-8a33-0eecc767e991
+ - A
+ - A
+ - true
+ - f6322f85-aed1-4c85-95a8-8d761a4a73be
+ - 1
+
+
+
+
+ -
+ 4279
+ 5233
+ 14
+ 20
+
+ -
+ 4287.5
+ 5243
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 06fe588d-0bb9-4eda-9323-581799b3334d
+ - B
+ - B
+ - true
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
+ - 1
+
+
+
+
+ -
+ 4279
+ 5253
+ 14
+ 20
+
+ -
+ 4287.5
+ 5263
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 95926409-f740-467c-80b4-734f46eb4123
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 5233
+ 34
+ 40
+
+ -
+ 4341.5
+ 5253
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 3465
+ 115
+ 64
+
+ -
+ 4315
+ 3497
+
+
+
+
+
+ - Value to remap
+ - 0dd9c290-89b3-4f7f-b7f7-fea0ad374ec8
+ - Value
+ - Value
+ - false
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1
+
+
+
+
+ -
+ 4262
+ 3467
+ 38
+ 20
+
+ -
+ 4282.5
+ 3477
+
+
+
+
+
+
+
+ - Source domain
+ - 565f7896-5376-4be8-9b87-65aabf7ca350
+ - Source
+ - Source
+ - false
+ - 4dafdc57-390a-45b4-9dad-94993250d3c0
+ - 1
+
+
+
+
+ -
+ 4262
+ 3487
+ 38
+ 20
+
+ -
+ 4282.5
+ 3497
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 8f2c29a0-d826-4f38-bc8c-1ca957ffc790
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 3507
+ 38
+ 20
+
+ -
+ 4282.5
+ 3517
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 3467
+ 43
+ 30
+
+ -
+ 4353
+ 3482
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 747cdfe4-2981-48ee-b96b-401136eee8d9
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 3497
+ 43
+ 30
+
+ -
+ 4353
+ 3512
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 3548
+ 122
+ 28
+
+ -
+ 4321
+ 3562
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2c788be9-e936-471d-8ef8-12877fe1813c
+ - Numbers
+ - Numbers
+ - false
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1
+
+
+
+
+ -
+ 4259
+ 3550
+ 47
+ 24
+
+ -
+ 4284
+ 3562
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 4dafdc57-390a-45b4-9dad-94993250d3c0
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 3550
+ 41
+ 24
+
+ -
+ 4358
+ 3562
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - af01224e-c0e0-4809-ad30-4e4bd74d845a
+ - 2e1813eb-afd7-4c67-ae5d-0aea5806a643
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - 1dfb13cb-b934-40bc-a126-3ef4f67aa6cb
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - 15
+ - 5365386e-73e6-497c-b44a-34b85df3bb28
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3b624a89-a10e-4423-8d23-23c665342bea
+ - Relay
+ -
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4298
+ 3593
+ 40
+ 16
+
+ -
+ 4318
+ 3601
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 47ce9ce1-de21-4a6d-8cd6-00bd11b04ee1
+ - Relay
+ -
+ - false
+ - 42398358-cfbe-4f21-96e5-282d62ee7e58
+ - 1
+
+
+
+
+ -
+ 4298
+ 3226
+ 40
+ 16
+
+ -
+ 4318
+ 3234
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 4a81f039-0b6b-406b-837f-1176119811ff
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 3265
+ 82
+ 44
+
+ -
+ 4308
+ 3287
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - b76c491c-1771-4316-82a4-113c7bcdbb11
+ - A
+ - A
+ - true
+ - 519c9f7f-5560-40d4-af0b-8be47a07ff02
+ - 1
+
+
+
+
+ -
+ 4279
+ 3267
+ 14
+ 20
+
+ -
+ 4287.5
+ 3277
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2ed48d06-e4d0-425d-975d-12021826cd1f
+ - B
+ - B
+ - true
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - 1
+
+
+
+
+ -
+ 4279
+ 3287
+ 14
+ 20
+
+ -
+ 4287.5
+ 3297
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 42398358-cfbe-4f21-96e5-282d62ee7e58
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 3267
+ 34
+ 40
+
+ -
+ 4341.5
+ 3287
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 6689
+ 194
+ 28
+
+ -
+ 4321
+ 6703
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b5f45c4f-f8dd-49ac-82bc-318d09dd2a13
+ - true
+ - Variable O
+ - O
+ - true
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 1
+
+
+
+
+ -
+ 4223
+ 6691
+ 14
+ 24
+
+ -
+ 4231.5
+ 6703
+
+
+
+
+
+
+
+ - Result of expression
+ - 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 6691
+ 9
+ 24
+
+ -
+ 4410
+ 6703
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - Panel
+
+ - false
+ - 1
+ - 49fcf7f9-8ddd-41ec-a183-2131adb07f3b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4225
+ 6403
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4225.832
+ 6403.893
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - Relay
+ -
+ - false
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 1
+
+
+
+
+ -
+ 4298
+ 6380
+ 40
+ 16
+
+ -
+ 4318
+ 6388
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - Relay
+ -
+ - false
+ - 3654a9c9-a7f1-48df-8fa7-73ed1663a837
+ - 1
+
+
+
+
+ -
+ 4298
+ 6736
+ 40
+ 16
+
+ -
+ 4318
+ 6744
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e82225cb-a1a5-4ad3-b28d-40b2efc10203
+ - 47309ff2-7be5-4758-9fcf-1729ec8314b8
+ - 98efd460-a431-49c8-aded-a62a77c59e5f
+ - 4ae5300f-9b3f-4375-87a5-52ce195ec59e
+ - 4
+ - 929e2d4c-e84d-4d02-91ac-5e7752c650a1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 5989
+ 194
+ 28
+
+ -
+ 4321
+ 6003
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - febdeb41-753b-4759-9155-f4ee00efa396
+ - true
+ - Variable O
+ - O
+ - true
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 1
+
+
+
+
+ -
+ 4223
+ 5991
+ 14
+ 24
+
+ -
+ 4231.5
+ 6003
+
+
+
+
+
+
+
+ - Result of expression
+ - 6914912a-bdac-4a4d-a2db-868eed728741
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 5991
+ 9
+ 24
+
+ -
+ 4410
+ 6003
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - Panel
+
+ - false
+ - 0
+ - 6914912a-bdac-4a4d-a2db-868eed728741
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4218
+ 5704
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4218.899
+ 5704.656
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - Relay
+ -
+ - false
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 1
+
+
+
+
+ -
+ 4298
+ 5661
+ 40
+ 16
+
+ -
+ 4318
+ 5669
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - Relay
+ -
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 6036
+ 40
+ 16
+
+ -
+ 4318
+ 6044
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 17740f5f-06e3-439c-b530-05a592105abb
+ - 86b9cd83-4404-471f-8e4d-246d772737f9
+ - 81e44a39-b7e9-4d3e-9423-d694b8c4cca2
+ - d468ce15-4157-4fb6-a1ff-1a56b601419e
+ - 4
+ - 1dd517ad-ac6e-4fd9-a4ca-f152c12db602
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - e73e0f67-8dcc-4b89-a973-43217655652f
+ - Length
+ - Length
+
+
+
+
+ -
+ 4266
+ 7386
+ 104
+ 28
+
+ -
+ 4316
+ 7400
+
+
+
+
+
+ - Curve to measure
+ - 23a61651-ddf4-4a20-9f47-60d37a73cc53
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4268
+ 7388
+ 33
+ 24
+
+ -
+ 4286
+ 7400
+
+
+
+
+
+
+
+ - Curve length
+ - db26abf6-6a27-458b-8296-41880794893f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 7388
+ 37
+ 24
+
+ -
+ 4351
+ 7400
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 5f2c0952-b956-47bf-90b0-5d5a4cb6cee6
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 5338
+ 82
+ 44
+
+ -
+ 4308
+ 5360
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - d1b16463-773d-4691-8d64-4a9105876f41
+ - A
+ - A
+ - true
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - 1
+
+
+
+
+ -
+ 4279
+ 5340
+ 14
+ 20
+
+ -
+ 4287.5
+ 5350
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 3eb60ebd-243d-4aaf-a6c6-959f8ca48089
+ - B
+ - B
+ - true
+ - a321ca1e-018e-41d6-8820-b2a1c8ac90ab
+ - 1
+
+
+
+
+ -
+ 4279
+ 5360
+ 14
+ 20
+
+ -
+ 4287.5
+ 5370
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f6322f85-aed1-4c85-95a8-8d761a4a73be
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 5340
+ 34
+ 40
+
+ -
+ 4341.5
+ 5360
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - Relay
+
+ - false
+ - 6fb580be-4b7e-48e0-a5cf-431967be43a9
+ - 1
+
+
+
+
+ -
+ 4298
+ 4367
+ 40
+ 16
+
+ -
+ 4318
+ 4375
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - e4026ef5-c10c-464e-9823-6797237c75c6
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 4250
+ 4307
+ 136
+ 44
+
+ -
+ 4336
+ 4329
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 1d2318fa-82e4-419f-9eeb-557eecb11207
+ - Items
+ - Items
+ - false
+ - 51d57fa6-afda-4229-afb4-90a25c9c6b8a
+ - 1
+
+
+
+
+ -
+ 4252
+ 4309
+ 69
+ 20
+
+ -
+ 4288
+ 4319
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - a2b6febe-d6f0-409c-8289-483e5613c3fc
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 4252
+ 4329
+ 69
+ 20
+
+ -
+ 4288
+ 4339
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - c1cbf3cc-c305-48cc-a958-e9cacfba5960
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 4351
+ 4309
+ 33
+ 20
+
+ -
+ 4369
+ 4319
+
+
+
+
+
+
+
+ - Number of items replaced
+ - e42eb5df-9832-4e87-8857-c8e16a150234
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 4351
+ 4329
+ 33
+ 20
+
+ -
+ 4369
+ 4339
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - Relay
+
+ - false
+ - 52a4cb5e-e88f-43e5-bb41-82eb4d03ae2c
+ - 1
+
+
+
+
+ -
+ 4298
+ 4222
+ 40
+ 16
+
+ -
+ 4318
+ 4230
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 1
+
+
+
+
+ -
+ 4243
+ 4022
+ 150
+ 150
+
+ -
+ 4243.828
+ 4022.635
+
+ - 0
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - Relay
+ -
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4298
+ 4186
+ 40
+ 16
+
+ -
+ 4318
+ 4194
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 3935
+ 194
+ 28
+
+ -
+ 4321
+ 3949
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f77b6382-e1b3-4533-818e-1ddfd58b503f
+ - true
+ - Variable O
+ - O
+ - true
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - 1
+
+
+
+
+ -
+ 4223
+ 3937
+ 14
+ 24
+
+ -
+ 4231.5
+ 3949
+
+
+
+
+
+
+
+ - Result of expression
+ - 2b10f4b0-51cf-4386-8d0f-6069e3234145
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 3937
+ 9
+ 24
+
+ -
+ 4410
+ 3949
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - Panel
+
+ - false
+ - 0
+ - 2b10f4b0-51cf-4386-8d0f-6069e3234145
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4218
+ 3652
+ 200
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4218.241
+ 3652.615
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - Relay
+ -
+ - false
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - 1
+
+
+
+
+ -
+ 4298
+ 3634
+ 40
+ 16
+
+ -
+ 4318
+ 3642
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - Relay
+ -
+ - false
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 1
+
+
+
+
+ -
+ 4298
+ 3982
+ 40
+ 16
+
+ -
+ 4318
+ 3990
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9bd8b728-8787-4303-ac8e-82b11f531453
+ - 74c717fe-6a47-4ebf-9159-b915086fdaa4
+ - bf3127fe-bbed-4fae-86c0-6819ff185956
+ - c7ef3fd9-f7ac-40f8-82ab-1c2ee46c2d12
+ - da9c2d00-64fe-44a7-9401-d326fcdf51fa
+ - 040c5d9b-07ad-4ae2-aad9-21a946416a98
+ - 6
+ - 2077772c-8556-4e37-b44d-c0a0d5d206ff
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e5bb3651-4fcd-4da1-9d37-64323a4cbaec
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 3366
+ 82
+ 44
+
+ -
+ 4308
+ 3388
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 233b5d7d-5e9c-4aab-a358-11af797d62ec
+ - A
+ - A
+ - true
+ - 1900d5cb-3ebe-418f-b5c5-34f4f1f2980f
+ - 1
+
+
+
+
+ -
+ 4279
+ 3368
+ 14
+ 20
+
+ -
+ 4287.5
+ 3378
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - bd9787ef-65bc-41d8-b5c7-68871373c4a5
+ - B
+ - B
+ - true
+ - fb8adc2b-49b7-409f-930c-e67bde1e9980
+ - 1
+
+
+
+
+ -
+ 4279
+ 3388
+ 14
+ 20
+
+ -
+ 4287.5
+ 3398
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 519c9f7f-5560-40d4-af0b-8be47a07ff02
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 3368
+ 34
+ 40
+
+ -
+ 4341.5
+ 3388
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 441bf542-5076-4985-9937-0bb3a042b678
+ - Curve
+ - Curve
+ - false
+ - 3fe9ed31-c050-492d-94ea-c80218f2b732
+ - 1
+
+
+
+
+ -
+ 4293
+ 2865
+ 50
+ 24
+
+ -
+ 4318
+ 2877.582
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - Relay
+
+ - false
+ - 18921b3c-23a8-4466-aa33-85dea6f5193e
+ - 1
+
+
+
+
+ -
+ 4298
+ 2743
+ 40
+ 16
+
+ -
+ 4318
+ 2751
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4221
+ 2372
+ 194
+ 28
+
+ -
+ 4321
+ 2386
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 688ba6a6-9ee3-4856-8a10-8ab5b0316e87
+ - true
+ - Variable O
+ - O
+ - true
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 1
+
+
+
+
+ -
+ 4223
+ 2374
+ 14
+ 24
+
+ -
+ 4231.5
+ 2386
+
+
+
+
+
+
+
+ - Result of expression
+ - 7388241d-d99f-4344-a537-5b48cc2edd76
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4404
+ 2374
+ 9
+ 24
+
+ -
+ 4410
+ 2386
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - Panel
+
+ - false
+ - 0
+ - 7388241d-d99f-4344-a537-5b48cc2edd76
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4221
+ 2089
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4221.045
+ 2089.177
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - Relay
+ -
+ - false
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 1
+
+
+
+
+ -
+ 4298
+ 2071
+ 40
+ 16
+
+ -
+ 4318
+ 2079
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - Relay
+ -
+ - false
+ - dca0fac6-4a1f-4a24-b1b7-b8076f3d8949
+ - 1
+
+
+
+
+ -
+ 4298
+ 2417
+ 40
+ 16
+
+ -
+ 4318
+ 2425
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 31ebe528-d55d-4dff-927d-a48736be9cc3
+ - 8487c049-6563-42c2-982d-a3d473c55e0b
+ - 34ec62fd-1b45-4131-8bb3-067f9ae32190
+ - be799453-059d-4d40-b651-349c7cf77c9d
+ - 4
+ - 3f3172f7-bff5-4e81-85a2-58943326f0a7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c9632403-1835-45bf-a8da-51dd473c2104
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4213
+ -11301
+ 144
+ 104
+
+ -
+ 4297
+ -11249
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 45fbcd4a-120c-4ab7-a1af-fe8c72e99a7a
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11299
+ 67
+ 20
+
+ -
+ 4250
+ -11289
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4b010761-a439-40ca-b8d2-6e3bc0c13526
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11279
+ 67
+ 20
+
+ -
+ 4250
+ -11269
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 65184dab-7d0a-4e0b-bf79-ec0ca699b455
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11259
+ 67
+ 20
+
+ -
+ 4250
+ -11249
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 970c9b9d-64e0-40f4-89b3-92360e324de7
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11239
+ 67
+ 20
+
+ -
+ 4250
+ -11229
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 32bc5c00-d6c0-4aa6-a2d6-9b346f7c9cb6
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4215
+ -11219
+ 67
+ 20
+
+ -
+ 4250
+ -11209
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -11299
+ 43
+ 100
+
+ -
+ 4335
+ -11249
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 3579a27a-9991-4bf3-94de-84223b4b0a72
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4244
+ -11364
+ 82
+ 44
+
+ -
+ 4312
+ -11342
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 26eb909a-b46a-4478-9bb6-2fc20cf12003
+ - Geometry
+ - Geometry
+ - false
+ - ffa36bc2-d3b2-4655-954c-b3bb1caadc80
+ - 1
+
+
+
+
+ -
+ 4246
+ -11362
+ 51
+ 20
+
+ -
+ 4273
+ -11352
+
+
+
+
+
+
+
+ - The material override
+ - fe342583-bcbf-4e07-b919-4db37b6d38b2
+ - Material
+ - Material
+ - false
+ - 2e6dccc8-6177-4800-bea6-4ea4ba2b9f92
+ - 1
+
+
+
+
+ -
+ 4246
+ -11342
+ 51
+ 20
+
+ -
+ 4273
+ -11332
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f12959c2-8cc4-4ce2-896d-7ff1a4aa1903
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 256.0
+
+
+
+
+ -
+ 4193
+ 7045
+ 250
+ 20
+
+ -
+ 4193.743
+ 7045.877
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - b7462a41-d690-4e75-b5bb-082a0185ec77
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 95bfb75e-deb2-41b2-ba5e-9f8b1037d613
+ - 1
+
+
+
+
+ -
+ 4211
+ -9704
+ 150
+ 150
+
+ -
+ 4211.097
+ -9703.828
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 5e698680-d615-4e2a-aed9-fd28b0220a65
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - c9af63c9-0143-479e-9052-49ae8662e1b1
+ - 1
+
+
+
+
+ -
+ 4211
+ -9873
+ 150
+ 150
+
+ -
+ 4211.097
+ -9872.828
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - ca297271-f533-4d51-a8fc-bdb7b204740c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 96867ac7-0810-4a7b-b16e-65dfb34d3ac7
+ - 1
+
+
+
+
+ -
+ 4211
+ -10041
+ 150
+ 150
+
+ -
+ 4211.097
+ -10040.35
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 9e3117d6-b3b4-4adc-84f3-2835a988e21e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 42ee3241-4c5c-463a-b0d9-dd12d62c2293
+ - 1
+
+
+
+
+ -
+ 4211
+ -10210
+ 150
+ 150
+
+ -
+ 4211.097
+ -10209.35
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c8c317c7-391f-4b40-93d8-4c1994caecef
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 533714a3-b663-4971-b5e9-26bce2a7de5c
+ - 1
+
+
+
+
+ -
+ 4210
+ -10380
+ 150
+ 150
+
+ -
+ 4210.854
+ -10379.08
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 3b490da6-b955-4f9c-bddc-980384007a01
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 8a09c8bb-c54e-4691-8429-43124dd1c8b3
+ - 1
+
+
+
+
+ -
+ 4210
+ -10549
+ 150
+ 150
+
+ -
+ 4210.854
+ -10548.86
+
+ - -1
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c2fc9a4e-ff43-4e6b-ba22-4562fab58558
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - b52f3636-0270-4109-8b69-fa9470b344cd
+ - 1
+
+
+
+
+ -
+ 4210
+ -10718
+ 150
+ 150
+
+ -
+ 4210.854
+ -10717.6
+
+ - -1
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 2
+ - Curve
+ - Curve
+ - false
+ - b3f6f4bc-d281-469b-b727-3d585314aedb
+ - 1
+
+
+
+
+ -
+ 3945
+ 7614
+ 53
+ 24
+
+ -
+ 3981.334
+ 7626.086
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - X*4
+ - Number
+ - Number
+ - false
+ - b565e546-b7f7-4a1b-9c81-7e90c1d9e590
+ - 1
+
+
+
+
+ -
+ 3945
+ 7655
+ 53
+ 24
+
+ -
+ 3981.804
+ 7667.199
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4256
+ 1465
+ 128
+ 28
+
+ -
+ 4309
+ 1479
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 4bd22293-c6e2-4782-ac84-5b600580b41c
+ - Values
+ - Values
+ - false
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - 1
+
+
+
+
+ -
+ 4258
+ 1467
+ 36
+ 24
+
+ -
+ 4277.5
+ 1479
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 0576e8b4-b93e-4625-ba08-32b7a12f9224
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4324
+ 1467
+ 58
+ 24
+
+ -
+ 4354.5
+ 1479
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - Relay
+
+ - false
+ - 0576e8b4-b93e-4625-ba08-32b7a12f9224
+ - 1
+
+
+
+
+ -
+ 4300
+ 1431
+ 40
+ 16
+
+ -
+ 4320
+ 1439
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - Relay
+
+ - false
+ - a50ee4ed-1074-44c4-b42b-16f559369733
+ - 1
+
+
+
+
+ -
+ 4300
+ 1513
+ 40
+ 16
+
+ -
+ 4320
+ 1521
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 61f9e29f-feb3-4122-9ade-977c75c70121
+ - Relay
+
+ - false
+ - ee24630f-f4f0-4780-abab-e012c957d4c6
+ - 1
+
+
+
+
+ -
+ 4298
+ 6304
+ 40
+ 16
+
+ -
+ 4318
+ 6312
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 476ce713-0dae-4d18-804a-2b7b11658f2a
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 5403
+ 40
+ 16
+
+ -
+ 4318
+ 5411
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fb8adc2b-49b7-409f-930c-e67bde1e9980
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 3428
+ 40
+ 16
+
+ -
+ 4318
+ 3436
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ffbd0ca9-452d-476b-aad7-d52654097132
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ 755
+ 122
+ 64
+
+ -
+ 4337
+ 787
+
+
+
+
+
+ - Line start point
+ - dfa13141-214f-4bdb-bcdf-fd35decbd4ce
+ - Start
+ - Start
+ - false
+ - 75156aff-6128-4635-ba01-66f6e62c8b34
+ - 1
+
+
+
+
+ -
+ 4259
+ 757
+ 63
+ 20
+
+ -
+ 4300
+ 767
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c6523c5a-ebb1-4c5f-bf08-596ca65340a5
+ - Direction
+ - Direction
+ - false
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - 1
+
+
+
+
+ -
+ 4259
+ 777
+ 63
+ 20
+
+ -
+ 4300
+ 787
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - e337c9e9-e37b-49b4-a4f3-a62e9d52b221
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - 1
+
+
+
+
+ -
+ 4259
+ 797
+ 63
+ 20
+
+ -
+ 4300
+ 807
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 757
+ 25
+ 60
+
+ -
+ 4366
+ 787
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 25f75636-f71c-4e68-bc9c-52d7265bce09
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ 837
+ 40
+ 16
+
+ -
+ 4318
+ 845
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 81e762e6-cf7c-4ae1-9584-48cd20085421
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ 1119
+ 115
+ 64
+
+ -
+ 4315
+ 1151
+
+
+
+
+
+ - Value to remap
+ - b8054dea-0dba-4d47-a361-76c40d8e7028
+ - Value
+ - Value
+ - false
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - 1
+
+
+
+
+ -
+ 4262
+ 1121
+ 38
+ 20
+
+ -
+ 4282.5
+ 1131
+
+
+
+
+
+
+
+ - Source domain
+ - 2dc4354d-6568-481e-9543-25086e8764ac
+ - Source
+ - Source
+ - false
+ - 4968227e-19f3-4a9f-97c2-33ce7e630f4f
+ - 1
+
+
+
+
+ -
+ 4262
+ 1141
+ 38
+ 20
+
+ -
+ 4282.5
+ 1151
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 631bebd6-f133-4834-8203-c2a2316bf850
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ 1161
+ 38
+ 20
+
+ -
+ 4282.5
+ 1171
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 977d529a-74c3-4a92-b264-ffd1fdf99c1c
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 1121
+ 43
+ 30
+
+ -
+ 4353
+ 1136
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - c2a7c612-4761-43d5-bc2d-fa1631585f85
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ 1151
+ 43
+ 30
+
+ -
+ 4353
+ 1166
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 115f0245-8d8d-4e08-9afd-473c7a08d0bd
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ 1202
+ 122
+ 28
+
+ -
+ 4321
+ 1216
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 3ed0b4fa-c025-4e44-83fb-50c46e0be136
+ - Numbers
+ - Numbers
+ - false
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - 1
+
+
+
+
+ -
+ 4259
+ 1204
+ 47
+ 24
+
+ -
+ 4284
+ 1216
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 4968227e-19f3-4a9f-97c2-33ce7e630f4f
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ 1204
+ 41
+ 24
+
+ -
+ 4358
+ 1216
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 035d0b92-726f-45b3-9b43-f98bcdec0cf5
+ - Relay
+ -
+ - false
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4298
+ 1247
+ 40
+ 16
+
+ -
+ 4318
+ 1255
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a0d04d37-b40d-44d4-8c0d-b1f4df33fe55
+ - Relay
+ -
+ - false
+ - fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
+ - 1
+
+
+
+
+ -
+ 4298
+ 880
+ 40
+ 16
+
+ -
+ 4318
+ 888
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e8565a94-1105-499b-9121-d17b6a40c779
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 919
+ 82
+ 44
+
+ -
+ 4308
+ 941
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - db629085-728c-4432-ad6b-11fd7f0c8e83
+ - A
+ - A
+ - true
+ - 98c48af7-cad0-4141-8752-76b25a6547b3
+ - 1
+
+
+
+
+ -
+ 4279
+ 921
+ 14
+ 20
+
+ -
+ 4287.5
+ 931
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 86f3c8f9-f877-4cac-ae2a-fb2f2c9d9f48
+ - B
+ - B
+ - true
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - 1
+
+
+
+
+ -
+ 4279
+ 941
+ 14
+ 20
+
+ -
+ 4287.5
+ 951
+
+
+
+
+
+
+
+ - Result of multiplication
+ - fb6b6b3f-e722-4e8d-bc32-b6b0d0bb3a85
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 921
+ 34
+ 40
+
+ -
+ 4341.5
+ 941
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 12a155cd-954b-41b5-9ebf-dfadc3960e64
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ 1020
+ 82
+ 44
+
+ -
+ 4308
+ 1042
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 7cb02247-b8fb-4071-99ef-c3eb7bc8f26e
+ - A
+ - A
+ - true
+ - 977d529a-74c3-4a92-b264-ffd1fdf99c1c
+ - 1
+
+
+
+
+ -
+ 4279
+ 1022
+ 14
+ 20
+
+ -
+ 4287.5
+ 1032
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 21b7d22c-0b3d-41c5-b6b5-c725c2e32b65
+ - B
+ - B
+ - true
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - 1
+
+
+
+
+ -
+ 4279
+ 1042
+ 14
+ 20
+
+ -
+ 4287.5
+ 1052
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 98c48af7-cad0-4141-8752-76b25a6547b3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ 1022
+ 34
+ 40
+
+ -
+ 4341.5
+ 1042
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6c6e888a-ea28-4db0-abf5-a2a050ebc430
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ 1082
+ 40
+ 16
+
+ -
+ 4318
+ 1090
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 7cc954f8-e6e0-4d0c-b372-3f3e033c2444
+ - b209923c-3a28-4705-b6c2-2d7aa0c13cc7
+ - 3
+ - 9c4b4d0a-421b-4c53-895c-1221d23a8c23
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - af294dd2-b04a-4838-88c8-0277f80bc3b0
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 631
+ 144
+ 104
+
+ -
+ 4330
+ 683
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 842d3b1b-9411-48c1-a4b2-090889ff22b0
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 633
+ 67
+ 20
+
+ -
+ 4283
+ 643
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d514ba0e-8930-4c2b-a615-b7e12ced1b62
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 653
+ 67
+ 20
+
+ -
+ 4283
+ 663
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 635a8def-1a8d-4792-976c-d3f6d4930987
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 673
+ 67
+ 20
+
+ -
+ 4283
+ 683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f6dab51d-0c8f-479b-897a-f57ceedcacab
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 693
+ 67
+ 20
+
+ -
+ 4283
+ 703
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - c8456449-9caa-4f29-b972-11ccf6caa135
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 713
+ 67
+ 20
+
+ -
+ 4283
+ 723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - b603312a-32b7-4d61-9db7-5526a8b7f1fe
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 633
+ 43
+ 100
+
+ -
+ 4368
+ 683
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - a6eac927-8a3c-4732-b1a8-90e4b25850df
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 566
+ 82
+ 44
+
+ -
+ 4345
+ 588
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 3beb0610-3674-43ef-adb2-e95400cf91c4
+ - Geometry
+ - Geometry
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4279
+ 568
+ 51
+ 20
+
+ -
+ 4306
+ 578
+
+
+
+
+
+
+
+ - The material override
+ - c38e03f4-6478-47b4-92c4-a02cc432b018
+ - Material
+ - Material
+ - false
+ - b603312a-32b7-4d61-9db7-5526a8b7f1fe
+ - 1
+
+
+
+
+ -
+ 4279
+ 588
+ 51
+ 20
+
+ -
+ 4306
+ 598
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5bda71fa-0d3a-4287-94fd-b5d399b8202f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ 486
+ 144
+ 64
+
+ -
+ 4320
+ 518
+
+
+
+
+
+ - Curve to evaluate
+ - 96ffa41c-683e-4059-86c9-0564953e7936
+ - Curve
+ - Curve
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4248
+ 488
+ 57
+ 20
+
+ -
+ 4278
+ 498
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - cdbe5b1f-9d31-46fb-93c5-ad7291a1eb36
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 508
+ 57
+ 20
+
+ -
+ 4278
+ 518
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 60ac828e-adc4-47bf-bc1d-0bdb52bac1e8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 528
+ 57
+ 20
+
+ -
+ 4278
+ 538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 488
+ 53
+ 20
+
+ -
+ 4363
+ 498
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 33f9b60b-9f7d-4984-9b11-554b550460e5
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 508
+ 53
+ 20
+
+ -
+ 4363
+ 518
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2c8f1546-d78f-421e-b669-baed198bc74d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ 528
+ 53
+ 20
+
+ -
+ 4363
+ 538
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - d23b18ad-2e9d-4af3-a33d-e2ae8d08d84a
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ 382
+ 125
+ 84
+
+ -
+ 4322
+ 424
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 9e2e3a9b-904b-48d7-a2f8-5e5e1cfec8fc
+ - Vertices
+ - Vertices
+ - false
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - 1
+
+
+
+
+ -
+ 4257
+ 384
+ 50
+ 20
+
+ -
+ 4283.5
+ 394
+
+
+
+
+
+
+
+ - Curve degree
+ - 4a44671b-a1a5-4b70-a51b-1efe0327b5a7
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 404
+ 50
+ 20
+
+ -
+ 4283.5
+ 414
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - ef1234b2-7eb7-49ec-baea-03a92561ca54
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 424
+ 50
+ 20
+
+ -
+ 4283.5
+ 434
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 13c20af2-e6f4-40ed-9e06-2a3cee0e1310
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ 444
+ 50
+ 20
+
+ -
+ 4283.5
+ 454
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 384
+ 41
+ 26
+
+ -
+ 4359
+ 397.3333
+
+
+
+
+
+
+
+ - Curve length
+ - ad2fce30-d14b-4547-b1e0-1e3fa991cd24
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 410
+ 41
+ 27
+
+ -
+ 4359
+ 424
+
+
+
+
+
+
+
+ - Curve domain
+ - ac261476-0de2-41ba-b51f-1417c8ec05fd
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ 437
+ 41
+ 27
+
+ -
+ 4359
+ 450.6667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - eedba66f-c09e-4b6a-a6f6-e360e1607858
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ 258
+ 144
+ 104
+
+ -
+ 4330
+ 310
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2ccdb9dd-ed00-46c0-9a61-9aeee619add6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 260
+ 67
+ 20
+
+ -
+ 4283
+ 270
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ec981619-883f-4f2f-a76a-7485b8c267b4
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 280
+ 67
+ 20
+
+ -
+ 4283
+ 290
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - cc6526b3-ec30-4593-a25f-9b0a3bd2b635
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 300
+ 67
+ 20
+
+ -
+ 4283
+ 310
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 0379919a-925c-4039-b44d-31c5860a383f
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 320
+ 67
+ 20
+
+ -
+ 4283
+ 330
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - e211802f-3037-4ef9-9665-9961a4f13bf4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ 340
+ 67
+ 20
+
+ -
+ 4283
+ 350
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ 260
+ 43
+ 100
+
+ -
+ 4368
+ 310
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - a3be89c0-1a37-4050-ae27-b5fc88bad330
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ 198
+ 82
+ 44
+
+ -
+ 4345
+ 220
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - a444dc8e-4663-4484-a04c-13ad66a87be0
+ - Geometry
+ - Geometry
+ - false
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - 1
+
+
+
+
+ -
+ 4279
+ 200
+ 51
+ 20
+
+ -
+ 4306
+ 210
+
+
+
+
+
+
+
+ - The material override
+ - 1edb010e-19a0-4324-a37b-2faf51ea7917
+ - Material
+ - Material
+ - false
+ - 68dbb0fe-eefc-4062-b9b1-d9b0eec3d07b
+ - 1
+
+
+
+
+ -
+ 4279
+ 220
+ 51
+ 20
+
+ -
+ 4306
+ 230
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c96083ca-5a8a-4085-b4fd-6d5eea9ca472
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 3692f38f-1d1e-454f-9e1e-559f3a96e560
+ - b0f623ea-310b-4b24-9cb7-58687d55b42d
+ - 0968c388-eb63-4f69-97af-52e68422d260
+ - 8d280e70-d586-432d-9c66-602cd4f4fd53
+ - f6de1485-e329-4dce-a6e4-89cb0f7016af
+ - 322a6b5b-a423-48a5-b19d-a56aff79885e
+ - 8cf28910-ebf9-447f-b49a-b8133c4bc05e
+ - 22
+ - 7f8caa90-5f65-4c95-97fa-030e76b167df
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - af226fd0-4701-4be9-ac43-12af7cefc54c
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - 14
+ - c96083ca-5a8a-4085-b4fd-6d5eea9ca472
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4257
+ 85
+ 128
+ 28
+
+ -
+ 4310
+ 99
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - cf9b5280-1356-40a0-bd2f-b91b9fe0a0d5
+ - Values
+ - Values
+ - false
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - 1
+
+
+
+
+ -
+ 4259
+ 87
+ 36
+ 24
+
+ -
+ 4278.5
+ 99
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4325
+ 87
+ 58
+ 24
+
+ -
+ 4355.5
+ 99
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - Relay
+
+ - false
+ - 1f168d2a-aa06-4c70-8dc4-2ea3b603bb80
+ - 1
+
+
+
+
+ -
+ 4301
+ 51
+ 40
+ 16
+
+ -
+ 4321
+ 59
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - Relay
+
+ - false
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4301
+ 133
+ 40
+ 16
+
+ -
+ 4321
+ 141
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ee378bd1-d97e-429d-8c19-9b21d4cc9fe1
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ -642
+ 122
+ 64
+
+ -
+ 4337
+ -610
+
+
+
+
+
+ - Line start point
+ - 6e2d24a9-2651-43b2-9059-a97658fefa94
+ - true
+ - Start
+ - Start
+ - false
+ - 637e10b6-0bed-46d6-a76a-6a7a71d05708
+ - 1
+
+
+
+
+ -
+ 4259
+ -640
+ 63
+ 20
+
+ -
+ 4300
+ -630
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8d62e557-6e3c-4bf6-a04e-10b7a8808160
+ - true
+ - Direction
+ - Direction
+ - false
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - 1
+
+
+
+
+ -
+ 4259
+ -620
+ 63
+ 20
+
+ -
+ 4300
+ -610
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 48067a4f-d715-425d-9142-e9acdf7e2d16
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - 1
+
+
+
+
+ -
+ 4259
+ -600
+ 63
+ 20
+
+ -
+ 4300
+ -590
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ -640
+ 25
+ 60
+
+ -
+ 4366
+ -610
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a1a58fed-d57e-4141-b7b0-e1805b47e405
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -560
+ 40
+ 16
+
+ -
+ 4318
+ -552
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ -278
+ 115
+ 64
+
+ -
+ 4315
+ -246
+
+
+
+
+
+ - Value to remap
+ - e2ce2793-7f92-435a-9592-107d9e9325c7
+ - Value
+ - Value
+ - false
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - 1
+
+
+
+
+ -
+ 4262
+ -276
+ 38
+ 20
+
+ -
+ 4282.5
+ -266
+
+
+
+
+
+
+
+ - Source domain
+ - aca09565-ad3a-4dff-9c3a-f829a275ed12
+ - Source
+ - Source
+ - false
+ - 6366097d-daba-401d-a3bb-09908d45be64
+ - 1
+
+
+
+
+ -
+ 4262
+ -256
+ 38
+ 20
+
+ -
+ 4282.5
+ -246
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 75fe238b-59fa-4483-9f0a-387f19e4effa
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ -236
+ 38
+ 20
+
+ -
+ 4282.5
+ -226
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - f7db2e14-5eac-4497-8d7a-faed2f5f076b
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -276
+ 43
+ 30
+
+ -
+ 4353
+ -261
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - a79c8122-d5a3-4494-801e-dc132432acb4
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -246
+ 43
+ 30
+
+ -
+ 4353
+ -231
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ -195
+ 122
+ 28
+
+ -
+ 4321
+ -181
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 65e00f66-a02a-4a1c-b13a-c34b1d32db8f
+ - Numbers
+ - Numbers
+ - false
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - 1
+
+
+
+
+ -
+ 4259
+ -193
+ 47
+ 24
+
+ -
+ 4284
+ -181
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 6366097d-daba-401d-a3bb-09908d45be64
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -193
+ 41
+ 24
+
+ -
+ 4358
+ -181
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 547f9879-1f4b-4a31-b855-b187d0ccb44c
+ - e3bb7df2-b148-4b3e-a431-34c5a0a50196
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - edc3af5a-e25d-4381-a4d7-b2454ae6e271
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - 14
+ - d79fb373-d285-4a32-9d35-a411dd8a2305
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 06be7652-b071-449f-9819-02867c2c1901
+ - Relay
+ -
+ - false
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4298
+ -150
+ 40
+ 16
+
+ -
+ 4318
+ -142
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ba639484-1f04-4eb3-bd96-f9911e7489f7
+ - Relay
+ -
+ - false
+ - 1ab4b573-b016-44f4-9322-bcb16dcb97b9
+ - 1
+
+
+
+
+ -
+ 4298
+ -517
+ 40
+ 16
+
+ -
+ 4318
+ -509
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - c656fad9-200a-417f-ab8e-9ec2262e1bcb
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -478
+ 82
+ 44
+
+ -
+ 4308
+ -456
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - f38099fc-1a8f-4ec2-a980-4782834441e2
+ - A
+ - A
+ - true
+ - 4e4dd104-426c-41d2-bb08-6c08681a1283
+ - 1
+
+
+
+
+ -
+ 4279
+ -476
+ 14
+ 20
+
+ -
+ 4287.5
+ -466
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - c981e6f7-dd08-4e71-86f1-5294401a4440
+ - B
+ - B
+ - true
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - 1
+
+
+
+
+ -
+ 4279
+ -456
+ 14
+ 20
+
+ -
+ 4287.5
+ -446
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 1ab4b573-b016-44f4-9322-bcb16dcb97b9
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -476
+ 34
+ 40
+
+ -
+ 4341.5
+ -456
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 8df7d7e6-cf5d-4502-9323-231be7021412
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -377
+ 82
+ 44
+
+ -
+ 4308
+ -355
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - eae22736-cc25-48be-82b9-82ae0596aed0
+ - A
+ - A
+ - true
+ - f7db2e14-5eac-4497-8d7a-faed2f5f076b
+ - 1
+
+
+
+
+ -
+ 4279
+ -375
+ 14
+ 20
+
+ -
+ 4287.5
+ -365
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 46ccac10-5ef7-43c0-b5e4-750578a78456
+ - B
+ - B
+ - true
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - 1
+
+
+
+
+ -
+ 4279
+ -355
+ 14
+ 20
+
+ -
+ 4287.5
+ -345
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 4e4dd104-426c-41d2-bb08-6c08681a1283
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -375
+ 34
+ 40
+
+ -
+ 4341.5
+ -355
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 645a4fcb-3841-4062-9f82-8ce6675a59b7
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ -315
+ 40
+ 16
+
+ -
+ 4318
+ -307
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - cf8f325e-7066-4f00-bf52-f68e0880fb25
+ - 0f329de9-ca80-42aa-b370-5edbdbc0dbe2
+ - 3
+ - 3692f38f-1d1e-454f-9e1e-559f3a96e560
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b0f623ea-310b-4b24-9cb7-58687d55b42d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -766
+ 144
+ 104
+
+ -
+ 4330
+ -714
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 0b2039c2-9096-48a6-a2a4-5e14c7289f90
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -764
+ 67
+ 20
+
+ -
+ 4283
+ -754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ba122001-38ee-4908-b388-560c17dc7b38
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -744
+ 67
+ 20
+
+ -
+ 4283
+ -734
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b19593ac-70b7-4a5b-a68d-d7c04b9d5039
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -724
+ 67
+ 20
+
+ -
+ 4283
+ -714
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - e50630b9-256d-4890-b2a2-710b1069a1a9
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -704
+ 67
+ 20
+
+ -
+ 4283
+ -694
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 3cb8a942-bbf6-485a-8eb7-177cc856e9d8
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -684
+ 67
+ 20
+
+ -
+ 4283
+ -674
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -764
+ 43
+ 100
+
+ -
+ 4368
+ -714
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 0968c388-eb63-4f69-97af-52e68422d260
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -828
+ 82
+ 44
+
+ -
+ 4345
+ -806
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 804b2077-26f5-49bd-bca2-9e59ee6a5fe0
+ - Geometry
+ - Geometry
+ - false
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - 1
+
+
+
+
+ -
+ 4279
+ -826
+ 51
+ 20
+
+ -
+ 4306
+ -816
+
+
+
+
+
+
+
+ - The material override
+ - c84c562c-4cf7-4ae2-85fb-0f5c52a48b01
+ - Material
+ - Material
+ - false
+ - 9c578a14-3257-4ba9-bd47-aa9ac4e0f711
+ - 1
+
+
+
+
+ -
+ 4279
+ -806
+ 51
+ 20
+
+ -
+ 4306
+ -796
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8d280e70-d586-432d-9c66-602cd4f4fd53
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -911
+ 144
+ 64
+
+ -
+ 4320
+ -879
+
+
+
+
+
+ - Curve to evaluate
+ - 20375335-fe2f-4b9e-b95b-ff3bfc4229f7
+ - Curve
+ - Curve
+ - false
+ - be2cf019-1305-48ce-adba-8f4655e5d2ee
+ - 1
+
+
+
+
+ -
+ 4248
+ -909
+ 57
+ 20
+
+ -
+ 4278
+ -899
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 091e548d-72b9-42a9-87cc-c90e4b9d833d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -889
+ 57
+ 20
+
+ -
+ 4278
+ -879
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ccbd7807-1a8d-4478-974e-eaeba34232b0
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -869
+ 57
+ 20
+
+ -
+ 4278
+ -859
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -909
+ 53
+ 20
+
+ -
+ 4363
+ -899
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ff9a3ab7-ae19-486e-8da8-c1e0a14e6800
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -889
+ 53
+ 20
+
+ -
+ 4363
+ -879
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 11442010-ed08-406e-8f80-cab63dbe48de
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -869
+ 53
+ 20
+
+ -
+ 4363
+ -859
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - f6de1485-e329-4dce-a6e4-89cb0f7016af
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -1015
+ 125
+ 84
+
+ -
+ 4322
+ -973
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 07e3a62a-f138-4908-8022-e63d0db12106
+ - Vertices
+ - Vertices
+ - false
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - 1
+
+
+
+
+ -
+ 4257
+ -1013
+ 50
+ 20
+
+ -
+ 4283.5
+ -1003
+
+
+
+
+
+
+
+ - Curve degree
+ - c7a9d37a-9597-4be7-8fb4-788c127c3da4
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -993
+ 50
+ 20
+
+ -
+ 4283.5
+ -983
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - e55e9e83-721d-4edc-8736-2486181af6fd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -973
+ 50
+ 20
+
+ -
+ 4283.5
+ -963
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f3235844-9d1d-4d99-bd61-222abdd54981
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -953
+ 50
+ 20
+
+ -
+ 4283.5
+ -943
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - eda997fc-a64a-410d-984f-4373353f22d8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -1013
+ 41
+ 26
+
+ -
+ 4359
+ -999.6667
+
+
+
+
+
+
+
+ - Curve length
+ - af975174-342f-4023-8176-c430b910aa01
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -987
+ 41
+ 27
+
+ -
+ 4359
+ -973
+
+
+
+
+
+
+
+ - Curve domain
+ - 72b77803-9b17-4bbf-8606-c8a01fc98876
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -960
+ 41
+ 27
+
+ -
+ 4359
+ -946.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 322a6b5b-a423-48a5-b19d-a56aff79885e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -1139
+ 144
+ 104
+
+ -
+ 4330
+ -1087
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 544f4ed3-57ae-49fe-8560-25df04b6d6b4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1137
+ 67
+ 20
+
+ -
+ 4283
+ -1127
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d3f9d604-bf6f-4f65-85b0-64f38535d92f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1117
+ 67
+ 20
+
+ -
+ 4283
+ -1107
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 78f51403-90bc-41eb-973b-6a8618c61a9b
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1097
+ 67
+ 20
+
+ -
+ 4283
+ -1087
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d316c5f8-75ad-445c-b3fa-434bd3a704b5
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1077
+ 67
+ 20
+
+ -
+ 4283
+ -1067
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 0b914229-1375-4735-a7ef-fcf88df61be4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -1057
+ 67
+ 20
+
+ -
+ 4283
+ -1047
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 593cb676-3e96-41ce-a2a5-98139f80f758
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -1137
+ 43
+ 100
+
+ -
+ 4368
+ -1087
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 8cf28910-ebf9-447f-b49a-b8133c4bc05e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -1199
+ 82
+ 44
+
+ -
+ 4345
+ -1177
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7f4d70c9-8898-4534-a476-a481f4657452
+ - Geometry
+ - Geometry
+ - false
+ - eda997fc-a64a-410d-984f-4373353f22d8
+ - 1
+
+
+
+
+ -
+ 4279
+ -1197
+ 51
+ 20
+
+ -
+ 4306
+ -1187
+
+
+
+
+
+
+
+ - The material override
+ - 165d0974-e17c-4dd5-9a5c-584173fc1f1a
+ - Material
+ - Material
+ - false
+ - 593cb676-3e96-41ce-a2a5-98139f80f758
+ - 1
+
+
+
+
+ -
+ 4279
+ -1177
+ 51
+ 20
+
+ -
+ 4306
+ -1167
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2e7d434b-e497-40c2-9170-d80e0bf5bcba
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - 307e04c0-347d-42da-aac3-535ada9ac315
+ - 391984bd-bdf7-4963-92f0-2e256b508f09
+ - 8563ebf7-7afd-4569-aa53-0cc90bd1a378
+ - 91616bda-478d-47e7-987e-50b82258ce06
+ - 813e4314-bed9-4963-8fd6-132105ecb666
+ - ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
+ - 22
+ - e415110b-3faf-49e8-889a-ea5803860fe9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - ac588950-bc7f-4799-998b-6293a8136543
+ - 12
+ - 2e7d434b-e497-40c2-9170-d80e0bf5bcba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4255
+ -1324
+ 128
+ 28
+
+ -
+ 4308
+ -1310
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ae80ef1a-72c2-4f48-843a-15d379553646
+ - Values
+ - Values
+ - false
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 1
+
+
+
+
+ -
+ 4257
+ -1322
+ 36
+ 24
+
+ -
+ 4276.5
+ -1310
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 5a957f96-5a4e-438c-beb4-d71a40d90f89
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1322
+ 58
+ 24
+
+ -
+ 4353.5
+ -1310
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - Relay
+
+ - false
+ - 5a957f96-5a4e-438c-beb4-d71a40d90f89
+ - 1
+
+
+
+
+ -
+ 4302
+ -1358
+ 40
+ 16
+
+ -
+ 4322
+ -1350
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - Relay
+
+ - false
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4299
+ -1276
+ 40
+ 16
+
+ -
+ 4319
+ -1268
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 6ddfcd4a-34b2-4ad5-afdf-bc3d5086e3cb
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4260
+ -2052
+ 122
+ 64
+
+ -
+ 4340
+ -2020
+
+
+
+
+
+ - Line start point
+ - f5b17117-d25b-41b1-842c-a3197dca9123
+ - true
+ - Start
+ - Start
+ - false
+ - c0df840f-e21c-4129-b503-719f49fc6b16
+ - 1
+
+
+
+
+ -
+ 4262
+ -2050
+ 63
+ 20
+
+ -
+ 4303
+ -2040
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2a8085b2-3baf-44f9-b34e-1d2d96385c84
+ - true
+ - Direction
+ - Direction
+ - false
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - 1
+
+
+
+
+ -
+ 4262
+ -2030
+ 63
+ 20
+
+ -
+ 4303
+ -2020
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 2af41a7d-df5e-4691-9848-2507f8ba3c97
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - 1
+
+
+
+
+ -
+ 4262
+ -2010
+ 63
+ 20
+
+ -
+ 4303
+ -2000
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4355
+ -2050
+ 25
+ 60
+
+ -
+ 4369
+ -2020
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6aaa1793-28e6-4756-99ff-42dbddf77a39
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -1971
+ 40
+ 16
+
+ -
+ 4318
+ -1963
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4253
+ -1700
+ 115
+ 64
+
+ -
+ 4308
+ -1668
+
+
+
+
+
+ - Value to remap
+ - 0c5b7722-f827-4fe2-94e4-2d203f324b13
+ - Value
+ - Value
+ - false
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 1
+
+
+
+
+ -
+ 4255
+ -1698
+ 38
+ 20
+
+ -
+ 4275.5
+ -1688
+
+
+
+
+
+
+
+ - Source domain
+ - da6b0a7a-afc2-472a-bb91-42cf57aaf2be
+ - Source
+ - Source
+ - false
+ - 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
+ - 1
+
+
+
+
+ -
+ 4255
+ -1678
+ 38
+ 20
+
+ -
+ 4275.5
+ -1668
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 01d28205-64da-48f4-b28b-d9b155277b2d
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4255
+ -1658
+ 38
+ 20
+
+ -
+ 4275.5
+ -1648
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - c395f5b4-45e8-4b90-b7b3-f484cd3aade4
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1698
+ 43
+ 30
+
+ -
+ 4346
+ -1683
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 6ed0ec77-ff5b-4d62-9aa8-e5e43c3c9bd0
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1668
+ 43
+ 30
+
+ -
+ 4346
+ -1653
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4250
+ -1617
+ 122
+ 28
+
+ -
+ 4314
+ -1603
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 49b06533-0be4-4801-9f1b-0d82020b6d5c
+ - Numbers
+ - Numbers
+ - false
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 1
+
+
+
+
+ -
+ 4252
+ -1615
+ 47
+ 24
+
+ -
+ 4277
+ -1603
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 0dbb88bc-fe27-4e6b-9f57-3dabd1d71520
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4329
+ -1615
+ 41
+ 24
+
+ -
+ 4351
+ -1603
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 7803a825-4dda-48df-aa28-6d873414abc3
+ - 8dab0ba0-6f93-4f19-b8d3-a6e2812f575a
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - 7a372be2-540a-4b8c-b985-ea311cfef976
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - 15
+ - 9e0e35cc-c9b4-43b6-a875-a16fd29ba65a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a47545e5-d679-4719-9a47-2c4466a7fd8b
+ - Relay
+ -
+ - false
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4295
+ -1568
+ 40
+ 16
+
+ -
+ 4315
+ -1560
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 27134342-2fa4-4066-889e-6f4ad894e999
+ - Relay
+ -
+ - false
+ - 8cea9731-8f9c-4e8b-85df-2050902b7807
+ - 1
+
+
+
+
+ -
+ 4294
+ -1939
+ 40
+ 16
+
+ -
+ 4314
+ -1931
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - bdafdfb8-bb33-4d40-ad59-5e519f758096
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4270
+ -1902
+ 82
+ 44
+
+ -
+ 4301
+ -1880
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 878222d7-48d3-4576-abd2-de0b7b2445f6
+ - A
+ - A
+ - true
+ - 817a1f1b-9353-4d8d-84f9-673116fd6d05
+ - 1
+
+
+
+
+ -
+ 4272
+ -1900
+ 14
+ 20
+
+ -
+ 4280.5
+ -1890
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - d21e7beb-ac2d-43d2-b690-4bfd03921f06
+ - B
+ - B
+ - true
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - 1
+
+
+
+
+ -
+ 4272
+ -1880
+ 14
+ 20
+
+ -
+ 4280.5
+ -1870
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 8cea9731-8f9c-4e8b-85df-2050902b7807
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ -1900
+ 34
+ 40
+
+ -
+ 4334.5
+ -1880
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 25966e22-4fd9-419c-b905-ad0d899b9233
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -1787
+ 82
+ 44
+
+ -
+ 4308
+ -1765
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - c191cdf0-ce56-4ffa-83d6-d9e5ee1ce3ab
+ - A
+ - A
+ - true
+ - c395f5b4-45e8-4b90-b7b3-f484cd3aade4
+ - 1
+
+
+
+
+ -
+ 4279
+ -1785
+ 14
+ 20
+
+ -
+ 4287.5
+ -1775
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e0d80ea-79b2-4e23-b4b2-f1c47cb6d051
+ - B
+ - B
+ - true
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - 1
+
+
+
+
+ -
+ 4279
+ -1765
+ 14
+ 20
+
+ -
+ 4287.5
+ -1755
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 1f4d203a-7210-473f-9482-f99a19778d4f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -1785
+ 34
+ 40
+
+ -
+ 4341.5
+ -1765
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0ab3c753-c9f7-45bf-b85a-26d6499915ce
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4295
+ -1725
+ 40
+ 16
+
+ -
+ 4315
+ -1717
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - b83bd03c-6fc4-45b4-87b8-5e564aaac95b
+ - 7eb55334-5bfa-4486-9ff6-b5829dac3feb
+ - 3
+ - 845cb04b-45f5-445d-9f62-abad64b02fd2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 307e04c0-347d-42da-aac3-535ada9ac315
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -2177
+ 144
+ 104
+
+ -
+ 4330
+ -2125
+
+
+
+
+
+ - Colour of the diffuse channel
+ - b17b0379-bc45-45ba-bd16-2a0eba0989df
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2175
+ 67
+ 20
+
+ -
+ 4283
+ -2165
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - cadc18a2-76b6-48c9-85f4-e683444ac926
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2155
+ 67
+ 20
+
+ -
+ 4283
+ -2145
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 45312f69-4306-4270-8336-9d4f988b53f5
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2135
+ 67
+ 20
+
+ -
+ 4283
+ -2125
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 93837e64-6bec-4f2c-a8e7-70ab7b01b7e2
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2115
+ 67
+ 20
+
+ -
+ 4283
+ -2105
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 117d8814-ca79-42a3-90fa-2d0ac9cb0bdb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2095
+ 67
+ 20
+
+ -
+ 4283
+ -2085
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dac4de77-9f6f-4daa-a2fb-101193a87ed7
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -2175
+ 43
+ 100
+
+ -
+ 4368
+ -2125
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 391984bd-bdf7-4963-92f0-2e256b508f09
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -2239
+ 82
+ 44
+
+ -
+ 4345
+ -2217
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 0cbf1ec0-48a5-4725-b163-a93cd896f78a
+ - Geometry
+ - Geometry
+ - false
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - 1
+
+
+
+
+ -
+ 4279
+ -2237
+ 51
+ 20
+
+ -
+ 4306
+ -2227
+
+
+
+
+
+
+
+ - The material override
+ - 67084f2a-d79d-4f1b-bd0d-c0baf2bc54f3
+ - Material
+ - Material
+ - false
+ - dac4de77-9f6f-4daa-a2fb-101193a87ed7
+ - 1
+
+
+
+
+ -
+ 4279
+ -2217
+ 51
+ 20
+
+ -
+ 4306
+ -2207
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8563ebf7-7afd-4569-aa53-0cc90bd1a378
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -2322
+ 144
+ 64
+
+ -
+ 4320
+ -2290
+
+
+
+
+
+ - Curve to evaluate
+ - 75e68839-7c56-486e-8934-2aec69846414
+ - Curve
+ - Curve
+ - false
+ - fa43f40d-b436-439a-bab2-aac4d1b2ae8b
+ - 1
+
+
+
+
+ -
+ 4248
+ -2320
+ 57
+ 20
+
+ -
+ 4278
+ -2310
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - df4e0f36-f4ca-4b09-b619-bd775693b056
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2300
+ 57
+ 20
+
+ -
+ 4278
+ -2290
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - de2c86ac-e32a-4606-a129-52dcce0396b7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2280
+ 57
+ 20
+
+ -
+ 4278
+ -2270
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2320
+ 53
+ 20
+
+ -
+ 4363
+ -2310
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9dd89b63-2e2c-42b0-a2a2-48bbe718af2a
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2300
+ 53
+ 20
+
+ -
+ 4363
+ -2290
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c7b66ac2-eefe-4c24-bc83-ef966d86fd7b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -2280
+ 53
+ 20
+
+ -
+ 4363
+ -2270
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 91616bda-478d-47e7-987e-50b82258ce06
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -2426
+ 125
+ 84
+
+ -
+ 4322
+ -2384
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - ef6f2b2f-7fc9-48b4-ab19-f8e956f17ef7
+ - Vertices
+ - Vertices
+ - false
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - 1
+
+
+
+
+ -
+ 4257
+ -2424
+ 50
+ 20
+
+ -
+ 4283.5
+ -2414
+
+
+
+
+
+
+
+ - Curve degree
+ - 41b3d3c2-2d7b-496c-ad9b-d6395c994acc
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2404
+ 50
+ 20
+
+ -
+ 4283.5
+ -2394
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 5d892f8d-5082-4e8b-b695-aa53350b964c
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2384
+ 50
+ 20
+
+ -
+ 4283.5
+ -2374
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 48df9416-48a3-431e-83bb-dfded5c7cf13
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -2364
+ 50
+ 20
+
+ -
+ 4283.5
+ -2354
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2424
+ 41
+ 26
+
+ -
+ 4359
+ -2410.667
+
+
+
+
+
+
+
+ - Curve length
+ - a5ea4950-35e0-413c-b420-38f10bcbc1dc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2398
+ 41
+ 27
+
+ -
+ 4359
+ -2384
+
+
+
+
+
+
+
+ - Curve domain
+ - b7207c89-8e70-43e8-98d7-c34853a94e21
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -2371
+ 41
+ 27
+
+ -
+ 4359
+ -2357.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 813e4314-bed9-4963-8fd6-132105ecb666
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -2550
+ 144
+ 104
+
+ -
+ 4330
+ -2498
+
+
+
+
+
+ - Colour of the diffuse channel
+ - f81f1c89-8bc5-473f-b7c5-750a00edd80a
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2548
+ 67
+ 20
+
+ -
+ 4283
+ -2538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 7eea7044-9ecc-498a-ac53-1d0937777605
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2528
+ 67
+ 20
+
+ -
+ 4283
+ -2518
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 5e84ac81-5265-4b77-9fb4-9608d8e14a39
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2508
+ 67
+ 20
+
+ -
+ 4283
+ -2498
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 273f6050-7148-4e70-8533-df9579105dda
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2488
+ 67
+ 20
+
+ -
+ 4283
+ -2478
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6fd3f45d-ffdd-47ca-8b53-5d632438bd38
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -2468
+ 67
+ 20
+
+ -
+ 4283
+ -2458
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -2548
+ 43
+ 100
+
+ -
+ 4368
+ -2498
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ac616e7c-8b28-4c2e-bf9a-5a8c674ee521
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -2610
+ 82
+ 44
+
+ -
+ 4345
+ -2588
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - b5ae2558-2f1a-4cb4-8602-975a07f8ba9f
+ - Geometry
+ - Geometry
+ - false
+ - 678b8bf7-9aac-4970-8a9e-ee50acb3e43a
+ - 1
+
+
+
+
+ -
+ 4279
+ -2608
+ 51
+ 20
+
+ -
+ 4306
+ -2598
+
+
+
+
+
+
+
+ - The material override
+ - 5170ecf1-f935-4d97-9b53-18f07f6c82d6
+ - Material
+ - Material
+ - false
+ - 6f27c099-ecfb-4221-a1a3-f67aa8f90b49
+ - 1
+
+
+
+
+ -
+ 4279
+ -2588
+ 51
+ 20
+
+ -
+ 4306
+ -2578
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
+ - 2fd38000-615a-4f6c-925c-fae90fde2a8e
+ - 65ac4482-b933-4f95-9a07-b23d2cef1c6a
+ - 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
+ - eefa2f3e-ae14-4853-9588-e0ad60346408
+ - a9846cd4-c92f-4ca4-904e-88b9fe76c39c
+ - 100d237b-fd67-4830-be89-c236745d92e8
+ - 22
+ - 9a7db9c9-43b6-4731-b3bb-087fd868b276
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
+ - 12
+ - 42e4b4aa-e5fd-4fa0-bf50-f55fc4f83c27
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4254
+ -2720
+ 128
+ 28
+
+ -
+ 4307
+ -2706
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 7f36f02f-6ddc-4cb0-a544-c62006d91a7e
+ - Values
+ - Values
+ - false
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 1
+
+
+
+
+ -
+ 4256
+ -2718
+ 36
+ 24
+
+ -
+ 4275.5
+ -2706
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 097201c1-1da3-4b40-8dd0-b049871b7d99
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ -2718
+ 58
+ 24
+
+ -
+ 4352.5
+ -2706
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - Relay
+
+ - false
+ - 097201c1-1da3-4b40-8dd0-b049871b7d99
+ - 1
+
+
+
+
+ -
+ 4298
+ -2754
+ 40
+ 16
+
+ -
+ 4318
+ -2746
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - Relay
+
+ - false
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4298
+ -2672
+ 40
+ 16
+
+ -
+ 4318
+ -2664
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 8e072824-d558-4a16-83ee-15d5922d0358
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4257
+ -3450
+ 122
+ 64
+
+ -
+ 4337
+ -3418
+
+
+
+
+
+ - Line start point
+ - cfd18607-4057-4291-9223-81c906b9c49f
+ - true
+ - Start
+ - Start
+ - false
+ - 5e91e4ba-1184-48d6-8062-bc02f9dd7cd0
+ - 1
+
+
+
+
+ -
+ 4259
+ -3448
+ 63
+ 20
+
+ -
+ 4300
+ -3438
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - cb2d2ba5-e6f3-4841-9978-746af6500450
+ - true
+ - Direction
+ - Direction
+ - false
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - 1
+
+
+
+
+ -
+ 4259
+ -3428
+ 63
+ 20
+
+ -
+ 4300
+ -3418
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 95296efb-57ab-4b1d-baea-2f0e4c3f9c8e
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 1
+
+
+
+
+ -
+ 4259
+ -3408
+ 63
+ 20
+
+ -
+ 4300
+ -3398
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ -3448
+ 25
+ 60
+
+ -
+ 4366
+ -3418
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4c62f8de-2dcc-4c41-82bc-4759c86d0ab9
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4298
+ -3368
+ 40
+ 16
+
+ -
+ 4318
+ -3360
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4260
+ -3086
+ 115
+ 64
+
+ -
+ 4315
+ -3054
+
+
+
+
+
+ - Value to remap
+ - 1f626e82-58ae-438a-90e6-0b36707c73dd
+ - Value
+ - Value
+ - false
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 1
+
+
+
+
+ -
+ 4262
+ -3084
+ 38
+ 20
+
+ -
+ 4282.5
+ -3074
+
+
+
+
+
+
+
+ - Source domain
+ - 96780f3e-9927-4116-be86-f0654fe684f5
+ - Source
+ - Source
+ - false
+ - efb5ced9-506b-4efb-aedb-6823b20f9f6e
+ - 1
+
+
+
+
+ -
+ 4262
+ -3064
+ 38
+ 20
+
+ -
+ 4282.5
+ -3054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 6cf6be25-bd2a-4cad-b8b5-a5fb8313d332
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4262
+ -3044
+ 38
+ 20
+
+ -
+ 4282.5
+ -3034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -3084
+ 43
+ 30
+
+ -
+ 4353
+ -3069
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 0e5bb633-c4ae-4720-8365-f59d27ff8f00
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4330
+ -3054
+ 43
+ 30
+
+ -
+ 4353
+ -3039
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4257
+ -3003
+ 122
+ 28
+
+ -
+ 4321
+ -2989
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 41279e52-c8b2-44d2-a05f-a12da73d9726
+ - Numbers
+ - Numbers
+ - false
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 1
+
+
+
+
+ -
+ 4259
+ -3001
+ 47
+ 24
+
+ -
+ 4284
+ -2989
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - efb5ced9-506b-4efb-aedb-6823b20f9f6e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -3001
+ 41
+ 24
+
+ -
+ 4358
+ -2989
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - ccf5004f-68b3-4648-b104-7c06d5891746
+ - e6b170b8-81e9-4dc7-be29-53e442aef89b
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - 2a17f8f3-05cd-4fbd-b87b-a16ec3f03605
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - 15
+ - f6a70308-0365-4a62-ae8f-7b0c06d916af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 698ed7a6-823a-4f3b-81d0-a53f97720331
+ - Relay
+ -
+ - false
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4298
+ -2958
+ 40
+ 16
+
+ -
+ 4318
+ -2950
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fb6c570f-5424-4449-a098-6b87ce055efc
+ - Relay
+ -
+ - false
+ - f238ee5d-fbdb-4636-ba07-216e3abf726a
+ - 1
+
+
+
+
+ -
+ 4298
+ -3325
+ 40
+ 16
+
+ -
+ 4318
+ -3317
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 7a0786f3-f3f2-42f2-9a17-842da33ce48b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -3286
+ 82
+ 44
+
+ -
+ 4308
+ -3264
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - a72226b1-1293-4dce-b956-5d0d458be578
+ - A
+ - A
+ - true
+ - d596036f-c261-4979-89f0-99a2e5d79241
+ - 1
+
+
+
+
+ -
+ 4279
+ -3284
+ 14
+ 20
+
+ -
+ 4287.5
+ -3274
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 31719fe6-f994-48d7-9ab2-4f5ecdbf23fe
+ - B
+ - B
+ - true
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - 1
+
+
+
+
+ -
+ 4279
+ -3264
+ 14
+ 20
+
+ -
+ 4287.5
+ -3254
+
+
+
+
+
+
+
+ - Result of multiplication
+ - f238ee5d-fbdb-4636-ba07-216e3abf726a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -3284
+ 34
+ 40
+
+ -
+ 4341.5
+ -3264
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - b42552e4-4295-43cd-9229-0f7fb6c498dc
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4277
+ -3185
+ 82
+ 44
+
+ -
+ 4308
+ -3163
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - ac0e6fc4-1bc1-41a0-ac67-6e577569d2e4
+ - A
+ - A
+ - true
+ - e6c55d1f-8d23-47fb-9e63-67ee5eecb8ca
+ - 1
+
+
+
+
+ -
+ 4279
+ -3183
+ 14
+ 20
+
+ -
+ 4287.5
+ -3173
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 318ea127-00ac-494e-b0d8-25457e3390c1
+ - B
+ - B
+ - true
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - 1
+
+
+
+
+ -
+ 4279
+ -3163
+ 14
+ 20
+
+ -
+ 4287.5
+ -3153
+
+
+
+
+
+
+
+ - Result of multiplication
+ - d596036f-c261-4979-89f0-99a2e5d79241
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -3183
+ 34
+ 40
+
+ -
+ 4341.5
+ -3163
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c13f3a2d-a96e-4f90-ab80-a783086b7ad0
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4298
+ -3123
+ 40
+ 16
+
+ -
+ 4318
+ -3115
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 542cf401-da7e-48c8-b950-1a069d6a5222
+ - 7ce967df-b77a-48e3-a0ab-0ef69e7f509a
+ - 3
+ - efceaa27-3a6e-434b-b4ce-dc47dc3cbd9f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 2fd38000-615a-4f6c-925c-fae90fde2a8e
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -3574
+ 144
+ 104
+
+ -
+ 4330
+ -3522
+
+
+
+
+
+ - Colour of the diffuse channel
+ - bca6b15c-ead9-4a78-a63a-f69e99028d80
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3572
+ 67
+ 20
+
+ -
+ 4283
+ -3562
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - ca1e6ad1-156d-4f2e-9298-0f63c1b2cfb9
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3552
+ 67
+ 20
+
+ -
+ 4283
+ -3542
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 228c6c12-4d82-41c3-8f3f-029032a0cb64
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3532
+ 67
+ 20
+
+ -
+ 4283
+ -3522
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a3339c35-080c-45a8-a809-c9945cdaa329
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3512
+ 67
+ 20
+
+ -
+ 4283
+ -3502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 5e23e62d-4027-4195-9865-eab08a4a917c
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3492
+ 67
+ 20
+
+ -
+ 4283
+ -3482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ee93036d-9997-483c-8552-de089dd4c99c
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -3572
+ 43
+ 100
+
+ -
+ 4368
+ -3522
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 65ac4482-b933-4f95-9a07-b23d2cef1c6a
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -3636
+ 82
+ 44
+
+ -
+ 4345
+ -3614
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - f898a738-0820-4631-aeef-a5195fb0f7df
+ - Geometry
+ - Geometry
+ - false
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - 1
+
+
+
+
+ -
+ 4279
+ -3634
+ 51
+ 20
+
+ -
+ 4306
+ -3624
+
+
+
+
+
+
+
+ - The material override
+ - 26559eaa-9c07-4e60-8e34-94ecd3d2ebf0
+ - Material
+ - Material
+ - false
+ - ee93036d-9997-483c-8552-de089dd4c99c
+ - 1
+
+
+
+
+ -
+ 4279
+ -3614
+ 51
+ 20
+
+ -
+ 4306
+ -3604
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1db7d0ec-8709-47d7-82e0-4691e7efbe8b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4246
+ -3719
+ 144
+ 64
+
+ -
+ 4320
+ -3687
+
+
+
+
+
+ - Curve to evaluate
+ - bc77b9c3-ff4d-43ee-9957-74e39a55ce61
+ - Curve
+ - Curve
+ - false
+ - 9fd0b496-5590-469c-9d73-be4bb1965f90
+ - 1
+
+
+
+
+ -
+ 4248
+ -3717
+ 57
+ 20
+
+ -
+ 4278
+ -3707
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6915e62a-edd4-44cb-bf03-7535a64afcac
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3697
+ 57
+ 20
+
+ -
+ 4278
+ -3687
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 266bd85c-7f88-41d8-9c3b-3ce0b341a5f8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3677
+ 57
+ 20
+
+ -
+ 4278
+ -3667
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3717
+ 53
+ 20
+
+ -
+ 4363
+ -3707
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c1141206-a7b5-4b08-945d-fae603d78f89
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3697
+ 53
+ 20
+
+ -
+ 4363
+ -3687
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - da4c5437-7848-496c-b53a-7842912a6a34
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -3677
+ 53
+ 20
+
+ -
+ 4363
+ -3667
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - eefa2f3e-ae14-4853-9588-e0ad60346408
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4255
+ -3823
+ 125
+ 84
+
+ -
+ 4322
+ -3781
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - df8c0ec6-5fac-4764-8313-e7a47148776a
+ - Vertices
+ - Vertices
+ - false
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - 1
+
+
+
+
+ -
+ 4257
+ -3821
+ 50
+ 20
+
+ -
+ 4283.5
+ -3811
+
+
+
+
+
+
+
+ - Curve degree
+ - 8035489e-8099-4a6b-8f0b-573557cc8ffa
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3801
+ 50
+ 20
+
+ -
+ 4283.5
+ -3791
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 0ddd8548-ed83-4c21-a12b-2a19ff7067e8
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3781
+ 50
+ 20
+
+ -
+ 4283.5
+ -3771
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 4871b378-5d48-4299-a11f-818b754ea8ba
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4257
+ -3761
+ 50
+ 20
+
+ -
+ 4283.5
+ -3751
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - e2f91283-565e-4ab1-9d00-f5fd3962d8aa
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3821
+ 41
+ 26
+
+ -
+ 4359
+ -3807.667
+
+
+
+
+
+
+
+ - Curve length
+ - d7ab0794-2125-44ea-a786-889086e9224f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3795
+ 41
+ 27
+
+ -
+ 4359
+ -3781
+
+
+
+
+
+
+
+ - Curve domain
+ - 4d96f078-c2cb-4b7a-85c1-451ddbb400a1
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4337
+ -3768
+ 41
+ 27
+
+ -
+ 4359
+ -3754.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a9846cd4-c92f-4ca4-904e-88b9fe76c39c
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4246
+ -3947
+ 144
+ 104
+
+ -
+ 4330
+ -3895
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 4081cfba-8922-4ccc-b948-7aba29e7e1e4
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3945
+ 67
+ 20
+
+ -
+ 4283
+ -3935
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - d723a763-d553-4cc2-ab56-75c9564fa4ff
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3925
+ 67
+ 20
+
+ -
+ 4283
+ -3915
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2ce26172-d066-4510-90d0-821d66b9c178
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3905
+ 67
+ 20
+
+ -
+ 4283
+ -3895
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1c055ac1-e75c-42d8-85f9-17e5fe94c3c0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3885
+ 67
+ 20
+
+ -
+ 4283
+ -3875
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 26da2058-31ab-414b-81d8-a0ef9a78f436
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -3865
+ 67
+ 20
+
+ -
+ 4283
+ -3855
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4345
+ -3945
+ 43
+ 100
+
+ -
+ 4368
+ -3895
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 100d237b-fd67-4830-be89-c236745d92e8
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4277
+ -4007
+ 82
+ 44
+
+ -
+ 4345
+ -3985
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 55d282f5-6904-4842-8806-7ff55e58df22
+ - Geometry
+ - Geometry
+ - false
+ - e2f91283-565e-4ab1-9d00-f5fd3962d8aa
+ - 1
+
+
+
+
+ -
+ 4279
+ -4005
+ 51
+ 20
+
+ -
+ 4306
+ -3995
+
+
+
+
+
+
+
+ - The material override
+ - 22bdecdb-6352-498a-997a-71934bc18892
+ - Material
+ - Material
+ - false
+ - c4947d2a-cae5-43ca-8a4e-5871ca9ef4cc
+ - 1
+
+
+
+
+ -
+ 4279
+ -3985
+ 51
+ 20
+
+ -
+ 4306
+ -3975
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - e4f5b0a2-58e9-4e30-9461-33f00d5672c4
+ - ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
+ - a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
+ - b19c1b10-a682-4bbb-addc-9ac35992fdbc
+ - 42179dd5-e5d6-452c-b478-e8ccc4329041
+ - ac4acc33-29c1-4609-86ba-b90878e9b36f
+ - 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
+ - 22
+ - cd50e1b3-e2b3-4550-979f-3a1e22383084
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - d8ca333f-274c-4def-b0be-659a62d86c0c
+ - 12
+ - 6a9f6fc8-e007-4c87-9e66-f55fa953e45c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4244
+ -4137
+ 128
+ 28
+
+ -
+ 4297
+ -4123
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 367de0f1-cc3a-4c51-94e2-68aeffec04de
+ - Values
+ - Values
+ - false
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 1
+
+
+
+
+ -
+ 4246
+ -4135
+ 36
+ 24
+
+ -
+ 4265.5
+ -4123
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - fe0b0f9d-25f6-4ef7-b130-46e021fb117c
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4312
+ -4135
+ 58
+ 24
+
+ -
+ 4342.5
+ -4123
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - Relay
+
+ - false
+ - fe0b0f9d-25f6-4ef7-b130-46e021fb117c
+ - 1
+
+
+
+
+ -
+ 4288
+ -4171
+ 40
+ 16
+
+ -
+ 4308
+ -4163
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - Relay
+
+ - false
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4288
+ -4089
+ 40
+ 16
+
+ -
+ 4308
+ -4081
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2f126b04-498b-4c3f-b6b9-3930e501651f
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4243
+ -4866
+ 122
+ 64
+
+ -
+ 4323
+ -4834
+
+
+
+
+
+ - Line start point
+ - 67607b47-bb2d-4d1c-8424-3d09b8cfdd12
+ - Start
+ - Start
+ - false
+ - 8d3777b7-0158-4820-9120-622aa905cd46
+ - 1
+
+
+
+
+ -
+ 4245
+ -4864
+ 63
+ 20
+
+ -
+ 4286
+ -4854
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 729a0858-a439-4b71-ba15-9220fe10ce4e
+ - Direction
+ - Direction
+ - false
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - 1
+
+
+
+
+ -
+ 4245
+ -4844
+ 63
+ 20
+
+ -
+ 4286
+ -4834
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0a98c27f-4e50-46be-8fad-f9ed4377317b
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 1
+
+
+
+
+ -
+ 4245
+ -4824
+ 63
+ 20
+
+ -
+ 4286
+ -4814
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ -4864
+ 25
+ 60
+
+ -
+ 4352
+ -4834
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4df78a5a-5077-4e48-a01a-683d75226473
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4284
+ -4784
+ 40
+ 16
+
+ -
+ 4304
+ -4776
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4246
+ -4502
+ 115
+ 64
+
+ -
+ 4301
+ -4470
+
+
+
+
+
+ - Value to remap
+ - 78220fc5-ef9a-417a-905c-062cb8ca437d
+ - Value
+ - Value
+ - false
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 1
+
+
+
+
+ -
+ 4248
+ -4500
+ 38
+ 20
+
+ -
+ 4268.5
+ -4490
+
+
+
+
+
+
+
+ - Source domain
+ - 00a02fca-ec20-4c0f-8779-783399520de1
+ - Source
+ - Source
+ - false
+ - 6638590f-751a-4472-9612-af35db224cba
+ - 1
+
+
+
+
+ -
+ 4248
+ -4480
+ 38
+ 20
+
+ -
+ 4268.5
+ -4470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - ab1aeac0-047f-474f-90dd-c38a9f26cdfb
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4248
+ -4460
+ 38
+ 20
+
+ -
+ 4268.5
+ -4450
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - d7a4705d-0f84-48f1-b027-18cee9d886c4
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ -4500
+ 43
+ 30
+
+ -
+ 4339
+ -4485
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 438d903d-32fb-47b6-92da-9741aaba417c
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4316
+ -4470
+ 43
+ 30
+
+ -
+ 4339
+ -4455
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4243
+ -4419
+ 122
+ 28
+
+ -
+ 4307
+ -4405
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - d5615fe7-fa1d-4238-8ef1-e76cdc0dbe53
+ - Numbers
+ - Numbers
+ - false
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 1
+
+
+
+
+ -
+ 4245
+ -4417
+ 47
+ 24
+
+ -
+ 4270
+ -4405
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 6638590f-751a-4472-9612-af35db224cba
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4322
+ -4417
+ 41
+ 24
+
+ -
+ 4344
+ -4405
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 245de714-0f3c-45d0-b6c4-c41f9515e3fa
+ - f997ee14-2084-4ab4-9437-5e10d7cd52d4
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - 26121879-3995-4c35-a66b-5ea41fec4602
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - 15
+ - 3f5a2e69-963e-465f-9a2d-669b8d27d21b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2ac319ec-fa3b-48a9-b5bc-e02e9273722f
+ - Relay
+ -
+ - false
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4284
+ -4374
+ 40
+ 16
+
+ -
+ 4304
+ -4366
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0dbb0e9a-0557-4c9f-bd22-0adf1be2d2a6
+ - Relay
+ -
+ - false
+ - 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
+ - 1
+
+
+
+
+ -
+ 4284
+ -4741
+ 40
+ 16
+
+ -
+ 4304
+ -4733
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 75e33218-a1f1-47f6-84f2-61f99d162294
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4263
+ -4702
+ 82
+ 44
+
+ -
+ 4294
+ -4680
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 4341fd90-ace9-4860-9ac1-6924c6f803bc
+ - A
+ - A
+ - true
+ - 4333ce65-0670-473c-869e-fd9bd04229cf
+ - 1
+
+
+
+
+ -
+ 4265
+ -4700
+ 14
+ 20
+
+ -
+ 4273.5
+ -4690
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b18c525e-47bb-4a4e-8c7f-7d37922cc8ac
+ - B
+ - B
+ - true
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - 1
+
+
+
+
+ -
+ 4265
+ -4680
+ 14
+ 20
+
+ -
+ 4273.5
+ -4670
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 00fc5d31-f74d-43f8-ae07-8bb418bc4c5a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -4700
+ 34
+ 40
+
+ -
+ 4327.5
+ -4680
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f4498488-3182-41de-bfe4-5dd1a2ecdfc7
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4263
+ -4601
+ 82
+ 44
+
+ -
+ 4294
+ -4579
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 69c0e289-3b78-44a2-aa4a-c278eba7c73c
+ - A
+ - A
+ - true
+ - d7a4705d-0f84-48f1-b027-18cee9d886c4
+ - 1
+
+
+
+
+ -
+ 4265
+ -4599
+ 14
+ 20
+
+ -
+ 4273.5
+ -4589
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e5c99f5-44c0-4d0c-be99-a3a244abc0fc
+ - B
+ - B
+ - true
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - 1
+
+
+
+
+ -
+ 4265
+ -4579
+ 14
+ 20
+
+ -
+ 4273.5
+ -4569
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 4333ce65-0670-473c-869e-fd9bd04229cf
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4309
+ -4599
+ 34
+ 40
+
+ -
+ 4327.5
+ -4579
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a98f3a41-8c19-4e9e-913a-28e05e4daf27
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4284
+ -4539
+ 40
+ 16
+
+ -
+ 4304
+ -4531
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - a091b70d-3ba1-4305-bb37-e15b698fe16a
+ - 94fef812-42f9-4896-95a0-5c758161262c
+ - 3
+ - e4f5b0a2-58e9-4e30-9461-33f00d5672c4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ca4c5c4d-c0a4-480f-b0d8-31eaa72ee7f9
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4232
+ -4990
+ 144
+ 104
+
+ -
+ 4316
+ -4938
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 25494929-7b84-4be2-88a7-a974558005a2
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4988
+ 67
+ 20
+
+ -
+ 4269
+ -4978
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6c0fb82e-c5d5-479e-a322-ece4a03394a8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4968
+ 67
+ 20
+
+ -
+ 4269
+ -4958
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 236b244e-0db7-45f2-a214-61c0d38d3335
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4948
+ 67
+ 20
+
+ -
+ 4269
+ -4938
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 9395af38-376a-418d-904c-112532c004a0
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4928
+ 67
+ 20
+
+ -
+ 4269
+ -4918
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7669361e-69da-4c47-a524-bcffd7cd2c0e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -4908
+ 67
+ 20
+
+ -
+ 4269
+ -4898
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 6bd6548b-d902-40e4-bf34-1049267302b0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ -4988
+ 43
+ 100
+
+ -
+ 4354
+ -4938
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - a798d6fb-4c16-4f3b-bb88-1cde76f46b6c
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4263
+ -5052
+ 82
+ 44
+
+ -
+ 4331
+ -5030
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 64371237-cecb-44a0-be34-2f89426199a7
+ - Geometry
+ - Geometry
+ - false
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - 1
+
+
+
+
+ -
+ 4265
+ -5050
+ 51
+ 20
+
+ -
+ 4292
+ -5040
+
+
+
+
+
+
+
+ - The material override
+ - 788d98bc-c6a3-46b2-93c7-68523390da47
+ - Material
+ - Material
+ - false
+ - 6bd6548b-d902-40e4-bf34-1049267302b0
+ - 1
+
+
+
+
+ -
+ 4265
+ -5030
+ 51
+ 20
+
+ -
+ 4292
+ -5020
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b19c1b10-a682-4bbb-addc-9ac35992fdbc
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4232
+ -5135
+ 144
+ 64
+
+ -
+ 4306
+ -5103
+
+
+
+
+
+ - Curve to evaluate
+ - e85fd3f2-51bc-4d31-9131-07fedc772719
+ - Curve
+ - Curve
+ - false
+ - 8ed14837-7174-47e7-a5b8-f4c28f3778d0
+ - 1
+
+
+
+
+ -
+ 4234
+ -5133
+ 57
+ 20
+
+ -
+ 4264
+ -5123
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bdc17ddd-a4be-4617-a9cf-bd0107e5aa04
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5113
+ 57
+ 20
+
+ -
+ 4264
+ -5103
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a0e1fe99-c517-44b7-9f34-ad29473bdb7f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5093
+ 57
+ 20
+
+ -
+ 4264
+ -5083
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5133
+ 53
+ 20
+
+ -
+ 4349
+ -5123
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 057801e0-d1f6-4f98-b8b2-544c0c8d667e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5113
+ 53
+ 20
+
+ -
+ 4349
+ -5103
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 349e7af4-bf20-41de-8576-1c2270ac51e2
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -5093
+ 53
+ 20
+
+ -
+ 4349
+ -5083
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 42179dd5-e5d6-452c-b478-e8ccc4329041
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4241
+ -5239
+ 125
+ 84
+
+ -
+ 4308
+ -5197
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - bd50e477-c50b-446f-bd00-4ad11163cf45
+ - Vertices
+ - Vertices
+ - false
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - 1
+
+
+
+
+ -
+ 4243
+ -5237
+ 50
+ 20
+
+ -
+ 4269.5
+ -5227
+
+
+
+
+
+
+
+ - Curve degree
+ - a1dd5264-df8e-453a-b0ea-cffa70db96a7
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5217
+ 50
+ 20
+
+ -
+ 4269.5
+ -5207
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - c48e02d6-e69a-45aa-b9a2-e7d4fdb553dd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5197
+ 50
+ 20
+
+ -
+ 4269.5
+ -5187
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 0d00a672-6d63-4ea6-a79b-ba3516801867
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4243
+ -5177
+ 50
+ 20
+
+ -
+ 4269.5
+ -5167
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5237
+ 41
+ 26
+
+ -
+ 4345
+ -5223.667
+
+
+
+
+
+
+
+ - Curve length
+ - 4203e371-b092-4bed-8271-4fcb88cff3d7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5211
+ 41
+ 27
+
+ -
+ 4345
+ -5197
+
+
+
+
+
+
+
+ - Curve domain
+ - de6c5fcd-a830-496a-a94c-439d602ba99e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4323
+ -5184
+ 41
+ 27
+
+ -
+ 4345
+ -5170.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ac4acc33-29c1-4609-86ba-b90878e9b36f
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4232
+ -5363
+ 144
+ 104
+
+ -
+ 4316
+ -5311
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e9457f5d-35ca-4456-8b63-804cd55e6539
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5361
+ 67
+ 20
+
+ -
+ 4269
+ -5351
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4fd826f0-7cea-4d4e-886d-6e7e2995d0f7
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5341
+ 67
+ 20
+
+ -
+ 4269
+ -5331
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 0bd816ff-a97c-4e7c-92cf-85b7122f1f60
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5321
+ 67
+ 20
+
+ -
+ 4269
+ -5311
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 06efe0fa-c4ae-486d-be57-157afe35ad5a
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5301
+ 67
+ 20
+
+ -
+ 4269
+ -5291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 474b5db1-c730-44c9-ae2f-fbb407650768
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4234
+ -5281
+ 67
+ 20
+
+ -
+ 4269
+ -5271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d3757f9f-d417-4624-9492-43eea0d3d0aa
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ -5361
+ 43
+ 100
+
+ -
+ 4354
+ -5311
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 3dc4cf53-4a61-4a5b-9d43-57fdb91b7ff2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4263
+ -5423
+ 82
+ 44
+
+ -
+ 4331
+ -5401
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 7936315f-1721-480e-aa2d-cbdb015069de
+ - Geometry
+ - Geometry
+ - false
+ - 6b4d4575-8108-4fc8-bf3f-b8ba1640b2d0
+ - 1
+
+
+
+
+ -
+ 4265
+ -5421
+ 51
+ 20
+
+ -
+ 4292
+ -5411
+
+
+
+
+
+
+
+ - The material override
+ - 7e6ab2af-b6bc-4f1d-a6a1-2196adb89854
+ - Material
+ - Material
+ - false
+ - d3757f9f-d417-4624-9492-43eea0d3d0aa
+ - 1
+
+
+
+
+ -
+ 4265
+ -5401
+ 51
+ 20
+
+ -
+ 4292
+ -5391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5ae9c4c4-0fdd-419a-8b20-550467d40768
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 36f70708-8c92-4e52-8db3-af3700d6ed05
+ - a18f6543-bddc-4707-b9f1-c3de54d04df8
+ - 766feee9-94ce-4ae1-b353-3eb30b90d548
+ - 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
+ - a6e7cf50-568a-4a69-b260-d8239fd6cfd5
+ - cbcf528b-ec99-4366-88c9-7821ca0b3868
+ - eec36f4c-60cb-4742-bd1d-d2f59b355b07
+ - 22
+ - 64e60f06-119f-42f8-b231-33efdd935130
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - 13
+ - 5ae9c4c4-0fdd-419a-8b20-550467d40768
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4239
+ -5622
+ 128
+ 28
+
+ -
+ 4292
+ -5608
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 3e8be18c-9be8-4aa4-90e5-ccd06e444dd9
+ - Values
+ - Values
+ - false
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - 1
+
+
+
+
+ -
+ 4241
+ -5620
+ 36
+ 24
+
+ -
+ 4260.5
+ -5608
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 1f562b80-f400-412b-99a5-ec6b24e18c2f
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -5620
+ 58
+ 24
+
+ -
+ 4337.5
+ -5608
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - Relay
+
+ - false
+ - 1f562b80-f400-412b-99a5-ec6b24e18c2f
+ - 1
+
+
+
+
+ -
+ 4283
+ -5656
+ 40
+ 16
+
+ -
+ 4303
+ -5648
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - Relay
+
+ - false
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4283
+ -5574
+ 40
+ 16
+
+ -
+ 4303
+ -5566
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 1a6a7949-8787-48bd-b33a-603df220e9b8
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4241
+ -6353
+ 122
+ 64
+
+ -
+ 4321
+ -6321
+
+
+
+
+
+ - Line start point
+ - 1ca0d20b-076b-4ed9-a752-42758dee84b4
+ - Start
+ - Start
+ - false
+ - bc29cb88-c13f-4b12-8911-f97c489562ea
+ - 1
+
+
+
+
+ -
+ 4243
+ -6351
+ 63
+ 20
+
+ -
+ 4284
+ -6341
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 7835ecf1-4eba-488d-a140-57124bdc900a
+ - Direction
+ - Direction
+ - false
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - 1
+
+
+
+
+ -
+ 4243
+ -6331
+ 63
+ 20
+
+ -
+ 4284
+ -6321
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d3022bee-fd8d-493c-b155-389266eb8c7a
+ - ABS(X)
+ - Length
+ - Length
+ - false
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - 1
+
+
+
+
+ -
+ 4243
+ -6311
+ 63
+ 20
+
+ -
+ 4284
+ -6301
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4336
+ -6351
+ 25
+ 60
+
+ -
+ 4350
+ -6321
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2661cd71-a4df-4b62-bf83-1849fe5833ca
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4282
+ -6271
+ 40
+ 16
+
+ -
+ 4302
+ -6263
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4244
+ -5989
+ 115
+ 64
+
+ -
+ 4299
+ -5957
+
+
+
+
+
+ - Value to remap
+ - 58781ee9-9b39-42ed-acec-28c2b6c8c7f0
+ - Value
+ - Value
+ - false
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - 1
+
+
+
+
+ -
+ 4246
+ -5987
+ 38
+ 20
+
+ -
+ 4266.5
+ -5977
+
+
+
+
+
+
+
+ - Source domain
+ - dbb0ecd7-8560-4144-b022-18afb6942aa5
+ - Source
+ - Source
+ - false
+ - ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
+ - 1
+
+
+
+
+ -
+ 4246
+ -5967
+ 38
+ 20
+
+ -
+ 4266.5
+ -5957
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 14bea626-15dc-4bcd-a656-c2ae2fc2288d
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4246
+ -5947
+ 38
+ 20
+
+ -
+ 4266.5
+ -5937
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 05225228-e222-49df-931b-a1dfeaeab466
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ -5987
+ 43
+ 30
+
+ -
+ 4337
+ -5972
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - c94c03ce-a99e-45d9-8d97-aa84fed03f33
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4314
+ -5957
+ 43
+ 30
+
+ -
+ 4337
+ -5942
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4241
+ -5906
+ 122
+ 28
+
+ -
+ 4305
+ -5892
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 46ce88e0-d336-48e8-9271-b95f11a869ac
+ - Numbers
+ - Numbers
+ - false
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - 1
+
+
+
+
+ -
+ 4243
+ -5904
+ 47
+ 24
+
+ -
+ 4268
+ -5892
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - ace4b3f6-f707-4fd4-a9bd-fe4b81a1cc43
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -5904
+ 41
+ 24
+
+ -
+ 4342
+ -5892
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 9d92b0a6-f64d-41d0-83e0-d3bd5f4ba174
+ - 0894cd88-7d1c-4d0c-a116-d02b2766f541
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - f9947fea-968d-4a00-a6cd-c45f937d1dce
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - 14
+ - 91601ee3-b999-49b3-bc88-c3dbb40a1218
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e8543cfb-31ef-466a-8c10-2694678ddb24
+ - Relay
+ -
+ - false
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4282
+ -5861
+ 40
+ 16
+
+ -
+ 4302
+ -5853
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ce190195-9538-44f7-9ae0-aa92b1dbb12a
+ - Relay
+ -
+ - false
+ - ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
+ - 1
+
+
+
+
+ -
+ 4282
+ -6228
+ 40
+ 16
+
+ -
+ 4302
+ -6220
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 999185a1-bdc2-49c3-b856-3479900f254b
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4261
+ -6189
+ 82
+ 44
+
+ -
+ 4292
+ -6167
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 5fb00b97-f199-404b-a29d-da89b6dde567
+ - A
+ - A
+ - true
+ - eaa9d3a2-bd6b-4033-a1a9-20654334c897
+ - 1
+
+
+
+
+ -
+ 4263
+ -6187
+ 14
+ 20
+
+ -
+ 4271.5
+ -6177
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 64d117fe-aace-435f-8590-100a0bea0086
+ - B
+ - B
+ - true
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - 1
+
+
+
+
+ -
+ 4263
+ -6167
+ 14
+ 20
+
+ -
+ 4271.5
+ -6157
+
+
+
+
+
+
+
+ - Result of multiplication
+ - ace3cccc-1ad7-4fc7-bbb4-fbac97ba8718
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -6187
+ 34
+ 40
+
+ -
+ 4325.5
+ -6167
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - b9d84ba3-9f37-4bdd-825b-3150762b1c2f
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4261
+ -6088
+ 82
+ 44
+
+ -
+ 4292
+ -6066
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 6ae60ffc-2358-4b3f-a9f1-2f9a6c2b73ed
+ - A
+ - A
+ - true
+ - 05225228-e222-49df-931b-a1dfeaeab466
+ - 1
+
+
+
+
+ -
+ 4263
+ -6086
+ 14
+ 20
+
+ -
+ 4271.5
+ -6076
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b01dfe5b-e061-4a22-ae58-0629c2f8cabd
+ - B
+ - B
+ - true
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - 1
+
+
+
+
+ -
+ 4263
+ -6066
+ 14
+ 20
+
+ -
+ 4271.5
+ -6056
+
+
+
+
+
+
+
+ - Result of multiplication
+ - eaa9d3a2-bd6b-4033-a1a9-20654334c897
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4307
+ -6086
+ 34
+ 40
+
+ -
+ 4325.5
+ -6066
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 68c98248-62ad-4df2-af60-f6ecf0eeb005
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4282
+ -6026
+ 40
+ 16
+
+ -
+ 4302
+ -6018
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 4041360f-7411-470c-899a-d7a45700e87d
+ - d84be735-4afa-4e87-89fd-0dd91e7ea031
+ - 3
+ - 36f70708-8c92-4e52-8db3-af3700d6ed05
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a18f6543-bddc-4707-b9f1-c3de54d04df8
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4230
+ -6477
+ 144
+ 104
+
+ -
+ 4314
+ -6425
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 4bfe5e86-c41e-4f30-89af-a24c4bd45b50
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6475
+ 67
+ 20
+
+ -
+ 4267
+ -6465
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 77e1e980-2949-416c-a018-b3c2ef85dcdf
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6455
+ 67
+ 20
+
+ -
+ 4267
+ -6445
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f2ad1c23-19e6-4bb7-a5c1-2bd0d1e214a1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6435
+ 67
+ 20
+
+ -
+ 4267
+ -6425
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 8b9db721-70d1-424e-b550-a789b17c303b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6415
+ 67
+ 20
+
+ -
+ 4267
+ -6405
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 7fa4e3a6-021a-4881-ba4d-46293c73c225
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6395
+ 67
+ 20
+
+ -
+ 4267
+ -6385
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 8e039377-5e77-484b-8fd0-fb84649ce474
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4329
+ -6475
+ 43
+ 100
+
+ -
+ 4352
+ -6425
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 766feee9-94ce-4ae1-b353-3eb30b90d548
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4261
+ -6539
+ 82
+ 44
+
+ -
+ 4329
+ -6517
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 296fdcd7-5819-4594-9960-b1aea4a38b5f
+ - Geometry
+ - Geometry
+ - false
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - 1
+
+
+
+
+ -
+ 4263
+ -6537
+ 51
+ 20
+
+ -
+ 4290
+ -6527
+
+
+
+
+
+
+
+ - The material override
+ - 5275e0e9-2a77-4a7b-9d90-2e1073660d6a
+ - Material
+ - Material
+ - false
+ - 8e039377-5e77-484b-8fd0-fb84649ce474
+ - 1
+
+
+
+
+ -
+ 4263
+ -6517
+ 51
+ 20
+
+ -
+ 4290
+ -6507
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2d5623dd-b6c4-4bca-99dc-1fdc753fa7a0
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4230
+ -6622
+ 144
+ 64
+
+ -
+ 4304
+ -6590
+
+
+
+
+
+ - Curve to evaluate
+ - 93e4ca7a-ac6e-4511-b4f4-9a97007f3708
+ - Curve
+ - Curve
+ - false
+ - 6ac2ff09-23b9-49c7-9641-907d5bc90f18
+ - 1
+
+
+
+
+ -
+ 4232
+ -6620
+ 57
+ 20
+
+ -
+ 4262
+ -6610
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bcb7ffad-e641-47a0-a396-e7500991bc58
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6600
+ 57
+ 20
+
+ -
+ 4262
+ -6590
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b9a1a6e8-8119-4341-ae4c-3d8415523d47
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6580
+ 57
+ 20
+
+ -
+ 4262
+ -6570
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6620
+ 53
+ 20
+
+ -
+ 4347
+ -6610
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c6f41415-c1d3-4db5-b0e9-411fde86fa5e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6600
+ 53
+ 20
+
+ -
+ 4347
+ -6590
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8b63082e-e6fb-4d63-8bef-5e12158500e0
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -6580
+ 53
+ 20
+
+ -
+ 4347
+ -6570
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - a6e7cf50-568a-4a69-b260-d8239fd6cfd5
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4239
+ -6726
+ 125
+ 84
+
+ -
+ 4306
+ -6684
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 8ede0505-6080-49f8-8a13-222ff3826775
+ - Vertices
+ - Vertices
+ - false
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - 1
+
+
+
+
+ -
+ 4241
+ -6724
+ 50
+ 20
+
+ -
+ 4267.5
+ -6714
+
+
+
+
+
+
+
+ - Curve degree
+ - 195d02d9-53aa-4d8f-972d-253ac00a5a97
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6704
+ 50
+ 20
+
+ -
+ 4267.5
+ -6694
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - ba7e5a28-b315-4375-9e68-04c4735b8c3d
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6684
+ 50
+ 20
+
+ -
+ 4267.5
+ -6674
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - b7284919-07be-414c-bbf6-c22fffdb03ae
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4241
+ -6664
+ 50
+ 20
+
+ -
+ 4267.5
+ -6654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4371434e-cdd5-4319-b921-c6483ea00395
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6724
+ 41
+ 26
+
+ -
+ 4343
+ -6710.667
+
+
+
+
+
+
+
+ - Curve length
+ - a6fc1d64-6585-4a06-ab5d-ab49123079c1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6698
+ 41
+ 27
+
+ -
+ 4343
+ -6684
+
+
+
+
+
+
+
+ - Curve domain
+ - f6768abc-a465-4932-8f04-ec5193f649a6
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ -6671
+ 41
+ 27
+
+ -
+ 4343
+ -6657.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - cbcf528b-ec99-4366-88c9-7821ca0b3868
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4230
+ -6850
+ 144
+ 104
+
+ -
+ 4314
+ -6798
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2fbe3cfd-ff90-4db1-b765-c7e1d04fbb37
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6848
+ 67
+ 20
+
+ -
+ 4267
+ -6838
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 88874422-d8f7-4c08-babe-a5c500b043c3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6828
+ 67
+ 20
+
+ -
+ 4267
+ -6818
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 2df3ddb1-d60b-41d7-a15b-33a40d3773dd
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6808
+ 67
+ 20
+
+ -
+ 4267
+ -6798
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 3d4f6ac3-b3d4-4c34-9edc-d645adaa9797
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6788
+ 67
+ 20
+
+ -
+ 4267
+ -6778
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 76f0cb28-085f-42f6-9306-b3bcd5d525cf
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4232
+ -6768
+ 67
+ 20
+
+ -
+ 4267
+ -6758
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 296b7776-70cb-4253-9bce-d083e5d76649
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4329
+ -6848
+ 43
+ 100
+
+ -
+ 4352
+ -6798
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - eec36f4c-60cb-4742-bd1d-d2f59b355b07
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4261
+ -6910
+ 82
+ 44
+
+ -
+ 4329
+ -6888
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 042b6aa7-5cf0-41f2-9ca6-b9f834ffa2a5
+ - Geometry
+ - Geometry
+ - false
+ - 4371434e-cdd5-4319-b921-c6483ea00395
+ - 1
+
+
+
+
+ -
+ 4263
+ -6908
+ 51
+ 20
+
+ -
+ 4290
+ -6898
+
+
+
+
+
+
+
+ - The material override
+ - 9ab58b30-8fbb-437d-85eb-19be1daaa4fc
+ - Material
+ - Material
+ - false
+ - 296b7776-70cb-4253-9bce-d083e5d76649
+ - 1
+
+
+
+
+ -
+ 4263
+ -6888
+ 51
+ 20
+
+ -
+ 4290
+ -6878
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a90d60d2-8b5e-48d7-a33a-454602481a06
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
+ - 4ac7d93a-83bc-4097-a09f-085ff4b7a496
+ - b176544c-2084-4538-95e4-30ad483bbbc3
+ - 3f7c293b-8bda-4841-bb51-5b3fee67daac
+ - 923b0d30-c122-4312-be66-898daa214df3
+ - d13ab75b-aade-4726-b7f6-bd13c77e36b4
+ - 254266e4-e3e4-4446-adb4-c5e696068203
+ - 22
+ - 7c42b68f-945c-4b1c-9b43-f8f3a6fcd50f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 70b9b4d5-9f59-4bec-8b95-44a825aff278
+ - 12
+ - a90d60d2-8b5e-48d7-a33a-454602481a06
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 4243
+ -7108
+ 128
+ 28
+
+ -
+ 4296
+ -7094
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ffe32b16-1490-4131-bd81-59c1fffe0f1e
+ - Values
+ - Values
+ - false
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 1
+
+
+
+
+ -
+ 4245
+ -7106
+ 36
+ 24
+
+ -
+ 4264.5
+ -7094
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - e56d41ed-bf3f-48d5-8d46-11ca14422590
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 4311
+ -7106
+ 58
+ 24
+
+ -
+ 4341.5
+ -7094
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - Relay
+
+ - false
+ - e56d41ed-bf3f-48d5-8d46-11ca14422590
+ - 1
+
+
+
+
+ -
+ 4287
+ -7142
+ 40
+ 16
+
+ -
+ 4307
+ -7134
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - Relay
+
+ - false
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4287
+ -7060
+ 40
+ 16
+
+ -
+ 4307
+ -7052
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5cd4bee0-683e-4287-be9c-d6cdc684ddd0
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4240
+ -7839
+ 122
+ 64
+
+ -
+ 4320
+ -7807
+
+
+
+
+
+ - Line start point
+ - 357d12be-6f06-405b-8a7d-67b2956260bd
+ - true
+ - Start
+ - Start
+ - false
+ - 67f3e77d-3352-4cab-bef0-40379ae22b9b
+ - 1
+
+
+
+
+ -
+ 4242
+ -7837
+ 63
+ 20
+
+ -
+ 4283
+ -7827
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 95d26d76-69dd-4889-bb53-dbce30dc7189
+ - true
+ - Direction
+ - Direction
+ - false
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - 1
+
+
+
+
+ -
+ 4242
+ -7817
+ 63
+ 20
+
+ -
+ 4283
+ -7807
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9332fed5-0709-4b9c-9e4e-e93bb1384bb9
+ - ABS(X)
+ - true
+ - Length
+ - Length
+ - false
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - 1
+
+
+
+
+ -
+ 4242
+ -7797
+ 63
+ 20
+
+ -
+ 4283
+ -7787
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4335
+ -7837
+ 25
+ 60
+
+ -
+ 4349
+ -7807
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9d4b00cb-659e-4035-8c4c-0bfab49f732e
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4281
+ -7757
+ 40
+ 16
+
+ -
+ 4301
+ -7749
+
+
+
+
+
+
+
+
+
+ - 2fcc2743-8339-4cdf-a046-a1f17439191d
+ - Remap Numbers
+
+
+
+
+ - Remap numbers into a new numeric domain
+ - true
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - Remap Numbers
+ - Remap Numbers
+
+
+
+
+ -
+ 4243
+ -7475
+ 115
+ 64
+
+ -
+ 4298
+ -7443
+
+
+
+
+
+ - Value to remap
+ - 48593c74-64e0-426a-896d-644ed39e3452
+ - Value
+ - Value
+ - false
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 1
+
+
+
+
+ -
+ 4245
+ -7473
+ 38
+ 20
+
+ -
+ 4265.5
+ -7463
+
+
+
+
+
+
+
+ - Source domain
+ - 26edeb82-cc25-43f8-a59f-bd4e6e265821
+ - Source
+ - Source
+ - false
+ - 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
+ - 1
+
+
+
+
+ -
+ 4245
+ -7453
+ 38
+ 20
+
+ -
+ 4265.5
+ -7443
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Target domain
+ - 3e73bc70-ae01-41e3-8294-9ace75912b23
+ - Target
+ - Target
+ - false
+ - 0
+
+
+
+
+ -
+ 4245
+ -7433
+ 38
+ 20
+
+ -
+ 4265.5
+ -7423
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -1
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Remapped number
+ - 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -7473
+ 43
+ 30
+
+ -
+ 4336
+ -7458
+
+
+
+
+
+
+
+ - Remapped and clipped number
+ - 3783a63c-237b-41f7-a2fe-b7c3bb57d61b
+ - Clipped
+ - Clipped
+ - false
+ - 0
+
+
+
+
+ -
+ 4313
+ -7443
+ 43
+ 30
+
+ -
+ 4336
+ -7428
+
+
+
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4240
+ -7392
+ 122
+ 28
+
+ -
+ 4304
+ -7378
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - b09502b8-e9f1-45b8-a33e-dbb71e90a920
+ - Numbers
+ - Numbers
+ - false
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 1
+
+
+
+
+ -
+ 4242
+ -7390
+ 47
+ 24
+
+ -
+ 4267
+ -7378
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 52d6fa59-3d0a-4f1a-96f7-cd7d2cd8dfc3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4319
+ -7390
+ 41
+ 24
+
+ -
+ 4341
+ -7378
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f51f5f2d-941f-41ef-b98f-20f88c0f615c
+ - afc9108c-9db9-441a-9c43-d667d1c32b78
+ - 58b4763e-c14f-475c-bea3-43146b32e6bd
+ - 569a059d-e90a-4cb8-86b1-26bffb26bfcb
+ - 80033146-5b4f-404e-b6dc-65dc753db8a1
+ - 145eea6c-da47-45fb-84e7-715c62530022
+ - 22307018-81e5-47cd-acd7-460831a3214c
+ - 60f1953e-44fb-46e3-bd82-14c3da791de3
+ - 72196528-b84a-4f1b-b7ca-76264abdc748
+ - c3830b7d-0858-410d-89db-9af833da8bf5
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - 06c37c6f-92ed-4603-a7ef-6624026b46c0
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - 15
+ - fa933163-8b78-458d-b1ac-825f7bd3f6fd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9c9e8065-86c2-4798-93bf-1eb80b288f2a
+ - Relay
+ -
+ - false
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 1
+
+
+
+
+ -
+ 4281
+ -7347
+ 40
+ 16
+
+ -
+ 4301
+ -7339
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 69c43f9f-8ad5-4294-b6b7-417f23e6558d
+ - Relay
+ -
+ - false
+ - c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
+ - 1
+
+
+
+
+ -
+ 4281
+ -7714
+ 40
+ 16
+
+ -
+ 4301
+ -7706
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - bc09a16c-abd9-4fa6-b060-f38c5f357782
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4260
+ -7675
+ 82
+ 44
+
+ -
+ 4291
+ -7653
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - e931389e-d169-4b88-ba1a-7c89d5f8bad3
+ - A
+ - A
+ - true
+ - 7c83abf2-e560-41e6-98fe-488382df6abf
+ - 1
+
+
+
+
+ -
+ 4262
+ -7673
+ 14
+ 20
+
+ -
+ 4270.5
+ -7663
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b104166d-8536-42fb-bf25-619fe95d6218
+ - B
+ - B
+ - true
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - 1
+
+
+
+
+ -
+ 4262
+ -7653
+ 14
+ 20
+
+ -
+ 4270.5
+ -7643
+
+
+
+
+
+
+
+ - Result of multiplication
+ - c4fd7ded-46c8-4ad0-8563-fdfb6416cee1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -7673
+ 34
+ 40
+
+ -
+ 4324.5
+ -7653
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - d940ab37-fb9b-4eaf-b5bf-126c8adb4e50
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 4260
+ -7574
+ 82
+ 44
+
+ -
+ 4291
+ -7552
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 0b530e6f-5ebd-46de-a702-011d2a81307f
+ - A
+ - A
+ - true
+ - 624b5528-ad9d-4b73-a9c1-f233a4b61bf6
+ - 1
+
+
+
+
+ -
+ 4262
+ -7572
+ 14
+ 20
+
+ -
+ 4270.5
+ -7562
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 7f3bd519-2e72-4e91-9045-7f9488218fbb
+ - B
+ - B
+ - true
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - 1
+
+
+
+
+ -
+ 4262
+ -7552
+ 14
+ 20
+
+ -
+ 4270.5
+ -7542
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 7c83abf2-e560-41e6-98fe-488382df6abf
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4306
+ -7572
+ 34
+ 40
+
+ -
+ 4324.5
+ -7552
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 34a14a42-f662-4a1d-9a93-054d477ac704
+ - Relay
+
+ - false
+ - db26abf6-6a27-458b-8296-41880794893f
+ - 1
+
+
+
+
+ -
+ 4281
+ -7512
+ 40
+ 16
+
+ -
+ 4301
+ -7504
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 98a18393-1059-451a-ac38-07eec50efbb7
+ - 7bf6b03e-3d8e-48ad-8a8f-5afcba410d06
+ - 3
+ - 231e1df4-9237-4d03-9cb4-cb6329f1e5b4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 4ac7d93a-83bc-4097-a09f-085ff4b7a496
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4229
+ -7963
+ 144
+ 104
+
+ -
+ 4313
+ -7911
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 3ef6a971-3e75-463b-8293-b6d367e3c87e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7961
+ 67
+ 20
+
+ -
+ 4266
+ -7951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 40d2861e-7832-483d-ae74-a93e1b2c464a
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7941
+ 67
+ 20
+
+ -
+ 4266
+ -7931
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 6e7fd49c-46eb-4f33-b2f3-4f931bd738be
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7921
+ 67
+ 20
+
+ -
+ 4266
+ -7911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c86b6111-8fd5-4c21-a764-a53ebf94fc9b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7901
+ 67
+ 20
+
+ -
+ 4266
+ -7891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a352bbf1-25c4-4ce1-98f2-339669fe48f8
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -7881
+ 67
+ 20
+
+ -
+ 4266
+ -7871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - dbf70f62-537f-4179-b958-3a9a8519ee19
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4328
+ -7961
+ 43
+ 100
+
+ -
+ 4351
+ -7911
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - b176544c-2084-4538-95e4-30ad483bbbc3
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4260
+ -8025
+ 82
+ 44
+
+ -
+ 4328
+ -8003
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 2b7b259b-c267-4303-8945-127bfb52841f
+ - Geometry
+ - Geometry
+ - false
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - 1
+
+
+
+
+ -
+ 4262
+ -8023
+ 51
+ 20
+
+ -
+ 4289
+ -8013
+
+
+
+
+
+
+
+ - The material override
+ - f17f6893-f9e7-4d3f-8c19-4c72a32eafc5
+ - Material
+ - Material
+ - false
+ - dbf70f62-537f-4179-b958-3a9a8519ee19
+ - 1
+
+
+
+
+ -
+ 4262
+ -8003
+ 51
+ 20
+
+ -
+ 4289
+ -7993
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3f7c293b-8bda-4841-bb51-5b3fee67daac
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4229
+ -8108
+ 144
+ 64
+
+ -
+ 4303
+ -8076
+
+
+
+
+
+ - Curve to evaluate
+ - 8d326d08-6747-4dfc-b043-a9cab708d599
+ - Curve
+ - Curve
+ - false
+ - 4bee827f-0abc-4f89-8ac3-16ac83a96459
+ - 1
+
+
+
+
+ -
+ 4231
+ -8106
+ 57
+ 20
+
+ -
+ 4261
+ -8096
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9575e16a-b9dc-45b6-ad59-1237a8df15dd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8086
+ 57
+ 20
+
+ -
+ 4261
+ -8076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 827eb3f9-fa1d-4245-889c-16958037f49c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8066
+ 57
+ 20
+
+ -
+ 4261
+ -8056
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8106
+ 53
+ 20
+
+ -
+ 4346
+ -8096
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7cdc97d4-ab10-4674-add5-5707c5fd1985
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8086
+ 53
+ 20
+
+ -
+ 4346
+ -8076
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ca84891c-67ed-47da-a0e2-5c7230f5354a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4318
+ -8066
+ 53
+ 20
+
+ -
+ 4346
+ -8056
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 923b0d30-c122-4312-be66-898daa214df3
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 4238
+ -8212
+ 125
+ 84
+
+ -
+ 4305
+ -8170
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - c67aec7c-4ed3-46d5-8d61-c194e4d096f6
+ - Vertices
+ - Vertices
+ - false
+ - e19c4f4a-6476-45c5-85ec-a4bec3b7ee75
+ - 1
+
+
+
+
+ -
+ 4240
+ -8210
+ 50
+ 20
+
+ -
+ 4266.5
+ -8200
+
+
+
+
+
+
+
+ - Curve degree
+ - afb25838-4988-4047-94a0-6e3d6925ab7e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8190
+ 50
+ 20
+
+ -
+ 4266.5
+ -8180
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 4b9d9664-1c8c-4bfe-a377-4914943cb9e3
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8170
+ 50
+ 20
+
+ -
+ 4266.5
+ -8160
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 76d2c8d1-de05-4e59-87b8-d9919f4c9475
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4240
+ -8150
+ 50
+ 20
+
+ -
+ 4266.5
+ -8140
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - cdae18ea-9257-4789-8ad0-379d60880a1d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8210
+ 41
+ 26
+
+ -
+ 4342
+ -8196.667
+
+
+
+
+
+
+
+ - Curve length
+ - b0bfa94c-3d40-46bc-827f-cf3598d4db23
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8184
+ 41
+ 27
+
+ -
+ 4342
+ -8170
+
+
+
+
+
+
+
+ - Curve domain
+ - 4ab08a2c-4633-48bc-85e1-efd2d6ce0f08
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4320
+ -8157
+ 41
+ 27
+
+ -
+ 4342
+ -8143.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - d13ab75b-aade-4726-b7f6-bd13c77e36b4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 4229
+ -8336
+ 144
+ 104
+
+ -
+ 4313
+ -8284
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 62929bd9-b896-49d7-b494-a78afcb55441
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8334
+ 67
+ 20
+
+ -
+ 4266
+ -8324
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a172e753-e481-4551-8ecf-260e53d6377b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8314
+ 67
+ 20
+
+ -
+ 4266
+ -8304
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 5a23d84e-78d0-4e6a-8a93-f227f55fef79
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8294
+ 67
+ 20
+
+ -
+ 4266
+ -8284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - fb0c3977-f34e-4195-a43a-210565a20274
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8274
+ 67
+ 20
+
+ -
+ 4266
+ -8264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 5fdfc1ac-7a38-4f36-b361-e798b1b1bd7b
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 4231
+ -8254
+ 67
+ 20
+
+ -
+ 4266
+ -8244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e757b9b3-9378-4b6b-be97-a751cf00ceff
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 4328
+ -8334
+ 43
+ 100
+
+ -
+ 4351
+ -8284
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 254266e4-e3e4-4446-adb4-c5e696068203
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 4260
+ -8396
+ 82
+ 44
+
+ -
+ 4328
+ -8374
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 61956c77-9189-4364-92a2-371a92b1ba5f
+ - Geometry
+ - Geometry
+ - false
+ - cdae18ea-9257-4789-8ad0-379d60880a1d
+ - 1
+
+
+
+
+ -
+ 4262
+ -8394
+ 51
+ 20
+
+ -
+ 4289
+ -8384
+
+
+
+
+
+
+
+ - The material override
+ - 93dd7c30-a051-4709-8cd2-edea080c9a4e
+ - Material
+ - Material
+ - false
+ - e757b9b3-9378-4b6b-be97-a751cf00ceff
+ - 1
+
+
+
+
+ -
+ 4262
+ -8374
+ 51
+ 20
+
+ -
+ 4289
+ -8364
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 6c6c28be-b01b-42e5-b60a-91c314905c9e
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - e59d7b8c-92a9-480e-88e5-0c1a30d07bfb
+ - 1
+
+
+
+
+ -
+ 4246
+ 1263
+ 150
+ 150
+
+ -
+ 4246.364
+ 1263
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - af226fd0-4701-4be9-ac43-12af7cefc54c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 51a1523b-a0a2-4ba6-9546-b769abdcfcc4
+ - 1
+
+
+
+
+ -
+ 4246
+ -116
+ 150
+ 150
+
+ -
+ 4246.694
+ -115.3705
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - ac588950-bc7f-4799-998b-6293a8136543
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - e9df2343-bcc4-4760-80bc-8ee2d703441d
+ - 1
+
+
+
+
+ -
+ 4246
+ -1529
+ 150
+ 150
+
+ -
+ 4246
+ -1528.14
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 7ea7c812-fbf2-4ab8-9a4e-7edd89c68a35
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 8fe00e5e-7230-4b5e-ae66-b1f43f7afde0
+ - 1
+
+
+
+
+ -
+ 4245
+ -2923
+ 150
+ 150
+
+ -
+ 4245.352
+ -2922.188
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - d8ca333f-274c-4def-b0be-659a62d86c0c
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 255409ab-7bab-43a8-aaea-5e6d3f7310ab
+ - 1
+
+
+
+
+ -
+ 4230
+ -4341
+ 150
+ 150
+
+ -
+ 4230
+ -4340.277
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 4bb2abaa-9c90-4ee1-9d3e-af6d1b129f69
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - eff3ee73-0b0b-4d47-b016-c930d4e069aa
+ - 1
+
+
+
+
+ -
+ 4232
+ -5826
+ 150
+ 150
+
+ -
+ 4232
+ -5825.794
+
+ - 0
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 70b9b4d5-9f59-4bec-8b95-44a825aff278
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 9dd09e8c-98da-4a8d-9fc9-0e15c2c98fa3
+ - 1
+
+
+
+
+ -
+ 4230
+ -7312
+ 150
+ 150
+
+ -
+ 4230
+ -7311.181
+
+ - 0
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 99e5fe55-2e16-4fd9-bbf5-d60f020294b9
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 3
+
+ - 0.170000000
+
+
+
+
+ -
+ 4183
+ -1836
+ 250
+ 20
+
+ -
+ 4183.949
+ -1835.874
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e9c988a3-a0f9-44b8-9dca-881e071528d5
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 9
+
+ - 57.500
+
+
+
+
+ -
+ 4211
+ -3220
+ 250
+ 20
+
+ -
+ 4211.862
+ -3219.823
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - aeba0375-f313-4a4a-8b7e-4eacde97eba4
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 4
+
+ - 1179.13000000
+
+
+
+
+ -
+ 4169
+ -6127
+ 250
+ 20
+
+ -
+ 4169.419
+ -6126.237
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b90c5c4a-28e8-406c-a48b-1e18f7e84271
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - 34
+ - 82153d97-efd1-4c43-adfc-7c18a2863960
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5202e00c-44d2-4c14-a5b6-ef33c742b491
+ - a72d5419-fd91-41c5-b117-b1511799de43
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - 3dd22ce8-293a-4588-a9e5-2f0539214a5c
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 749872a2-7981-49cb-a7d8-7f6b73442974
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 64e05c4c-ae81-4d56-92b8-0d683e6178f7
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - f6e745a8-7fe5-4039-af6b-f624d2e49c50
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - c106ea49-3d33-4ec1-9439-7a451df09432
+ - ff3f4af7-3769-4434-b59a-235ecf1d678c
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
+ - 0119e2c8-ab78-45ad-b993-71b743e8bc99
+ - aad5e89f-1689-4ac6-8192-4f4373cbea4f
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - ea9452ce-f391-4a3d-9fb3-f180e8edf584
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - 25
+ - 14ce4b09-3396-45db-b579-daf6cd4a779b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - 26
+ - b90c5c4a-28e8-406c-a48b-1e18f7e84271
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - 136cd97b-9deb-4449-b884-bf54a4c926d4
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
+ - 91acf8ab-b95d-4cf9-9042-41f5397d7e87
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 16
+ - e5df8b8a-ee10-4243-b023-04465e1fd03a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 5c9bc050-34d7-4f48-9eb5-d2a900577182
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2740
+ 5529
+ 125
+ 64
+
+ -
+ 2790
+ 5561
+
+
+
+
+
+ - Curve to divide
+ - 2f24b97e-99f8-443a-9082-19c1f91d8d3f
+ - Curve
+ - Curve
+ - false
+ - ba58928d-5703-4a2a-8fde-736407679f3d
+ - 1
+
+
+
+
+ -
+ 2742
+ 5531
+ 33
+ 20
+
+ -
+ 2760
+ 5541
+
+
+
+
+
+
+
+ - Number of segments
+ - 35f75e33-d5f6-4e6e-b9cf-1bfa3b8bb635
+ - Count
+ - Count
+ - false
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - 1
+
+
+
+
+ -
+ 2742
+ 5551
+ 33
+ 20
+
+ -
+ 2760
+ 5561
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 87560cf5-edc9-4964-b195-b4f3d1dd8581
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 5571
+ 33
+ 20
+
+ -
+ 2760
+ 5581
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5531
+ 58
+ 20
+
+ -
+ 2835.5
+ 5541
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 7a369f73-a46f-44bb-935a-990a674e70dc
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5551
+ 58
+ 20
+
+ -
+ 2835.5
+ 5561
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - b1597b58-9c8c-420f-bec1-50f6c1f5b5a1
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 5571
+ 58
+ 20
+
+ -
+ 2835.5
+ 5581
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - dc7cd620-40ec-4bbf-8777-36e3f82bb67d
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 5612
+ 106
+ 64
+
+ -
+ 2814
+ 5644
+
+
+
+
+
+ - Line start point
+ - d958b718-e348-4709-aa78-fe7498a8766c
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5614
+ 47
+ 20
+
+ -
+ 2777
+ 5624
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8b52cc88-fbae-4974-afe9-a673b442bd74
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5634
+ 47
+ 20
+
+ -
+ 2777
+ 5644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 7114e2f7-7cc2-4d94-a5e4-ce6dc55624c4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5654
+ 47
+ 20
+
+ -
+ 2777
+ 5664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - ba58928d-5703-4a2a-8fde-736407679f3d
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 5614
+ 25
+ 60
+
+ -
+ 2843
+ 5644
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - f17fb7c5-c44a-431d-ba75-8edebac41101
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 5341
+ 106
+ 64
+
+ -
+ 2814
+ 5373
+
+
+
+
+
+ - Line start point
+ - eee0d4c1-93a0-442f-9fc5-d81d6dfd5aae
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2752
+ 5343
+ 47
+ 20
+
+ -
+ 2777
+ 5353
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ac30e536-d7a6-4642-8b04-31576a917a18
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 5363
+ 47
+ 20
+
+ -
+ 2777
+ 5373
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 8fab40a7-83b7-48c4-b1ba-e1dfbc420d51
+ - Length
+ - Length
+ - false
+ - 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
+ - 1
+
+
+
+
+ -
+ 2752
+ 5383
+ 47
+ 20
+
+ -
+ 2777
+ 5393
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6bb582bf-fb0d-4475-bd64-5159a23801fe
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 5343
+ 25
+ 60
+
+ -
+ 2843
+ 5373
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 9c4631ba-85e3-4b26-a0ed-ae48be61a573
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 5466
+ 82
+ 44
+
+ -
+ 2793
+ 5488
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 3995eb05-caa2-438a-a9d9-c18e8358c01c
+ - A
+ - A
+ - true
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2764
+ 5468
+ 14
+ 20
+
+ -
+ 2772.5
+ 5478
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 44a0505e-9be8-4f10-bbcb-6f5e50704123
+ - B
+ - B
+ - true
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - 1
+
+
+
+
+ -
+ 2764
+ 5488
+ 14
+ 20
+
+ -
+ 2772.5
+ 5498
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 2da9ba30-40f8-4e2e-9ad5-a1bb181bc6aa
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 5468
+ 34
+ 40
+
+ -
+ 2826.5
+ 5488
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 6180
+ 194
+ 28
+
+ -
+ 2806
+ 6194
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 253e074d-ddc9-4419-9a24-0a26722444e0
+ - true
+ - Variable O
+ - O
+ - true
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2708
+ 6182
+ 14
+ 24
+
+ -
+ 2716.5
+ 6194
+
+
+
+
+
+
+
+ - Result of expression
+ - 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 6182
+ 9
+ 24
+
+ -
+ 2895
+ 6194
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - Panel
+
+ - false
+ - 1
+ - 2ce7b1d9-752c-4298-ae7a-ed9c0d830e16
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 5899
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.397
+ 5899.743
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - Relay
+ -
+ - false
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 1
+
+
+
+
+ -
+ 2783
+ 5864
+ 40
+ 16
+
+ -
+ 2803
+ 5872
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - Relay
+ -
+ - false
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - 1
+
+
+
+
+ -
+ 2783
+ 6227
+ 40
+ 16
+
+ -
+ 2803
+ 6235
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 15ec7ce5-825a-431f-a0f1-71f858eeb9f6
+ - 62749b59-00b6-4050-8ac2-91ff2975c226
+ - 76b87ec4-3a97-42c3-8992-13acf6acf45f
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 4
+ - e41d43db-4027-4b96-aff2-6b3977deeff6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 57c81212-acf4-4901-86dd-71ef3e46c60d
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 3eef801e-d75b-4ffb-acb0-c36dec045e51
+ - 1
+
+
+
+
+ -
+ 2728
+ 5697
+ 150
+ 150
+
+ -
+ 2728.496
+ 5697.921
+
+ - 0
+
+
+
+
+
+
+
+
+ - aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
+ - Curvature
+
+
+
+
+ - Evaluate the curvature of a curve at a specified parameter.
+ - true
+ - 6544fcf4-de8d-4376-8953-865024da35a3
+ - Curvature
+ - Curvature
+
+
+
+
+ -
+ 2734
+ 7033
+ 137
+ 64
+
+ -
+ 2804
+ 7065
+
+
+
+
+
+ - Curve to evaluate
+ - 33d173a0-8437-48af-8f44-804ef32ab2e1
+ - Curve
+ - Curve
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2736
+ 7035
+ 53
+ 30
+
+ -
+ 2764
+ 7050
+
+
+
+
+
+
+
+ - Parameter on curve domain to evaluate
+ - 2dc7ebde-f021-4d43-858a-f7f5ad2f6afe
+ - Parameter
+ - Parameter
+ - false
+ - 9bebf09e-b007-45c5-b78a-b561aa38667f
+ - 1
+
+
+
+
+ -
+ 2736
+ 7065
+ 53
+ 30
+
+ -
+ 2764
+ 7080
+
+
+
+
+
+
+
+ - Point on curve at {t}
+ - 2d289b88-800e-4156-a6b1-c7434ad82dc7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7035
+ 50
+ 20
+
+ -
+ 2845.5
+ 7045
+
+
+
+
+
+
+
+ - Curvature vector at {t}
+ - 1a1dda0d-bbdd-40d9-90c1-6c9f0757da7a
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7055
+ 50
+ 20
+
+ -
+ 2845.5
+ 7065
+
+
+
+
+
+
+
+ - Curvature circle at {t}
+ - 1e82bf09-1919-4f7a-88f8-6effdeb1461d
+ - Curvature
+ - Curvature
+ - false
+ - 0
+
+
+
+
+ -
+ 2819
+ 7075
+ 50
+ 20
+
+ -
+ 2845.5
+ 7085
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - a1095b3a-a75d-4dfe-874e-c9513ed7d845
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 2740
+ 7116
+ 125
+ 64
+
+ -
+ 2790
+ 7148
+
+
+
+
+
+ - Curve to divide
+ - f2cb91dd-ffcf-4a87-8292-93a0b86821c1
+ - Curve
+ - Curve
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2742
+ 7118
+ 33
+ 20
+
+ -
+ 2760
+ 7128
+
+
+
+
+
+
+
+ - Number of segments
+ - 98448139-6838-4cea-895a-19ef1e5ddb9a
+ - Count
+ - Count
+ - false
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - 1
+
+
+
+
+ -
+ 2742
+ 7138
+ 33
+ 20
+
+ -
+ 2760
+ 7148
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - f33c48c8-66c6-41e8-8815-5480fd688987
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 7158
+ 33
+ 20
+
+ -
+ 2760
+ 7168
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 362990c6-70f5-4e45-80e3-6e3b5820d61c
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7118
+ 58
+ 20
+
+ -
+ 2835.5
+ 7128
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - c03522f8-2bfc-4536-b892-e10a78a9b6b9
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7138
+ 58
+ 20
+
+ -
+ 2835.5
+ 7148
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 9bebf09e-b007-45c5-b78a-b561aa38667f
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 7158
+ 58
+ 20
+
+ -
+ 2835.5
+ 7168
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - true
+ - 2
+ - Curve
+ - Curve
+ - false
+ - a2c7bf89-1b35-4c76-a8c3-a55120dc97f5
+ - 1
+
+
+
+
+ -
+ 2777
+ 7252
+ 53
+ 24
+
+ -
+ 2813.437
+ 7264.059
+
+
+
+
+
+
+
+
+
+ - 23862862-049a-40be-b558-2418aacbd916
+ - Deconstruct Arc
+
+
+
+
+ - Retrieve the base plane, radius and angle domain of an arc.
+ - true
+ - 163281f3-4fdd-4ec9-89f5-d9ea2684d152
+ - Deconstruct Arc
+ - Deconstruct Arc
+
+
+
+
+ -
+ 2746
+ 6952
+ 114
+ 64
+
+ -
+ 2786
+ 6984
+
+
+
+
+
+ - Arc or Circle to deconstruct
+ - 1e500955-6ff2-4638-a014-022cb896ebeb
+ - Arc
+ - Arc
+ - false
+ - 1e82bf09-1919-4f7a-88f8-6effdeb1461d
+ - 1
+
+
+
+
+ -
+ 2748
+ 6954
+ 23
+ 60
+
+ -
+ 2761
+ 6984
+
+
+
+
+
+
+
+ - Base plane of arc or circle
+ - ce07b596-b533-42b3-a650-9f00f7be13dc
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 6954
+ 57
+ 20
+
+ -
+ 2831
+ 6964
+
+
+
+
+
+
+
+ - Radius of arc or circle
+ - 54837649-9551-4c51-b610-ce1c1a7990a3
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 6974
+ 57
+ 20
+
+ -
+ 2831
+ 6984
+
+
+
+
+
+
+
+ - Angle domain (in radians) of arc
+ - f6ce21ce-f13b-487e-b0a5-493bf815810f
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 2801
+ 6994
+ 57
+ 20
+
+ -
+ 2831
+ 7004
+
+
+
+
+
+
+
+
+
+
+
+ - 797d922f-3a1d-46fe-9155-358b009b5997
+ - One Over X
+
+
+
+
+ - Compute one over x.
+ - true
+ - aab83e7e-03d3-46f1-8567-daf390ccafe4
+ - One Over X
+ - One Over X
+
+
+
+
+ -
+ 2753
+ 6288
+ 100
+ 28
+
+ -
+ 2802
+ 6302
+
+
+
+
+
+ - Input value
+ - 6c7c8189-b6b5-4c14-ba98-3f1237843ba4
+ - Value
+ - Value
+ - false
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2755
+ 6290
+ 32
+ 24
+
+ -
+ 2772.5
+ 6302
+
+
+
+
+
+
+
+ - Output value
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 6290
+ 34
+ 24
+
+ -
+ 2835.5
+ 6302
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d9dc4818-8226-43f0-826b-743fe4bf5353
+ - Relay
+ -
+ - false
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - 1
+
+
+
+
+ -
+ 2783
+ 6259
+ 40
+ 16
+
+ -
+ 2803
+ 6267
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0ffd18d8-99db-40a1-81a8-50617de9a6c3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 6865
+ 194
+ 28
+
+ -
+ 2806
+ 6879
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5bbe1694-ae4e-4af7-b5d0-0e814d1bd025
+ - true
+ - Variable O
+ - O
+ - true
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2708
+ 6867
+ 14
+ 24
+
+ -
+ 2716.5
+ 6879
+
+
+
+
+
+
+
+ - Result of expression
+ - aa5c7f71-4773-436c-9465-eb6cfe47daee
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 6867
+ 9
+ 24
+
+ -
+ 2895
+ 6879
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - Panel
+
+ - false
+ - 1
+ - aa5c7f71-4773-436c-9465-eb6cfe47daee
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2711
+ 6575
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2711.033
+ 6575.335
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - false
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 284185cb-9b1b-44c4-9a94-6a846b6478b6
+ - Relay
+ -
+ - false
+ - e492ffd1-044a-40ee-b734-c2796609a1e2
+ - 1
+
+
+
+
+ -
+ 2783
+ 6537
+ 40
+ 16
+
+ -
+ 2803
+ 6545
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - Relay
+ -
+ - false
+ - 54837649-9551-4c51-b610-ce1c1a7990a3
+ - 1
+
+
+
+
+ -
+ 2783
+ 6919
+ 40
+ 16
+
+ -
+ 2803
+ 6927
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 9c99ab36-da42-439f-9db6-e4a7ecd0dc5b
+ - Number
+ - Number
+ - false
+ - 96971adb-dc6f-4220-b87f-875d4c7c2611
+ - 1
+
+
+
+
+ -
+ 2778
+ 7208
+ 50
+ 24
+
+ -
+ 2803.937
+ 7220.646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1024
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - Curve
+ - Curve
+ - false
+ - 6bb582bf-fb0d-4475-bd64-5159a23801fe
+ - 1
+
+
+
+
+ -
+ 2778
+ 5287
+ 50
+ 24
+
+ -
+ 2803.368
+ 5299.088
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 1
+ - 92a625da-b995-4055-bc08-7cd011bcb0ba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c815fdd0-2496-4b83-b382-bc3c6f6a4b8b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 0.068900000
+
+
+
+
+ -
+ 2678
+ 5428
+ 250
+ 20
+
+ -
+ 2678.177
+ 5428.286
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 4860
+ 138
+ 44
+
+ -
+ 2802
+ 4882
+
+
+
+
+
+ - Base geometry
+ - 14e44962-2dfd-440d-82ec-807ce03623f2
+ - Geometry
+ - Geometry
+ - true
+ - d732c384-05f7-4045-8076-3bfea40ab057
+ - 1
+
+
+
+
+ -
+ 2736
+ 4862
+ 51
+ 20
+
+ -
+ 2763
+ 4872
+
+
+
+
+
+
+
+ - Translation vector
+ - 516286a3-d79c-4f44-b66a-629a6ff682ae
+ - Motion
+ - Motion
+ - false
+ - 0f9f7808-7869-4325-ad0a-d2198a518e33
+ - 1
+
+
+
+
+ -
+ 2736
+ 4882
+ 51
+ 20
+
+ -
+ 2763
+ 4892
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 4862
+ 53
+ 20
+
+ -
+ 2845
+ 4872
+
+
+
+
+
+
+
+ - Transformation data
+ - a43be0c8-66f6-44cc-8f23-aaf95264f9aa
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 4882
+ 53
+ 20
+
+ -
+ 2845
+ 4892
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2731
+ 4922
+ 155
+ 64
+
+ -
+ 2832
+ 4954
+
+
+
+
+
+ - Vector {x} component
+ - 7cd953af-b064-4de0-a309-70d40bca17c0
+ - -X
+ - X component
+ - X component
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2733
+ 4924
+ 84
+ 20
+
+ -
+ 2784.5
+ 4934
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 4cfa8292-ee09-4b96-b0ae-fb6cee43c9ea
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4944
+ 84
+ 20
+
+ -
+ 2784.5
+ 4954
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 62e295ea-6f33-41f0-a0db-7aa786377b06
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4964
+ 84
+ 20
+
+ -
+ 2784.5
+ 4974
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 0f9f7808-7869-4325-ad0a-d2198a518e33
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2847
+ 4924
+ 37
+ 30
+
+ -
+ 2867
+ 4939
+
+
+
+
+
+
+
+ - Vector length
+ - b502d75b-da03-4ea8-b2d9-378c3d5e63f8
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2847
+ 4954
+ 37
+ 30
+
+ -
+ 2867
+ 4969
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - Series
+ - Series
+
+
+
+
+ -
+ 2744
+ 5006
+ 117
+ 64
+
+ -
+ 2794
+ 5038
+
+
+
+
+
+ - First number in the series
+ - e5962598-e389-423c-a85a-1e3c32fc81d7
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ 5008
+ 33
+ 20
+
+ -
+ 2764
+ 5018
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 931739e6-075e-4fad-9b6c-531639272855
+ - Step
+ - Step
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ 5028
+ 33
+ 20
+
+ -
+ 2764
+ 5038
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - d0353cba-1801-49d1-970d-a37da19a53d6
+ - Count
+ - Count
+ - false
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 1
+
+
+
+
+ -
+ 2746
+ 5048
+ 33
+ 20
+
+ -
+ 2764
+ 5058
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 2
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 2809
+ 5008
+ 50
+ 60
+
+ -
+ 2827.5
+ 5038
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 2748
+ 5189
+ 109
+ 28
+
+ -
+ 2787
+ 5203
+
+
+
+
+
+ - 1
+ - Base list
+ - 62df7b1c-1f20-4713-86f1-5953c8e31639
+ - List
+ - List
+ - false
+ - 006e868d-4bf3-44a6-b8d4-708f9a679606
+ - 1
+
+
+
+
+ -
+ 2750
+ 5191
+ 22
+ 24
+
+ -
+ 2762.5
+ 5203
+
+
+
+
+
+
+
+ - Number of items in L
+ - 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
+ - 1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2802
+ 5191
+ 53
+ 24
+
+ -
+ 2822
+ 5203
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - Panel
+
+ - false
+ - 0
+ - 804204b5-0b21-42bc-a33b-bf59830956f2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2768
+ 5089
+ 50
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2768.119
+ 5089.574
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 5b850221-b527-4bd6-8c62-e94168cd6efa
+ - Mass Addition
+
+
+
+
+ - Perform mass addition of a list of items
+ - true
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - Mass Addition
+ - Mass Addition
+
+
+
+
+ -
+ 2735
+ 5127
+ 135
+ 44
+
+ -
+ 2782
+ 5149
+
+
+
+
+
+ - 1
+ - Input values for mass addition.
+ - e96db67d-f3fe-4b8a-a1b7-ed5f8f51b2c3
+ - Input
+ - Input
+ - false
+ - 0d9d676a-f6a5-493c-bf53-6fccdfd6d2e8
+ - 1
+
+
+
+
+ -
+ 2737
+ 5129
+ 30
+ 40
+
+ -
+ 2753.5
+ 5149
+
+
+
+
+
+
+
+ - Result of mass addition
+ - 804204b5-0b21-42bc-a33b-bf59830956f2
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 5129
+ 71
+ 20
+
+ -
+ 2834
+ 5139
+
+
+
+
+
+
+
+ - 1
+ - List of partial results
+ - dadbd113-cd60-4519-aab0-471e3119d138
+ - Partial Results
+ - Partial Results
+ - false
+ - 0
+
+
+
+
+ -
+ 2797
+ 5149
+ 71
+ 20
+
+ -
+ 2834
+ 5159
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 059a3e69-9d54-4680-897c-cdf195bad7a8
+ - 298b80f0-dd2c-448e-bfd4-8abbb2f321ff
+ - 7fce1877-7d49-42f2-9d77-f20f971a3c8d
+ - be575d1d-b0b0-4169-9453-f139fa5a69fc
+ - 3500c3b9-cff8-4242-841b-b21739eb2ce5
+ - 6bf311af-c478-40b6-8287-b57e5ebd2de6
+ - b29ac3e2-b858-44d8-acce-0fb154f6a64a
+ - 28b8e0ed-0e44-4505-b866-bab948ef8584
+ - 50d6ea62-1933-4585-80ec-e31ffe7454f9
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - a8c2d2b8-7793-472a-add0-5c6add577a3e
+ - 11
+ - 19e6ba9f-ea5b-4adf-a53c-e38f7d1c7c24
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - c1950f77-cc1d-4a94-8226-38115fad3527
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 66cd6f40-485a-4239-8096-f910fb72f4bc
+ - 1
+
+
+
+
+ -
+ 2728
+ 6370
+ 150
+ 150
+
+ -
+ 2728.338
+ 6370.525
+
+ - 0
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5202e00c-44d2-4c14-a5b6-ef33c742b491
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2751
+ 3206
+ 106
+ 64
+
+ -
+ 2815
+ 3238
+
+
+
+
+
+ - Line start point
+ - 73576ba2-60f2-4199-85a0-b4261085e773
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2753
+ 3208
+ 47
+ 20
+
+ -
+ 2778
+ 3218
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 789af781-e97d-4b8b-9f99-6237ec423f84
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2753
+ 3228
+ 47
+ 20
+
+ -
+ 2778
+ 3238
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 517f58ad-11b5-49db-8e72-28cd683f268a
+ - Length
+ - Length
+ - false
+ - bc6ae7be-b2f7-495b-8309-85181ce50925
+ - 1
+
+
+
+
+ -
+ 2753
+ 3248
+ 47
+ 20
+
+ -
+ 2778
+ 3258
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 589f826a-73e0-4e35-b5a6-2051359d273a
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 3208
+ 25
+ 60
+
+ -
+ 2844
+ 3238
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a72d5419-fd91-41c5-b117-b1511799de43
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 3851
+ 194
+ 28
+
+ -
+ 2806
+ 3865
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fa6931b6-c67f-4ed7-8fbd-87514531ddfe
+ - true
+ - Variable O
+ - O
+ - true
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2708
+ 3853
+ 14
+ 24
+
+ -
+ 2716.5
+ 3865
+
+
+
+
+
+
+
+ - Result of expression
+ - a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 3853
+ 9
+ 24
+
+ -
+ 2895
+ 3865
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - Panel
+
+ - false
+ - 0.75034273974597454
+ - a73d77b0-5abb-417c-b1b1-5bfacb79d7fd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 3572
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.37
+ 3572.744
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3dd22ce8-293a-4588-a9e5-2f0539214a5c
+ - Relay
+ -
+ - false
+ - 6799a162-9bf6-4690-8e87-a1f7b11fc186
+ - 1
+
+
+
+
+ -
+ 2783
+ 3535
+ 40
+ 16
+
+ -
+ 2803
+ 3543
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - Relay
+ -
+ - false
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 1
+
+
+
+
+ -
+ 2783
+ 3898
+ 40
+ 16
+
+ -
+ 2803
+ 3906
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 749872a2-7981-49cb-a7d8-7f6b73442974
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2728
+ 3370
+ 150
+ 150
+
+ -
+ 2728.469
+ 3370.921
+
+ - 0
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - Relay
+ -
+ - false
+ - 1218fc6b-1c29-44f8-a3a8-c2e396524fa3
+ - 1
+
+
+
+
+ -
+ 2783
+ 4177
+ 40
+ 16
+
+ -
+ 2803
+ 4185
+
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ 4011
+ 128
+ 28
+
+ -
+ 2792
+ 4025
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 83e171e6-8026-41d3-9b9a-04c48e91b757
+ - Values
+ - Values
+ - false
+ - fc90f942-eb44-4171-8b95-2c2a1d282bfc
+ - 1
+
+
+
+
+ -
+ 2741
+ 4013
+ 36
+ 24
+
+ -
+ 2760.5
+ 4025
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 41859e78-5ecd-4eaf-9046-5daab3c22ed7
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 4013
+ 58
+ 24
+
+ -
+ 2837.5
+ 4025
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - Relay
+
+ - false
+ - 41859e78-5ecd-4eaf-9046-5daab3c22ed7
+ - 1
+
+
+
+
+ -
+ 2783
+ 3977
+ 40
+ 16
+
+ -
+ 2803
+ 3985
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - Relay
+
+ - false
+ - 3bad1a66-165a-405e-94ae-9c7c448ecc44
+ - 1
+
+
+
+
+ -
+ 2783
+ 4118
+ 40
+ 16
+
+ -
+ 2803
+ 4126
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 922f54da-9ad1-4ce8-9fc7-6c168ad6d1ab
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 41b1f9fe-b540-498e-b66d-f9a253c44c97
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - 4
+ - 64e05c4c-ae81-4d56-92b8-0d683e6178f7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 401a4ec7-acb1-4812-b841-5ff8cafa66b1
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ 4056
+ 136
+ 44
+
+ -
+ 2821
+ 4078
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 008d496f-cfcd-4e98-87a1-e7de0148c944
+ - Items
+ - Items
+ - false
+ - 4a5d464e-710f-4246-b9cf-f6d5b47cf6a1
+ - 1
+
+
+
+
+ -
+ 2737
+ 4058
+ 69
+ 20
+
+ -
+ 2773
+ 4068
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 65f6ffb7-2d70-44a6-a76f-1b8cb5988027
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ 4078
+ 69
+ 20
+
+ -
+ 2773
+ 4088
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - fc90f942-eb44-4171-8b95-2c2a1d282bfc
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 4058
+ 33
+ 20
+
+ -
+ 2854
+ 4068
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 97321661-04ba-4c03-92bb-cbf26ad904bb
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 4078
+ 33
+ 20
+
+ -
+ 2854
+ 4088
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f6e745a8-7fe5-4039-af6b-f624d2e49c50
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 3307
+ 82
+ 44
+
+ -
+ 2793
+ 3329
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 50da1217-a2c7-48ef-8ac1-27862b7a31af
+ - A
+ - A
+ - true
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2764
+ 3309
+ 14
+ 20
+
+ -
+ 2772.5
+ 3319
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 0f99ba1b-48e7-47a4-8313-07539c0f8265
+ - B
+ - B
+ - true
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - 1
+
+
+
+
+ -
+ 2764
+ 3329
+ 14
+ 20
+
+ -
+ 2772.5
+ 3339
+
+
+
+
+
+
+
+ - Result of multiplication
+ - bc6ae7be-b2f7-495b-8309-85181ce50925
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 3309
+ 34
+ 40
+
+ -
+ 2826.5
+ 3329
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 78dab7dd-d7e2-426b-bb90-b547c8224cb4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 3
+
+ - 4.392015000
+
+
+
+
+ -
+ 2681
+ 3287
+ 250
+ 20
+
+ -
+ 2681.462
+ 3287.034
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - c106ea49-3d33-4ec1-9439-7a451df09432
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 3027
+ 138
+ 44
+
+ -
+ 2802
+ 3049
+
+
+
+
+
+ - Base geometry
+ - 03f50bc9-cdd3-4a9e-bf72-f9e5a13824fd
+ - Geometry
+ - Geometry
+ - true
+ - 589f826a-73e0-4e35-b5a6-2051359d273a
+ - 1
+
+
+
+
+ -
+ 2736
+ 3029
+ 51
+ 20
+
+ -
+ 2763
+ 3039
+
+
+
+
+
+
+
+ - Translation vector
+ - 27e55aae-32fb-4931-9e33-8276f3143253
+ - Motion
+ - Motion
+ - false
+ - 235ef89b-113b-4adb-8da2-d51550e4eacb
+ - 1
+
+
+
+
+ -
+ 2736
+ 3049
+ 51
+ 20
+
+ -
+ 2763
+ 3059
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 3029
+ 53
+ 20
+
+ -
+ 2845
+ 3039
+
+
+
+
+
+
+
+ - Transformation data
+ - d7c70fda-d3b4-4f52-8188-82500b831732
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 3049
+ 53
+ 20
+
+ -
+ 2845
+ 3059
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - ff3f4af7-3769-4434-b59a-235ecf1d678c
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2720
+ 3090
+ 155
+ 64
+
+ -
+ 2821
+ 3122
+
+
+
+
+
+ - Vector {x} component
+ - 5dda6578-81e3-4d08-a192-99efa4ef0918
+ - -X
+ - X component
+ - X component
+ - false
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - 1
+
+
+
+
+ -
+ 2722
+ 3092
+ 84
+ 20
+
+ -
+ 2773.5
+ 3102
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 51b8acc0-3713-4503-859f-00e28bbe1d12
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2722
+ 3112
+ 84
+ 20
+
+ -
+ 2773.5
+ 3122
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 27131421-4d00-4a7e-acc4-6b6b401840d1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2722
+ 3132
+ 84
+ 20
+
+ -
+ 2773.5
+ 3142
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 235ef89b-113b-4adb-8da2-d51550e4eacb
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 3092
+ 37
+ 30
+
+ -
+ 2856
+ 3107
+
+
+
+
+
+
+
+ - Vector length
+ - eadaa5c9-b315-4cc0-883c-86b5919ef135
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 3122
+ 37
+ 30
+
+ -
+ 2856
+ 3137
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 19794563-a66c-483d-a5a7-3a141a317442
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 1297
+ 106
+ 64
+
+ -
+ 2814
+ 1329
+
+
+
+
+
+ - Line start point
+ - 579116b0-0e3a-4726-acaa-4eaf385cfbb8
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2752
+ 1299
+ 47
+ 20
+
+ -
+ 2777
+ 1309
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - d11cdf99-4df2-41e0-84cc-a41742432cef
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1319
+ 47
+ 20
+
+ -
+ 2777
+ 1329
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 052c1243-cfed-4a87-84bf-3af3cfd8de0f
+ - Length
+ - Length
+ - false
+ - 04002786-e0c2-482a-a5b0-087deb210247
+ - 1
+
+
+
+
+ -
+ 2752
+ 1339
+ 47
+ 20
+
+ -
+ 2777
+ 1349
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d8f86e25-327f-4bb8-b47a-52eb276b1670
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 1299
+ 25
+ 60
+
+ -
+ 2843
+ 1329
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 2041
+ 194
+ 28
+
+ -
+ 2806
+ 2055
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 277497d4-3cc9-4675-9df2-1bdad4551e7b
+ - true
+ - Variable O
+ - O
+ - true
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2708
+ 2043
+ 14
+ 24
+
+ -
+ 2716.5
+ 2055
+
+
+
+
+
+
+
+ - Result of expression
+ - 7a91e35e-fe42-4292-81a3-bab62edacffc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 2043
+ 9
+ 24
+
+ -
+ 2895
+ 2055
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - Panel
+
+ - false
+ - 1
+ - 7a91e35e-fe42-4292-81a3-bab62edacffc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ 1764
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.01
+ 1764.322
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
+ - Relay
+ -
+ - false
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - 1
+
+
+
+
+ -
+ 2783
+ 1728
+ 40
+ 16
+
+ -
+ 2803
+ 1736
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - Relay
+ -
+ - false
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - 1
+
+
+
+
+ -
+ 2783
+ 2088
+ 40
+ 16
+
+ -
+ 2803
+ 2096
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 67a350fe-d446-4487-9291-6bee5215236f
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2728
+ 1562
+ 150
+ 150
+
+ -
+ 2728.11
+ 1562.499
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - e6ebbaf0-0ce2-416a-9da6-4b087003b097
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ 2201
+ 128
+ 28
+
+ -
+ 2792
+ 2215
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 78d2cb1e-3351-4a2b-9058-87a3e892866b
+ - Values
+ - Values
+ - false
+ - f82f722b-e058-4539-9262-05fb080d34b6
+ - 1
+
+
+
+
+ -
+ 2741
+ 2203
+ 36
+ 24
+
+ -
+ 2760.5
+ 2215
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 89077281-b492-48e9-a85e-54f1b18d13e1
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ 2203
+ 58
+ 24
+
+ -
+ 2837.5
+ 2215
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - Relay
+
+ - false
+ - 89077281-b492-48e9-a85e-54f1b18d13e1
+ - 1
+
+
+
+
+ -
+ 2783
+ 2167
+ 40
+ 16
+
+ -
+ 2803
+ 2175
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - Relay
+
+ - false
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - 1
+
+
+
+
+ -
+ 2783
+ 2308
+ 40
+ 16
+
+ -
+ 2803
+ 2316
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 18d36f48-a4e9-48f8-a2d1-bab088228a1c
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ 2246
+ 136
+ 44
+
+ -
+ 2821
+ 2268
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 486e1cf2-b307-4115-a700-c1b678a5423b
+ - Items
+ - Items
+ - false
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - 1
+
+
+
+
+ -
+ 2737
+ 2248
+ 69
+ 20
+
+ -
+ 2773
+ 2258
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - b4803253-ebb4-4f65-aa55-ef46e0615c40
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ 2268
+ 69
+ 20
+
+ -
+ 2773
+ 2278
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - f82f722b-e058-4539-9262-05fb080d34b6
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 2248
+ 33
+ 20
+
+ -
+ 2854
+ 2258
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 67596dde-04c0-445e-9f73-d5c3a5d8ac8c
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ 2268
+ 33
+ 20
+
+ -
+ 2854
+ 2278
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ 1414
+ 82
+ 44
+
+ -
+ 2793
+ 1436
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - edc9e8c0-0a99-450e-ab3f-dd67ef6b135a
+ - A
+ - A
+ - true
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2764
+ 1416
+ 14
+ 20
+
+ -
+ 2772.5
+ 1426
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2a560f7c-5209-4e8c-a57a-db57f1802b79
+ - B
+ - B
+ - true
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - 1
+
+
+
+
+ -
+ 2764
+ 1436
+ 14
+ 20
+
+ -
+ 2772.5
+ 1446
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 04002786-e0c2-482a-a5b0-087deb210247
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ 1416
+ 34
+ 40
+
+ -
+ 2826.5
+ 1436
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 281.08106675
+
+
+
+
+ -
+ 2678
+ 1377
+ 250
+ 20
+
+ -
+ 2678.09
+ 1377.532
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ 1134
+ 138
+ 44
+
+ -
+ 2802
+ 1156
+
+
+
+
+
+ - Base geometry
+ - 7eda48ca-557a-43a2-91ab-7f55538e5e6b
+ - Geometry
+ - Geometry
+ - true
+ - d8f86e25-327f-4bb8-b47a-52eb276b1670
+ - 1
+
+
+
+
+ -
+ 2736
+ 1136
+ 51
+ 20
+
+ -
+ 2763
+ 1146
+
+
+
+
+
+
+
+ - Translation vector
+ - b649e3c1-aa59-4773-95ae-5a48561f84c8
+ - Motion
+ - Motion
+ - false
+ - d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
+ - 1
+
+
+
+
+ -
+ 2736
+ 1156
+ 51
+ 20
+
+ -
+ 2763
+ 1166
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 1136
+ 53
+ 20
+
+ -
+ 2845
+ 1146
+
+
+
+
+
+
+
+ - Transformation data
+ - 90a73c6e-4868-4058-8cd1-2421b3702fcc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ 1156
+ 53
+ 20
+
+ -
+ 2845
+ 1166
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - a3109dcd-b6cf-41a8-b769-b80a5894b219
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ 1199
+ 155
+ 64
+
+ -
+ 2826
+ 1231
+
+
+
+
+
+ - Vector {x} component
+ - 44969ae5-8746-4507-a6c1-31b16af59304
+ - -X
+ - X component
+ - X component
+ - false
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - 1
+
+
+
+
+ -
+ 2727
+ 1201
+ 84
+ 20
+
+ -
+ 2778.5
+ 1211
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 70a752f0-8268-4395-a051-8f5ac3e5187c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 1221
+ 84
+ 20
+
+ -
+ 2778.5
+ 1231
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 7d1751a9-6b18-4d20-af0c-d90afbd82213
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ 1241
+ 84
+ 20
+
+ -
+ 2778.5
+ 1251
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - d4dd9a2b-a6ba-4935-8c80-8821e6625ee6
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ 1201
+ 37
+ 30
+
+ -
+ 2861
+ 1216
+
+
+
+
+
+
+
+ - Vector length
+ - f74aa292-aab1-4ce6-a9ae-6cb67ef5eb1b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ 1231
+ 37
+ 30
+
+ -
+ 2861
+ 1246
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 19794563-a66c-483d-a5a7-3a141a317442
+ - e791fbc6-af59-4ad4-b7b9-bf23b2eb991d
+ - 8106a0ef-ccc6-40de-94b5-a8fc0651ea3a
+ - c4b05861-4dcc-4fa6-9a55-cd2ef09186a2
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 67a350fe-d446-4487-9291-6bee5215236f
+ - e6ebbaf0-0ce2-416a-9da6-4b087003b097
+ - ac291d1c-68db-4960-a7e7-5db523fe6c22
+ - bba4be05-dbbc-41aa-b8fc-0b9c012ff2e1
+ - 18d36f48-a4e9-48f8-a2d1-bab088228a1c
+ - 6fce7b17-02a7-4fe3-b8c9-47d13b69247f
+ - e560636d-e6f0-4cec-9254-b1218b844a79
+ - 29a022c6-b2ea-4f5b-8024-18d708b5bbd8
+ - a3109dcd-b6cf-41a8-b769-b80a5894b219
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - 2a80daa5-7f21-4cee-8c44-d32500908c11
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - e3749bf3-dd2f-4da8-826c-372b05cde1be
+ - d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
+ - 66bf7298-94f5-4b70-9e91-e530523ea15e
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - bb422305-f56f-490b-b653-544931c09145
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - 25
+ - e755cd13-50eb-45cb-81a9-a1569b22e5f0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 931f5277-2c60-43e1-83f4-396ccd594a3a
+ - Relay
+ -
+ - false
+ - f1e198ee-8c72-43b0-bdfb-8896635b9001
+ - 1
+
+
+
+
+ -
+ 2783
+ 2342
+ 40
+ 16
+
+ -
+ 2803
+ 2350
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 66a4b758-7a62-4d07-a8d0-412ee9d032c8
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2762
+ -463
+ 106
+ 64
+
+ -
+ 2826
+ -431
+
+
+
+
+
+ - Line start point
+ - 580103c3-dba4-4d4d-8db3-c5ce957e00ca
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2764
+ -461
+ 47
+ 20
+
+ -
+ 2789
+ -451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - eb1bc218-593e-4f0f-883c-a5651a92571b
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2764
+ -441
+ 47
+ 20
+
+ -
+ 2789
+ -431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 6745e242-fe3f-401b-9526-0a256ab4cbe4
+ - true
+ - Length
+ - Length
+ - false
+ - cb55f4ee-f70b-4570-a002-0e1149eab871
+ - 1
+
+
+
+
+ -
+ 2764
+ -421
+ 47
+ 20
+
+ -
+ 2789
+ -411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -461
+ 25
+ 60
+
+ -
+ 2855
+ -431
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ 212
+ 194
+ 28
+
+ -
+ 2806
+ 226
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1f95b2d9-be8a-40b7-ba63-2c1e3c58b242
+ - true
+ - Variable O
+ - O
+ - true
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2708
+ 214
+ 14
+ 24
+
+ -
+ 2716.5
+ 226
+
+
+
+
+
+
+
+ - Result of expression
+ - 76246871-dc5c-4fce-aec3-104f1e344229
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ 214
+ 9
+ 24
+
+ -
+ 2895
+ 226
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - Panel
+
+ - false
+ - 1
+ - 76246871-dc5c-4fce-aec3-104f1e344229
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ -78
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.355
+ -77.07108
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5d453582-942a-43d2-92be-06c1d12de2a6
+ - Relay
+ -
+ - false
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - 1
+
+
+
+
+ -
+ 2783
+ -113
+ 40
+ 16
+
+ -
+ 2803
+ -105
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - b565e546-b7f7-4a1b-9c81-7e90c1d9e590
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 3945
+ 7777
+ 50
+ 24
+
+ -
+ 3970.923
+ 7789.155
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - Relay
+ -
+ - false
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - 1
+
+
+
+
+ -
+ 2783
+ 240
+ 40
+ 16
+
+ -
+ 2803
+ 248
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 11600905-2419-4939-b8c9-dbab8d35b7d3
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2728
+ -281
+ 150
+ 150
+
+ -
+ 2728.454
+ -280.0285
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 96bc0fe3-f065-4aa3-916f-5940bd50fd88
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2737
+ 313
+ 128
+ 28
+
+ -
+ 2790
+ 327
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - a1d0f6f4-4ba1-4086-8421-6e4e3358667f
+ - Values
+ - Values
+ - false
+ - ff57e150-073d-4bce-b863-68e84728b1ca
+ - 1
+
+
+
+
+ -
+ 2739
+ 315
+ 36
+ 24
+
+ -
+ 2758.5
+ 327
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - a599322f-0d2f-427b-b855-5f76e8e13e74
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2805
+ 315
+ 58
+ 24
+
+ -
+ 2835.5
+ 327
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - Relay
+
+ - false
+ - a599322f-0d2f-427b-b855-5f76e8e13e74
+ - 1
+
+
+
+
+ -
+ 2783
+ 277
+ 40
+ 16
+
+ -
+ 2803
+ 285
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - Relay
+
+ - false
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - 1
+
+
+
+
+ -
+ 2785
+ 424
+ 40
+ 16
+
+ -
+ 2805
+ 432
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 6b5426f7-8efd-4d40-8b6e-1bbb463df895
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2737
+ 359
+ 136
+ 44
+
+ -
+ 2823
+ 381
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - dbcdcd49-3e92-4600-83c6-26173aa03331
+ - Items
+ - Items
+ - false
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - 1
+
+
+
+
+ -
+ 2739
+ 361
+ 69
+ 20
+
+ -
+ 2775
+ 371
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 6f8a5940-0853-4ccb-ad5a-b7db9ed51fad
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2739
+ 381
+ 69
+ 20
+
+ -
+ 2775
+ 391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - ff57e150-073d-4bce-b863-68e84728b1ca
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2838
+ 361
+ 33
+ 20
+
+ -
+ 2856
+ 371
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0c5e93a4-81cf-489f-9695-468581e553cc
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2838
+ 381
+ 33
+ 20
+
+ -
+ 2856
+ 391
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ -347
+ 82
+ 44
+
+ -
+ 2793
+ -325
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - f8a24621-5889-44f3-be0f-7719de89ddea
+ - A
+ - A
+ - true
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2764
+ -345
+ 14
+ 20
+
+ -
+ 2772.5
+ -335
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 2e633020-026b-4494-8b75-0bdc0ac0d480
+ - B
+ - B
+ - true
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - 1
+
+
+
+
+ -
+ 2764
+ -325
+ 14
+ 20
+
+ -
+ 2772.5
+ -315
+
+
+
+
+
+
+
+ - Result of multiplication
+ - cb55f4ee-f70b-4570-a002-0e1149eab871
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ -345
+ 34
+ 40
+
+ -
+ 2826.5
+ -325
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 4
+
+ - 2233.52343808
+
+
+
+
+ -
+ 2678
+ -383
+ 250
+ 20
+
+ -
+ 2678.434
+ -382.6825
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4e44e341-6f47-4f00-a431-777a1b460d34
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ -627
+ 138
+ 44
+
+ -
+ 2802
+ -605
+
+
+
+
+
+ - Base geometry
+ - 8947fec3-8004-47b2-8f38-158813550f76
+ - Geometry
+ - Geometry
+ - true
+ - d0b5c3fe-016c-41f8-88bb-b8f9b2c3a272
+ - 1
+
+
+
+
+ -
+ 2736
+ -625
+ 51
+ 20
+
+ -
+ 2763
+ -615
+
+
+
+
+
+
+
+ - Translation vector
+ - 485a1315-bd80-458c-88e2-d817d8496ddc
+ - Motion
+ - Motion
+ - false
+ - 63fc990e-fddf-41f2-9b12-284f0462fe11
+ - 1
+
+
+
+
+ -
+ 2736
+ -605
+ 51
+ 20
+
+ -
+ 2763
+ -595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -625
+ 53
+ 20
+
+ -
+ 2845
+ -615
+
+
+
+
+
+
+
+ - Transformation data
+ - 44b69aa6-bb49-4dd9-b3bf-0b3cd4a8ec76
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -605
+ 53
+ 20
+
+ -
+ 2845
+ -595
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - c22469cc-e888-4b1c-bd52-1bb4a2191b49
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ -562
+ 155
+ 64
+
+ -
+ 2826
+ -530
+
+
+
+
+
+ - Vector {x} component
+ - b09718a6-4876-4d94-a977-784ad2ed008d
+ - -X
+ - X component
+ - X component
+ - false
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - 1
+
+
+
+
+ -
+ 2727
+ -560
+ 84
+ 20
+
+ -
+ 2778.5
+ -550
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 8ffd5027-e0ca-43f1-b014-9fa80cd55a48
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -540
+ 84
+ 20
+
+ -
+ 2778.5
+ -530
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 72a0e4ec-fd97-4061-8567-d5afc981a80d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -520
+ 84
+ 20
+
+ -
+ 2778.5
+ -510
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 63fc990e-fddf-41f2-9b12-284f0462fe11
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -560
+ 37
+ 30
+
+ -
+ 2861
+ -545
+
+
+
+
+
+
+
+ - Vector length
+ - 7d9826bd-d248-43d9-9150-445b646fc6c3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -530
+ 37
+ 30
+
+ -
+ 2861
+ -515
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 66a4b758-7a62-4d07-a8d0-412ee9d032c8
+ - 66b05dfa-3cbf-42ec-8f9c-811a3b9ba050
+ - e2f4d4a2-4219-48d3-921e-84f34ef86664
+ - 5d453582-942a-43d2-92be-06c1d12de2a6
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 11600905-2419-4939-b8c9-dbab8d35b7d3
+ - 96bc0fe3-f065-4aa3-916f-5940bd50fd88
+ - ebd6e7da-401e-4c36-9647-c47021848030
+ - b5b8702a-3540-4cfa-a086-1aa3e0c7a08c
+ - 6b5426f7-8efd-4d40-8b6e-1bbb463df895
+ - 0604e4e1-ad52-4e70-aa40-6b7bb7fec836
+ - 3a7058c3-08a8-41b6-8c4e-ed03c3ab3b28
+ - 4e44e341-6f47-4f00-a431-777a1b460d34
+ - c22469cc-e888-4b1c-bd52-1bb4a2191b49
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - a59697d7-edbc-4983-90af-5eeb0652d3e3
+ - a628cbff-e924-4087-b69a-6ae9e00ca171
+ - e02dc4a6-1ed5-4658-8ab5-2a962ae14431
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - 36470645-ff8a-4059-9665-a25ef0bc1bff
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - 24
+ - 46694f6f-bc7f-49b1-b788-c73845685196
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - de531981-8867-4b45-8952-b36202bf4e1d
+ - Relay
+ -
+ - false
+ - 5c9f7ef1-c3d7-452f-b3e8-e12bbefc48f8
+ - 1
+
+
+
+
+ -
+ 2783
+ 460
+ 40
+ 16
+
+ -
+ 2803
+ 468
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - a215e2b8-03ec-47c3-a47b-74a2b0223ad1
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2766
+ -2253
+ 106
+ 64
+
+ -
+ 2830
+ -2221
+
+
+
+
+
+ - Line start point
+ - 88c9e5e9-5534-4d81-a29a-e298d744d3f3
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2768
+ -2251
+ 47
+ 20
+
+ -
+ 2793
+ -2241
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 003f01d7-c77d-4202-84b1-47279a3f7288
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2768
+ -2231
+ 47
+ 20
+
+ -
+ 2793
+ -2221
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 2e1c9145-3960-4497-acd5-6ba3d6538a90
+ - true
+ - Length
+ - Length
+ - false
+ - 04b08fbe-172b-4933-9952-829403b1a725
+ - 1
+
+
+
+
+ -
+ 2768
+ -2211
+ 47
+ 20
+
+ -
+ 2793
+ -2201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - e8152b51-a75c-4739-ae10-fb04a597422d
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -2251
+ 25
+ 60
+
+ -
+ 2859
+ -2221
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c099f5d9-814b-4093-b58d-5105beb0ea10
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2706
+ -1590
+ 194
+ 28
+
+ -
+ 2806
+ -1576
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0c9ed85a-0c10-4294-a05a-08eccacd357a
+ - true
+ - Variable O
+ - O
+ - true
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2708
+ -1588
+ 14
+ 24
+
+ -
+ 2716.5
+ -1576
+
+
+
+
+
+
+
+ - Result of expression
+ - 54af680b-e20d-406c-be22-11cc537a8367
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2889
+ -1588
+ 9
+ 24
+
+ -
+ 2895
+ -1576
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - Panel
+
+ - false
+ - 1
+ - 54af680b-e20d-406c-be22-11cc537a8367
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2696
+ -1882
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2696.486
+ -1881.444
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - face4faf-9c7f-4e39-916f-957ffe7938f9
+ - Relay
+ -
+ - false
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - 1
+
+
+
+
+ -
+ 2783
+ -1918
+ 40
+ 16
+
+ -
+ 2803
+ -1910
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - Relay
+ -
+ - false
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - 1
+
+
+
+
+ -
+ 2783
+ -1544
+ 40
+ 16
+
+ -
+ 2803
+ -1536
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - dd0f6cee-8116-4a3b-a587-2587eed44998
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2728
+ -2084
+ 150
+ 150
+
+ -
+ 2728.585
+ -2083.267
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 333b2be5-4551-45ff-8cde-28df0c73e1e3
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2739
+ -1449
+ 128
+ 28
+
+ -
+ 2792
+ -1435
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - ab0a368a-1844-4969-be9e-3749177d7e38
+ - Values
+ - Values
+ - false
+ - 3084c808-7cec-485b-ab86-376db1f115a1
+ - 1
+
+
+
+
+ -
+ 2741
+ -1447
+ 36
+ 24
+
+ -
+ 2760.5
+ -1435
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2807
+ -1447
+ 58
+ 24
+
+ -
+ 2837.5
+ -1435
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - Relay
+
+ - false
+ - 0cb5fa70-ea4c-406a-af82-30bab56f0c2b
+ - 1
+
+
+
+
+ -
+ 2783
+ -1483
+ 40
+ 16
+
+ -
+ 2803
+ -1475
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - Relay
+
+ - false
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - 1
+
+
+
+
+ -
+ 2783
+ -1342
+ 40
+ 16
+
+ -
+ 2803
+ -1334
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 19366a9a-5dc4-4739-a801-49f17d8989b5
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2735
+ -1404
+ 136
+ 44
+
+ -
+ 2821
+ -1382
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - c5fd2979-3f7a-4fea-a551-275772f36a8b
+ - Items
+ - Items
+ - false
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - 1
+
+
+
+
+ -
+ 2737
+ -1402
+ 69
+ 20
+
+ -
+ 2773
+ -1392
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - e82548c9-e185-463a-af4c-9f9703b5f5ee
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -1382
+ 69
+ 20
+
+ -
+ 2773
+ -1372
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 3084c808-7cec-485b-ab86-376db1f115a1
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ -1402
+ 33
+ 20
+
+ -
+ 2854
+ -1392
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 7cbcd3bf-8d2f-436f-8a76-6ac67870b3f8
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2836
+ -1382
+ 33
+ 20
+
+ -
+ 2854
+ -1372
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - f9b0a7de-ecf1-4969-b872-fdadfa9af113
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2762
+ -2153
+ 82
+ 44
+
+ -
+ 2793
+ -2131
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 269ab055-0d40-468d-9d96-33528da5c12c
+ - A
+ - A
+ - true
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2764
+ -2151
+ 14
+ 20
+
+ -
+ 2772.5
+ -2141
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 6ddf6eae-0c4a-41bb-9f8f-40f021cc5850
+ - B
+ - B
+ - true
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - 1
+
+
+
+
+ -
+ 2764
+ -2131
+ 14
+ 20
+
+ -
+ 2772.5
+ -2121
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 04b08fbe-172b-4933-9952-829403b1a725
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2808
+ -2151
+ 34
+ 40
+
+ -
+ 2826.5
+ -2131
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 20817.0283827
+
+
+
+
+ -
+ 2678
+ -2173
+ 250
+ 20
+
+ -
+ 2678.565
+ -2172.921
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - f9efa372-460e-4f62-b112-3081e9e3ef5e
+ - Move
+ - Move
+
+
+
+
+ -
+ 2734
+ -2433
+ 138
+ 44
+
+ -
+ 2802
+ -2411
+
+
+
+
+
+ - Base geometry
+ - 9c3296c6-7709-433e-9c14-dee1444eb571
+ - Geometry
+ - Geometry
+ - true
+ - e8152b51-a75c-4739-ae10-fb04a597422d
+ - 1
+
+
+
+
+ -
+ 2736
+ -2431
+ 51
+ 20
+
+ -
+ 2763
+ -2421
+
+
+
+
+
+
+
+ - Translation vector
+ - d0311c28-141d-44f3-bd9c-39ed49d81bb9
+ - Motion
+ - Motion
+ - false
+ - d9489a97-3b72-4c68-a11f-cd3f614bb8e6
+ - 1
+
+
+
+
+ -
+ 2736
+ -2411
+ 51
+ 20
+
+ -
+ 2763
+ -2401
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -2431
+ 53
+ 20
+
+ -
+ 2845
+ -2421
+
+
+
+
+
+
+
+ - Transformation data
+ - 6511a1f1-0c1c-4bdd-b0e1-e7e508faf1a7
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2817
+ -2411
+ 53
+ 20
+
+ -
+ 2845
+ -2401
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - def11018-cdab-4a0d-8a79-53646db73041
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2725
+ -2368
+ 155
+ 64
+
+ -
+ 2826
+ -2336
+
+
+
+
+
+ - Vector {x} component
+ - 100046f4-03fb-441c-a3eb-b1857577ffa8
+ - -X
+ - X component
+ - X component
+ - false
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - 1
+
+
+
+
+ -
+ 2727
+ -2366
+ 84
+ 20
+
+ -
+ 2778.5
+ -2356
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - d1bb1f9a-9302-4414-9aba-af01df8f861a
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -2346
+ 84
+ 20
+
+ -
+ 2778.5
+ -2336
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 4fa47ac3-b67d-4e38-8168-fd2aae2d9e5a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2727
+ -2326
+ 84
+ 20
+
+ -
+ 2778.5
+ -2316
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - d9489a97-3b72-4c68-a11f-cd3f614bb8e6
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -2366
+ 37
+ 30
+
+ -
+ 2861
+ -2351
+
+
+
+
+
+
+
+ - Vector length
+ - 8bcf063d-7669-4c27-83b2-0bafbaad2aa7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -2336
+ 37
+ 30
+
+ -
+ 2861
+ -2321
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a215e2b8-03ec-47c3-a47b-74a2b0223ad1
+ - c099f5d9-814b-4093-b58d-5105beb0ea10
+ - b40d92d1-a240-45cd-a34c-b1e003fcb81a
+ - face4faf-9c7f-4e39-916f-957ffe7938f9
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - dd0f6cee-8116-4a3b-a587-2587eed44998
+ - 333b2be5-4551-45ff-8cde-28df0c73e1e3
+ - d2e976df-5bed-4b60-bcf0-53bc9faed943
+ - 6a3d6332-c462-42bc-9c10-9d6432e71731
+ - 19366a9a-5dc4-4739-a801-49f17d8989b5
+ - f9b0a7de-ecf1-4969-b872-fdadfa9af113
+ - c0e2db88-5789-426d-83c7-0588de3ef25b
+ - f9efa372-460e-4f62-b112-3081e9e3ef5e
+ - def11018-cdab-4a0d-8a79-53646db73041
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - ee5c627c-1bb9-411b-8539-5f5cfd653e05
+ - 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
+ - 23406fea-d648-42ad-a9a6-9e6a5e871332
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - dcb7528a-ecb2-455e-a7a9-bbc1925d8141
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - 24
+ - 63f630a9-0dcd-4541-82a2-b0a37918ce26
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0576783e-c535-4691-b39c-477f6935999c
+ - Relay
+ -
+ - false
+ - 7e2319c0-80b8-4035-93a2-acff99edf0e4
+ - 1
+
+
+
+
+ -
+ 2783
+ -1308
+ 40
+ 16
+
+ -
+ 2803
+ -1300
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2a80daa5-7f21-4cee-8c44-d32500908c11
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2750
+ 1482
+ 106
+ 64
+
+ -
+ 2814
+ 1514
+
+
+
+
+
+ - Line start point
+ - 6973d845-c78b-4031-abff-d030ca769ebc
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1484
+ 47
+ 20
+
+ -
+ 2777
+ 1494
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ -2.12109391180815
+ 1.99985794027194
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 70b7f2d6-8386-46e4-83d1-81953d8f7fbd
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1504
+ 47
+ 20
+
+ -
+ 2777
+ 1514
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0.0625
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - aa139009-b95c-479b-a98b-045d7c8ced43
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2752
+ 1524
+ 47
+ 20
+
+ -
+ 2777
+ 1534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 6b86b814-e46e-4186-82ec-e4a645aae545
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2829
+ 1484
+ 25
+ 60
+
+ -
+ 2843
+ 1514
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 042c7918-1ded-400b-ba9c-adc3004fce23
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2755
+ -4059
+ 106
+ 64
+
+ -
+ 2819
+ -4027
+
+
+
+
+
+ - Line start point
+ - 3fa6e5ea-adee-472e-8b3f-05dc29429866
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2757
+ -4057
+ 47
+ 20
+
+ -
+ 2782
+ -4047
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 29615d06-03ae-4c97-b722-93093d338683
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2757
+ -4037
+ 47
+ 20
+
+ -
+ 2782
+ -4027
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 9f596764-c393-41b4-b737-b159912b86d1
+ - true
+ - Length
+ - Length
+ - false
+ - 76dad168-9920-4c9d-9b0c-7840e0411195
+ - 1
+
+
+
+
+ -
+ 2757
+ -4017
+ 47
+ 20
+
+ -
+ 2782
+ -4007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c8946353-1197-4675-9f3c-83408d67f6da
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4057
+ 25
+ 60
+
+ -
+ 2848
+ -4027
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bb4ec53c-c335-4888-a813-6dba4b0b3879
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2710
+ -3381
+ 194
+ 28
+
+ -
+ 2810
+ -3367
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f87d3193-d293-441b-b2af-3d511bcd31a1
+ - true
+ - Variable O
+ - O
+ - true
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2712
+ -3379
+ 14
+ 24
+
+ -
+ 2720.5
+ -3367
+
+
+
+
+
+
+
+ - Result of expression
+ - 304ce3dc-ec45-463b-95a9-eb4796ff8aed
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ -3379
+ 9
+ 24
+
+ -
+ 2899
+ -3367
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - Panel
+
+ - false
+ - 1
+ - 304ce3dc-ec45-463b-95a9-eb4796ff8aed
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -3673
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.717
+ -3672.704
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 238896a6-397f-4896-9866-4977be1c5cb8
+ - Relay
+ -
+ - false
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - 1
+
+
+
+
+ -
+ 2787
+ -3716
+ 40
+ 16
+
+ -
+ 2807
+ -3708
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - Relay
+ -
+ - false
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - 1
+
+
+
+
+ -
+ 2787
+ -3353
+ 40
+ 16
+
+ -
+ 2807
+ -3345
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - 06278da8-5577-4c01-9bca-f378277efc42
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2733
+ -3875
+ 150
+ 150
+
+ -
+ 2733.816
+ -3874.528
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 075e2fbe-e8d0-4a47-912a-e40abbb65453
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2743
+ -3240
+ 128
+ 28
+
+ -
+ 2796
+ -3226
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 72b8a0b1-d1d3-4dcc-b243-4685a2d6f2c3
+ - Values
+ - Values
+ - false
+ - a841c1a5-bb93-4744-bf9c-c03e90064964
+ - 1
+
+
+
+
+ -
+ 2745
+ -3238
+ 36
+ 24
+
+ -
+ 2764.5
+ -3226
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2811
+ -3238
+ 58
+ 24
+
+ -
+ 2841.5
+ -3226
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - Relay
+
+ - false
+ - 7fc4d72d-84c3-4dd1-bf48-0a27e1a8a871
+ - 1
+
+
+
+
+ -
+ 2787
+ -3274
+ 40
+ 16
+
+ -
+ 2807
+ -3266
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - Relay
+
+ - false
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - 1
+
+
+
+
+ -
+ 2787
+ -3133
+ 40
+ 16
+
+ -
+ 2807
+ -3125
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2739
+ -3195
+ 136
+ 44
+
+ -
+ 2825
+ -3173
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - f4cf7b8c-094d-4232-8bd6-b670561fb534
+ - Items
+ - Items
+ - false
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - 1
+
+
+
+
+ -
+ 2741
+ -3193
+ 69
+ 20
+
+ -
+ 2777
+ -3183
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 726e1471-dba4-428d-982b-cec7b3b6c89c
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -3173
+ 69
+ 20
+
+ -
+ 2777
+ -3163
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - a841c1a5-bb93-4744-bf9c-c03e90064964
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -3193
+ 33
+ 20
+
+ -
+ 2858
+ -3183
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 0da654db-e64e-4aa3-bd42-1e3cdc517fe9
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -3173
+ 33
+ 20
+
+ -
+ 2858
+ -3163
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 814cda62-2c48-4bb8-9edc-976f47afdf2a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2770
+ -3938
+ 82
+ 44
+
+ -
+ 2801
+ -3916
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 41f1a18d-0420-4bd8-927b-0dd17657e8a7
+ - A
+ - A
+ - true
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2772
+ -3936
+ 14
+ 20
+
+ -
+ 2780.5
+ -3926
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - b694a7ae-c9fa-4cc7-a775-f46636839f1f
+ - B
+ - B
+ - true
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - 1
+
+
+
+
+ -
+ 2772
+ -3916
+ 14
+ 20
+
+ -
+ 2780.5
+ -3906
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 76dad168-9920-4c9d-9b0c-7840e0411195
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -3936
+ 34
+ 40
+
+ -
+ 2834.5
+ -3916
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 5
+
+ - 56336.1968128
+
+
+
+
+ -
+ 2682
+ -3977
+ 250
+ 20
+
+ -
+ 2682.217
+ -3976.787
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 11047804-87b6-4b30-bd41-bf40de79677a
+ - Move
+ - Move
+
+
+
+
+ -
+ 2738
+ -4222
+ 138
+ 44
+
+ -
+ 2806
+ -4200
+
+
+
+
+
+ - Base geometry
+ - f49caf1a-65e2-45bb-aacd-2dfc52d04f59
+ - Geometry
+ - Geometry
+ - true
+ - c8946353-1197-4675-9f3c-83408d67f6da
+ - 1
+
+
+
+
+ -
+ 2740
+ -4220
+ 51
+ 20
+
+ -
+ 2767
+ -4210
+
+
+
+
+
+
+
+ - Translation vector
+ - ceeceab3-c17b-4e19-9177-d15f796f675c
+ - Motion
+ - Motion
+ - false
+ - db4d5bd9-6588-461b-99cc-36749b76ef54
+ - 1
+
+
+
+
+ -
+ 2740
+ -4200
+ 51
+ 20
+
+ -
+ 2767
+ -4190
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4220
+ 53
+ 20
+
+ -
+ 2849
+ -4210
+
+
+
+
+
+
+
+ - Transformation data
+ - 317fe4f6-2c97-4959-bc91-a97c0d7694e9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -4200
+ 53
+ 20
+
+ -
+ 2849
+ -4190
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 7559b255-f641-4d37-8771-422671c9d661
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2729
+ -4159
+ 155
+ 64
+
+ -
+ 2830
+ -4127
+
+
+
+
+
+ - Vector {x} component
+ - 86dcd50f-b6ae-4f17-9afc-cc4ef5b72aff
+ - -X
+ - X component
+ - X component
+ - false
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - 1
+
+
+
+
+ -
+ 2731
+ -4157
+ 84
+ 20
+
+ -
+ 2782.5
+ -4147
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - ca8927b3-a645-48f7-bea7-3e0c7c770d9c
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -4137
+ 84
+ 20
+
+ -
+ 2782.5
+ -4127
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - a30b780b-5434-49c4-b140-fa9591b9e3a5
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -4117
+ 84
+ 20
+
+ -
+ 2782.5
+ -4107
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - db4d5bd9-6588-461b-99cc-36749b76ef54
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -4157
+ 37
+ 30
+
+ -
+ 2865
+ -4142
+
+
+
+
+
+
+
+ - Vector length
+ - b2d573de-5c72-449f-801b-5c7ebd9594ae
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -4127
+ 37
+ 30
+
+ -
+ 2865
+ -4112
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 042c7918-1ded-400b-ba9c-adc3004fce23
+ - bb4ec53c-c335-4888-a813-6dba4b0b3879
+ - 539290d9-dce9-43a1-adf4-e5affd26f6ea
+ - 238896a6-397f-4896-9866-4977be1c5cb8
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 06278da8-5577-4c01-9bca-f378277efc42
+ - 075e2fbe-e8d0-4a47-912a-e40abbb65453
+ - b64f24de-d0b2-4d54-bf7e-07324953940a
+ - f209f4a2-f539-4aa3-ae96-2646314ce948
+ - 9c3b67af-a7a4-4fb2-b1fa-95d0eb77ef5b
+ - 814cda62-2c48-4bb8-9edc-976f47afdf2a
+ - d2eb7a37-d5dd-4ee1-8748-628d8498578a
+ - 11047804-87b6-4b30-bd41-bf40de79677a
+ - 7559b255-f641-4d37-8771-422671c9d661
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
+ - 8500138e-2946-4f7c-be93-c3c7109b4c2f
+ - cad9f703-3621-4a15-835e-3c62c5728043
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - e9181e89-67db-453a-a90b-03cf875e54e4
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - 22
+ - 60746e92-8e7d-4181-8157-9d909cfaa5af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dc4a89cc-6391-4120-a0c7-bb01947e616d
+ - Relay
+ -
+ - false
+ - 73e154f2-80c6-4ae6-bc3c-6465f74895ee
+ - 1
+
+
+
+
+ -
+ 2787
+ -3099
+ 40
+ 16
+
+ -
+ 2807
+ -3091
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 6f02b009-b1e7-40fb-982b-a4cc92989f93
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2758
+ -5837
+ 106
+ 64
+
+ -
+ 2822
+ -5805
+
+
+
+
+
+ - Line start point
+ - 9b1f3040-25b4-465c-b48b-20d876ca8d30
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2760
+ -5835
+ 47
+ 20
+
+ -
+ 2785
+ -5825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - ab363ead-60ce-42e6-abb6-fada154e2d83
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2760
+ -5815
+ 47
+ 20
+
+ -
+ 2785
+ -5805
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - a12ca76e-b81d-4f86-82e5-94db0c56f6bc
+ - true
+ - Length
+ - Length
+ - false
+ - 219456fb-d7b5-4771-8625-546ff24ec0db
+ - 1
+
+
+
+
+ -
+ 2760
+ -5795
+ 47
+ 20
+
+ -
+ 2785
+ -5785
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - dbe25fd3-7c8f-4ba4-aa76-935deab2513d
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2837
+ -5835
+ 25
+ 60
+
+ -
+ 2851
+ -5805
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e8ede47a-0766-46eb-98e9-795795777e72
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2711
+ -5199
+ 194
+ 28
+
+ -
+ 2811
+ -5185
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3a17e425-d670-4f6e-a8de-3f02eace241a
+ - true
+ - Variable O
+ - O
+ - true
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2713
+ -5197
+ 14
+ 24
+
+ -
+ 2721.5
+ -5185
+
+
+
+
+
+
+
+ - Result of expression
+ - 2e133f21-2d54-4357-82b6-d6caa9c58bb9
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2894
+ -5197
+ 9
+ 24
+
+ -
+ 2900
+ -5185
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - Panel
+
+ - false
+ - 1
+ - 2e133f21-2d54-4357-82b6-d6caa9c58bb9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -5472
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.714
+ -5471.091
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - abd6a449-9c16-4c76-8ef0-98e478cd83ad
+ - Relay
+ -
+ - false
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - 1
+
+
+
+
+ -
+ 2788
+ -5515
+ 40
+ 16
+
+ -
+ 2808
+ -5507
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - Relay
+ -
+ - false
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 1
+
+
+
+
+ -
+ 2788
+ -5152
+ 40
+ 16
+
+ -
+ 2808
+ -5144
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - d1b7aee9-6996-44d7-a2a8-751ca861756f
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2733
+ -5673
+ 150
+ 150
+
+ -
+ 2733.813
+ -5672.915
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2744
+ -5039
+ 128
+ 28
+
+ -
+ 2797
+ -5025
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - 78975a9e-52d2-4a86-9086-68be735702ad
+ - Values
+ - Values
+ - false
+ - 9c15500f-157e-41a9-92a5-a20d78dd6d0a
+ - 1
+
+
+
+
+ -
+ 2746
+ -5037
+ 36
+ 24
+
+ -
+ 2765.5
+ -5025
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - e0b41d41-010c-450b-87c6-534ab840d77b
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2812
+ -5037
+ 58
+ 24
+
+ -
+ 2842.5
+ -5025
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - Relay
+
+ - false
+ - e0b41d41-010c-450b-87c6-534ab840d77b
+ - 1
+
+
+
+
+ -
+ 2788
+ -5073
+ 40
+ 16
+
+ -
+ 2808
+ -5065
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - Relay
+
+ - false
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - 1
+
+
+
+
+ -
+ 2788
+ -4932
+ 40
+ 16
+
+ -
+ 2808
+ -4924
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2740
+ -4994
+ 136
+ 44
+
+ -
+ 2826
+ -4972
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 0766398e-adae-4a68-af23-b7c778109ed1
+ - Items
+ - Items
+ - false
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 1
+
+
+
+
+ -
+ 2742
+ -4992
+ 69
+ 20
+
+ -
+ 2778
+ -4982
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 32702515-c5ba-40c5-8d36-701e5e367bdb
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -4972
+ 69
+ 20
+
+ -
+ 2778
+ -4962
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 9c15500f-157e-41a9-92a5-a20d78dd6d0a
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -4992
+ 33
+ 20
+
+ -
+ 2859
+ -4982
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 799563c9-5274-4ae7-beb6-b23dee7a1a4e
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2841
+ -4972
+ 33
+ 20
+
+ -
+ 2859
+ -4962
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 7239acaa-4bc2-4df7-9ccc-41202268cb8a
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2770
+ -5733
+ 82
+ 44
+
+ -
+ 2801
+ -5711
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - b43d79dd-62fc-46ee-9f3a-671373fd1cc3
+ - A
+ - A
+ - true
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2772
+ -5731
+ 14
+ 20
+
+ -
+ 2780.5
+ -5721
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - a4927aff-3c14-4dd1-8427-f305933617b5
+ - B
+ - B
+ - true
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - 1
+
+
+
+
+ -
+ 2772
+ -5711
+ 14
+ 20
+
+ -
+ 2780.5
+ -5701
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 219456fb-d7b5-4771-8625-546ff24ec0db
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2816
+ -5731
+ 34
+ 40
+
+ -
+ 2834.5
+ -5711
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 271915.006280
+
+
+
+
+ -
+ 2684
+ -5753
+ 250
+ 20
+
+ -
+ 2684.547
+ -5752.496
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
+ - Move
+ - Move
+
+
+
+
+ -
+ 2739
+ -6023
+ 138
+ 44
+
+ -
+ 2807
+ -6001
+
+
+
+
+
+ - Base geometry
+ - ad9b15b9-3d25-44f8-835e-637cd41ab1f3
+ - Geometry
+ - Geometry
+ - true
+ - dbe25fd3-7c8f-4ba4-aa76-935deab2513d
+ - 1
+
+
+
+
+ -
+ 2741
+ -6021
+ 51
+ 20
+
+ -
+ 2768
+ -6011
+
+
+
+
+
+
+
+ - Translation vector
+ - 835cfb38-6c49-4afe-8da6-226f3a5aac91
+ - Motion
+ - Motion
+ - false
+ - 532b21ed-054c-48dc-9ad9-d23e32f3c462
+ - 1
+
+
+
+
+ -
+ 2741
+ -6001
+ 51
+ 20
+
+ -
+ 2768
+ -5991
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -6021
+ 53
+ 20
+
+ -
+ 2850
+ -6011
+
+
+
+
+
+
+
+ - Transformation data
+ - 7d36d4f0-da61-46e7-80c2-c9a571beca63
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -6001
+ 53
+ 20
+
+ -
+ 2850
+ -5991
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2730
+ -5958
+ 155
+ 64
+
+ -
+ 2831
+ -5926
+
+
+
+
+
+ - Vector {x} component
+ - 1b39f073-7197-461a-92d6-670b7c39add9
+ - -X
+ - X component
+ - X component
+ - false
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - 1
+
+
+
+
+ -
+ 2732
+ -5956
+ 84
+ 20
+
+ -
+ 2783.5
+ -5946
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 3514c265-9042-4c28-8ab6-41303131d2d4
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -5936
+ 84
+ 20
+
+ -
+ 2783.5
+ -5926
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 6
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 7d33e313-0e01-4d2b-9bd6-5619cee4cb27
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2732
+ -5916
+ 84
+ 20
+
+ -
+ 2783.5
+ -5906
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 532b21ed-054c-48dc-9ad9-d23e32f3c462
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -5956
+ 37
+ 30
+
+ -
+ 2866
+ -5941
+
+
+
+
+
+
+
+ - Vector length
+ - 3b99ba49-6ac8-43e3-bd99-f3213da6a2bf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2846
+ -5926
+ 37
+ 30
+
+ -
+ 2866
+ -5911
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6f02b009-b1e7-40fb-982b-a4cc92989f93
+ - e8ede47a-0766-46eb-98e9-795795777e72
+ - f0598189-5cbb-4645-844b-5261772d3d6f
+ - abd6a449-9c16-4c76-8ef0-98e478cd83ad
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - d1b7aee9-6996-44d7-a2a8-751ca861756f
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - 7239acaa-4bc2-4df7-9ccc-41202268cb8a
+ - 0a0d20ea-45ef-4ce5-98da-34c0193e0b0b
+ - 4e1fee94-8bf0-4a03-9bb5-efb4198de1d7
+ - 0e8fc1e8-082d-43ee-a7cb-5a08841c0259
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - c85fbe40-8c7e-4798-9c91-10dc94e3ce94
+ - 1ed8af89-73d9-46fb-9f92-85e97b1954ab
+ - 35cf69c6-1a64-47f3-beee-9ffa3d777872
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - 957995f5-c366-463c-b3ce-f70bdb0ab1f3
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - 24
+ - 476c07b4-d4b7-48f5-ab23-63a6ae96d8b0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - Relay
+ -
+ - false
+ - 50df359b-4457-448c-bbbc-234551b5fbea
+ - 1
+
+
+
+
+ -
+ 2788
+ -4898
+ 40
+ 16
+
+ -
+ 2808
+ -4890
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2755
+ -7648
+ 106
+ 64
+
+ -
+ 2819
+ -7616
+
+
+
+
+
+ - Line start point
+ - d0cf9246-2f18-4473-bf16-83da1ef7502f
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2757
+ -7646
+ 47
+ 20
+
+ -
+ 2782
+ -7636
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 4ebccf48-81fd-4163-b2ad-9c377061e5b4
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2757
+ -7626
+ 47
+ 20
+
+ -
+ 2782
+ -7616
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 4c250e73-ca00-491e-8345-30d0c199d208
+ - true
+ - Length
+ - Length
+ - false
+ - eed75ede-9954-4e74-ba7c-3bd2194f1ac6
+ - 1
+
+
+
+
+ -
+ 2757
+ -7606
+ 47
+ 20
+
+ -
+ 2782
+ -7596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 37fc79be-f3e4-4303-9f79-031b628eb7dc
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -7646
+ 25
+ 60
+
+ -
+ 2848
+ -7616
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f6e9f1c3-eee4-412c-baba-b0430add3abc
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2710
+ -6976
+ 194
+ 28
+
+ -
+ 2810
+ -6962
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8303f00c-4b96-4759-b910-899f66742b0e
+ - true
+ - Variable O
+ - O
+ - true
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2712
+ -6974
+ 14
+ 24
+
+ -
+ 2720.5
+ -6962
+
+
+
+
+
+
+
+ - Result of expression
+ - d4046849-9388-4abb-ad4b-8c2a65b66e28
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ -6974
+ 9
+ 24
+
+ -
+ 2899
+ -6962
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - Panel
+
+ - false
+ - 1
+ - d4046849-9388-4abb-ad4b-8c2a65b66e28
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -7269
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.867
+ -7268.153
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
+ - Relay
+ -
+ - false
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - 1
+
+
+
+
+ -
+ 2787
+ -7316
+ 40
+ 16
+
+ -
+ 2807
+ -7308
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - Relay
+ -
+ - false
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - 1
+
+
+
+
+ -
+ 2787
+ -6929
+ 40
+ 16
+
+ -
+ 2807
+ -6921
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - a010a0aa-e30f-4f91-a2a2-d90e6518b218
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2732
+ -7470
+ 150
+ 150
+
+ -
+ 2732.966
+ -7469.977
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - 73b7337b-7d22-476b-b538-b7ba58edd468
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2743
+ -6840
+ 128
+ 28
+
+ -
+ 2796
+ -6826
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - f9008767-dc99-4bbc-80ec-9f00fdbe3638
+ - Values
+ - Values
+ - false
+ - 8e78b602-bf7b-41ab-acd6-75e9dd78a318
+ - 1
+
+
+
+
+ -
+ 2745
+ -6838
+ 36
+ 24
+
+ -
+ 2764.5
+ -6826
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - 86f264df-1e7e-42b2-bbf5-062c2f94d72e
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2811
+ -6838
+ 58
+ 24
+
+ -
+ 2841.5
+ -6826
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - Relay
+
+ - false
+ - 86f264df-1e7e-42b2-bbf5-062c2f94d72e
+ - 1
+
+
+
+
+ -
+ 2787
+ -6874
+ 40
+ 16
+
+ -
+ 2807
+ -6866
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - Relay
+
+ - false
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - 1
+
+
+
+
+ -
+ 2787
+ -6733
+ 40
+ 16
+
+ -
+ 2807
+ -6725
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - fe79c4c0-7b7d-412d-9138-48cd990ffa41
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2739
+ -6795
+ 136
+ 44
+
+ -
+ 2825
+ -6773
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 91ecac42-f5a5-4b03-a9df-28662d8d96b0
+ - Items
+ - Items
+ - false
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - 1
+
+
+
+
+ -
+ 2741
+ -6793
+ 69
+ 20
+
+ -
+ 2777
+ -6783
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 467868de-26c2-4f1f-a7ac-6f2f62ce628c
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2741
+ -6773
+ 69
+ 20
+
+ -
+ 2777
+ -6763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - 8e78b602-bf7b-41ab-acd6-75e9dd78a318
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -6793
+ 33
+ 20
+
+ -
+ 2858
+ -6783
+
+
+
+
+
+
+
+ - Number of items replaced
+ - 8493b36e-89a5-45ef-84f4-a49793c215a8
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ -6773
+ 33
+ 20
+
+ -
+ 2858
+ -6763
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - e36e38bd-69b6-4b50-aa47-e40c3308a856
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2769
+ -7533
+ 82
+ 44
+
+ -
+ 2800
+ -7511
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 06b7a419-33b2-4d8a-b837-1cdce113f55b
+ - A
+ - A
+ - true
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2771
+ -7531
+ 14
+ 20
+
+ -
+ 2779.5
+ -7521
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 9c229038-e9c6-490f-a6e4-31f6e96af3b4
+ - B
+ - B
+ - true
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - 1
+
+
+
+
+ -
+ 2771
+ -7511
+ 14
+ 20
+
+ -
+ 2779.5
+ -7501
+
+
+
+
+
+
+
+ - Result of multiplication
+ - eed75ede-9954-4e74-ba7c-3bd2194f1ac6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2815
+ -7531
+ 34
+ 40
+
+ -
+ 2833.5
+ -7511
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 6
+
+ - 383463.976640
+
+
+
+
+ -
+ 2679
+ -7570
+ 250
+ 20
+
+ -
+ 2679.178
+ -7569.615
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 6a844a25-3a25-4592-b8bd-990161e9c483
+ - Move
+ - Move
+
+
+
+
+ -
+ 2738
+ -7824
+ 138
+ 44
+
+ -
+ 2806
+ -7802
+
+
+
+
+
+ - Base geometry
+ - 5b63efe8-e076-4f0c-bc0b-c75f953f0de4
+ - Geometry
+ - Geometry
+ - true
+ - 37fc79be-f3e4-4303-9f79-031b628eb7dc
+ - 1
+
+
+
+
+ -
+ 2740
+ -7822
+ 51
+ 20
+
+ -
+ 2767
+ -7812
+
+
+
+
+
+
+
+ - Translation vector
+ - f8ec87b4-b92d-431e-bfb8-9cc293e8b169
+ - Motion
+ - Motion
+ - false
+ - 3276370e-5437-4e4d-a00b-34a267233b72
+ - 1
+
+
+
+
+ -
+ 2740
+ -7802
+ 51
+ 20
+
+ -
+ 2767
+ -7792
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -7822
+ 53
+ 20
+
+ -
+ 2849
+ -7812
+
+
+
+
+
+
+
+ - Transformation data
+ - 1613cb01-5f0f-4f26-a5e1-07023926a0ad
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2821
+ -7802
+ 53
+ 20
+
+ -
+ 2849
+ -7792
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - f61f92f1-b10f-4586-86fa-3d41998aa56d
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2729
+ -7759
+ 155
+ 64
+
+ -
+ 2830
+ -7727
+
+
+
+
+
+ - Vector {x} component
+ - cd0e24e3-86ea-4f50-baf3-54c92ed21d6d
+ - -X
+ - X component
+ - X component
+ - false
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - 1
+
+
+
+
+ -
+ 2731
+ -7757
+ 84
+ 20
+
+ -
+ 2782.5
+ -7747
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 06145659-02ed-467e-85b6-ae2cf3d98573
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -7737
+ 84
+ 20
+
+ -
+ 2782.5
+ -7727
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 7
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - afd74686-31f3-4a45-86f7-739561f2eba1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2731
+ -7717
+ 84
+ 20
+
+ -
+ 2782.5
+ -7707
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 3276370e-5437-4e4d-a00b-34a267233b72
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -7757
+ 37
+ 30
+
+ -
+ 2865
+ -7742
+
+
+
+
+
+
+
+ - Vector length
+ - 0798d4b7-6861-49a8-80df-74eece16c617
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2845
+ -7727
+ 37
+ 30
+
+ -
+ 2865
+ -7712
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7fad2a3d-6b73-4fd3-b85f-cbcca0edb0e9
+ - f6e9f1c3-eee4-412c-baba-b0430add3abc
+ - 44d9ac45-165c-4030-80af-37df49237525
+ - a8aee104-1a78-4e6f-9c6b-f240f9e79dc3
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - a010a0aa-e30f-4f91-a2a2-d90e6518b218
+ - 73b7337b-7d22-476b-b538-b7ba58edd468
+ - 6234ac24-d0b0-412d-8309-3a3c0d7d470e
+ - 2ad015b5-75aa-4327-af12-ae66b821121a
+ - fe79c4c0-7b7d-412d-9138-48cd990ffa41
+ - e36e38bd-69b6-4b50-aa47-e40c3308a856
+ - 232d4da2-850f-4939-a451-e2ac412c6f34
+ - 6a844a25-3a25-4592-b8bd-990161e9c483
+ - f61f92f1-b10f-4586-86fa-3d41998aa56d
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - 81849188-b493-4caf-b711-90072846d543
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - e6204409-8517-47d2-8bad-b618d6ba81d7
+ - f204596d-0539-42bc-b3c3-7a6c11f93504
+ - 4188728e-68e2-4d42-82f2-19bb6c40b380
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - 820d65ee-b16e-41e8-bf3f-4da0ede194da
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - 24
+ - a2cd357f-68cc-478e-bfc9-b15dcd14bcd8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a9078840-89ba-460d-b861-d52f705e4fb5
+ - Relay
+ -
+ - false
+ - 052a3230-6371-4fd8-b081-e62dc726cb17
+ - 1
+
+
+
+
+ -
+ 2787
+ -6699
+ 40
+ 16
+
+ -
+ 2807
+ -6691
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - ad773b43-698a-43df-9f39-1c84baa567ca
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 4737
+ 144
+ 104
+
+ -
+ 2815
+ 4789
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ad67bb89-00f7-4f5d-80bb-5312e0b77548
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4739
+ 67
+ 20
+
+ -
+ 2768
+ 4749
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;247;247;247
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - beb00b3d-6cd2-45bc-8d57-b861eb1da2a7
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4759
+ 67
+ 20
+
+ -
+ 2768
+ 4769
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 4a12640f-dbac-4142-a987-4363e6401952
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4779
+ 67
+ 20
+
+ -
+ 2768
+ 4789
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 7f2f25cc-1741-4494-9115-acc59237030b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4799
+ 67
+ 20
+
+ -
+ 2768
+ 4809
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 732e91ec-ef14-43b3-9c8c-ee3eff54ae40
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4819
+ 67
+ 20
+
+ -
+ 2768
+ 4829
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f82ad4a3-12a6-426d-b37d-9cba6ac96914
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 4739
+ 43
+ 100
+
+ -
+ 2853
+ 4789
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 9183d5f8-089d-4708-9f00-983f03c9f90e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 4693
+ 82
+ 44
+
+ -
+ 2830
+ 4715
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - b65a33e6-e0ae-4a17-8c26-6a37887699d7
+ - Geometry
+ - Geometry
+ - false
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - 1
+
+
+
+
+ -
+ 2764
+ 4695
+ 51
+ 20
+
+ -
+ 2791
+ 4705
+
+
+
+
+
+
+
+ - The material override
+ - 987365d5-4e94-4309-af90-c316b4fcfa7d
+ - Material
+ - Material
+ - false
+ - f82ad4a3-12a6-426d-b37d-9cba6ac96914
+ - 1
+
+
+
+
+ -
+ 2764
+ 4715
+ 51
+ 20
+
+ -
+ 2791
+ 4725
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ad773b43-698a-43df-9f39-1c84baa567ca
+ - 9183d5f8-089d-4708-9f00-983f03c9f90e
+ - 2
+ - b29ac3e2-b858-44d8-acce-0fb154f6a64a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 2901
+ 144
+ 104
+
+ -
+ 2815
+ 2953
+
+
+
+
+
+ - Colour of the diffuse channel
+ - f35f8c3b-42c1-4f8f-8bae-afa3e89c8adf
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2903
+ 67
+ 20
+
+ -
+ 2768
+ 2913
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;240;240;240
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 5ede20c4-85f8-476e-b24d-15a10ed8ec36
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2923
+ 67
+ 20
+
+ -
+ 2768
+ 2933
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d8e416fa-c61f-4474-b1cc-ed0e23dda398
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2943
+ 67
+ 20
+
+ -
+ 2768
+ 2953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - c5eaca7e-9f62-4201-8a59-2c655d613222
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2963
+ 67
+ 20
+
+ -
+ 2768
+ 2973
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 64a96de1-9ad2-4973-b980-32a9b66896c5
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2983
+ 67
+ 20
+
+ -
+ 2768
+ 2993
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 2903
+ 43
+ 100
+
+ -
+ 2853
+ 2953
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 2839
+ 82
+ 44
+
+ -
+ 2830
+ 2861
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - a775575b-6a9d-4faf-98e2-fcec280ac080
+ - Geometry
+ - Geometry
+ - false
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - 1
+
+
+
+
+ -
+ 2764
+ 2841
+ 51
+ 20
+
+ -
+ 2791
+ 2851
+
+
+
+
+
+
+
+ - The material override
+ - 27e298d6-366b-40d7-adad-44c20aa72f49
+ - Material
+ - Material
+ - false
+ - 5fa6b6a9-e7b7-4492-8fb8-e076221c6ab0
+ - 1
+
+
+
+
+ -
+ 2764
+ 2861
+ 51
+ 20
+
+ -
+ 2791
+ 2871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e606582f-8157-4dd3-9d74-b8545096f2b1
+ - 5a142162-4b8f-4585-967e-5ce611b2ed6b
+ - 2
+ - e9d1dc88-7240-4c0f-bb0a-9eef2eae717d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 1012
+ 144
+ 104
+
+ -
+ 2815
+ 1064
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 862ecfb4-9dce-499f-aea5-424712d104e6
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1014
+ 67
+ 20
+
+ -
+ 2768
+ 1024
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;232;232;232
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 0cb9200c-9143-4763-a8ad-5051c5a83a76
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1034
+ 67
+ 20
+
+ -
+ 2768
+ 1044
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 1f1703d7-7614-474f-82fd-f9dc460666b9
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1054
+ 67
+ 20
+
+ -
+ 2768
+ 1064
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 25d1a990-b412-4b7d-a24f-9e51b52b2bae
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1074
+ 67
+ 20
+
+ -
+ 2768
+ 1084
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 365c0911-7c14-4a89-905d-b4e5075d21f9
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 1094
+ 67
+ 20
+
+ -
+ 2768
+ 1104
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 44e5dd6b-0761-4b9d-82ab-234494eed3da
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 1014
+ 43
+ 100
+
+ -
+ 2853
+ 1064
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 949
+ 82
+ 44
+
+ -
+ 2830
+ 971
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - aca82de9-175d-4131-a4db-7b596ef9748d
+ - Geometry
+ - Geometry
+ - false
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - 1
+
+
+
+
+ -
+ 2764
+ 951
+ 51
+ 20
+
+ -
+ 2791
+ 961
+
+
+
+
+
+
+
+ - The material override
+ - e34f1e18-8aa0-4179-843c-f4a0d467e743
+ - Material
+ - Material
+ - false
+ - 44e5dd6b-0761-4b9d-82ab-234494eed3da
+ - 1
+
+
+
+
+ -
+ 2764
+ 971
+ 51
+ 20
+
+ -
+ 2791
+ 981
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 55fe76bb-1b33-440c-8fc1-fe01651e8fa4
+ - 686977b0-f5c0-4fd2-85ff-41e36f44e9e1
+ - 2
+ - e3749bf3-dd2f-4da8-826c-372b05cde1be
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -751
+ 144
+ 104
+
+ -
+ 2815
+ -699
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 9dfb472c-5cc8-46c1-8cd5-0f2e7a48bcda
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -749
+ 67
+ 20
+
+ -
+ 2768
+ -739
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;224;224;224
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 7c307556-214d-4f71-b322-4f69ce0ab7ed
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -729
+ 67
+ 20
+
+ -
+ 2768
+ -719
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d19faa40-2451-47cc-a9df-b4aa836f36e1
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -709
+ 67
+ 20
+
+ -
+ 2768
+ -699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - ce97aa24-ec44-4710-97d4-ac49f48d4c43
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -689
+ 67
+ 20
+
+ -
+ 2768
+ -679
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 469363af-0fc7-489b-bb94-4f8cb9e85d87
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -669
+ 67
+ 20
+
+ -
+ 2768
+ -659
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -749
+ 43
+ 100
+
+ -
+ 2853
+ -699
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -815
+ 82
+ 44
+
+ -
+ 2830
+ -793
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 8c3a847d-108d-47cf-b9f2-b5f6ff0de7d4
+ - Geometry
+ - Geometry
+ - false
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - 1
+
+
+
+
+ -
+ 2764
+ -813
+ 51
+ 20
+
+ -
+ 2791
+ -803
+
+
+
+
+
+
+
+ - The material override
+ - 34a16f33-55af-4ff7-a4cb-527a6ae14d66
+ - Material
+ - Material
+ - false
+ - ac32a6b4-fcbd-4d08-a147-a6f41fb252cd
+ - 1
+
+
+
+
+ -
+ 2764
+ -793
+ 51
+ 20
+
+ -
+ 2791
+ -783
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e909739f-f11a-4f63-961e-cbe23cb83593
+ - 84185437-01a9-46d2-8587-90dc91fbaeef
+ - 2
+ - a59697d7-edbc-4983-90af-5eeb0652d3e3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -2554
+ 144
+ 104
+
+ -
+ 2815
+ -2502
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 6a9969b5-d39c-418a-8e41-8cea0282875f
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2552
+ 67
+ 20
+
+ -
+ 2768
+ -2542
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;217;217;217
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 08335843-7ba9-47d9-9493-8a29bff63cb3
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2532
+ 67
+ 20
+
+ -
+ 2768
+ -2522
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 899d01de-bbfa-4690-8f86-695d0c4022d4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2512
+ 67
+ 20
+
+ -
+ 2768
+ -2502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - f0338b96-2125-4c44-a2ae-0427c3c7b14b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2492
+ 67
+ 20
+
+ -
+ 2768
+ -2482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a8fd779b-1d35-4470-8506-63f134c77f35
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2472
+ 67
+ 20
+
+ -
+ 2768
+ -2462
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 72d97efc-127d-43bd-8b96-346c9d2de708
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -2552
+ 43
+ 100
+
+ -
+ 2853
+ -2502
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -2616
+ 82
+ 44
+
+ -
+ 2830
+ -2594
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 2499e526-3d53-41ff-a140-6b6ed3766d97
+ - Geometry
+ - Geometry
+ - false
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - 1
+
+
+
+
+ -
+ 2764
+ -2614
+ 51
+ 20
+
+ -
+ 2791
+ -2604
+
+
+
+
+
+
+
+ - The material override
+ - a9864782-8162-46a4-bd26-08eb8495c635
+ - Material
+ - Material
+ - false
+ - 72d97efc-127d-43bd-8b96-346c9d2de708
+ - 1
+
+
+
+
+ -
+ 2764
+ -2594
+ 51
+ 20
+
+ -
+ 2791
+ -2584
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 373fcd53-e5a6-4804-a735-47b5d060439d
+ - 488f27d6-7474-41e8-8662-7a97ae90ccac
+ - 2
+ - ee5c627c-1bb9-411b-8539-5f5cfd653e05
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -4347
+ 144
+ 104
+
+ -
+ 2819
+ -4295
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e8083e49-d8fc-43e7-9e13-90196d88fd22
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4345
+ 67
+ 20
+
+ -
+ 2772
+ -4335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;209;209;209
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 4c6d451b-8ce0-4895-8840-6333f6417f8f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4325
+ 67
+ 20
+
+ -
+ 2772
+ -4315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - e5b83aa7-e213-4918-8fc2-73636ee06c40
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4305
+ 67
+ 20
+
+ -
+ 2772
+ -4295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 10ac19be-3776-44e0-8533-cd25d50459ba
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4285
+ 67
+ 20
+
+ -
+ 2772
+ -4275
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - ebbfcc4f-ddad-4d5c-96d5-7b5091ab9879
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4265
+ 67
+ 20
+
+ -
+ 2772
+ -4255
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - f555af9a-1db5-40bd-b0e7-18bede30614a
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4345
+ 43
+ 100
+
+ -
+ 2857
+ -4295
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -4409
+ 82
+ 44
+
+ -
+ 2834
+ -4387
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ea4e91dd-40e4-42d0-af6a-a4a80637f782
+ - Geometry
+ - Geometry
+ - false
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - 1
+
+
+
+
+ -
+ 2768
+ -4407
+ 51
+ 20
+
+ -
+ 2795
+ -4397
+
+
+
+
+
+
+
+ - The material override
+ - 910ce2f8-54a6-4c8f-a029-1ce8ebd6a538
+ - Material
+ - Material
+ - false
+ - f555af9a-1db5-40bd-b0e7-18bede30614a
+ - 1
+
+
+
+
+ -
+ 2768
+ -4387
+ 51
+ 20
+
+ -
+ 2795
+ -4377
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2c8dd4d6-85ae-4307-8e6b-7e1cb32cc6e4
+ - 4c5340f4-b6ee-4d02-9738-f4534ec1d02d
+ - 2
+ - 3a1806c9-f1d1-40d4-b0c3-ba40727c7574
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -6147
+ 144
+ 104
+
+ -
+ 2820
+ -6095
+
+
+
+
+
+ - Colour of the diffuse channel
+ - ffc5fc26-df97-4628-815d-1fbc69bbd8ce
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6145
+ 67
+ 20
+
+ -
+ 2773
+ -6135
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;201;201;201
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - b4555e19-48b9-489f-9ede-b276df8e0ff5
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6125
+ 67
+ 20
+
+ -
+ 2773
+ -6115
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - c2c70153-07dc-4b02-af76-d2a542ff3409
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6105
+ 67
+ 20
+
+ -
+ 2773
+ -6095
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d03ba336-d7ca-4b3d-8da3-5ce5393a2382
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6085
+ 67
+ 20
+
+ -
+ 2773
+ -6075
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - b6c078d2-b806-4fe1-bd6c-38262eb48030
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6065
+ 67
+ 20
+
+ -
+ 2773
+ -6055
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - d036ce0d-4e57-4466-9ee5-b83c97c296ec
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -6145
+ 43
+ 100
+
+ -
+ 2858
+ -6095
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -6210
+ 82
+ 44
+
+ -
+ 2835
+ -6188
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 569d8839-4b6e-4511-a163-061f73b0c2c3
+ - Geometry
+ - Geometry
+ - false
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - 1
+
+
+
+
+ -
+ 2769
+ -6208
+ 51
+ 20
+
+ -
+ 2796
+ -6198
+
+
+
+
+
+
+
+ - The material override
+ - 64463d3f-5ebe-4484-b8dd-78af72c4c971
+ - Material
+ - Material
+ - false
+ - d036ce0d-4e57-4466-9ee5-b83c97c296ec
+ - 1
+
+
+
+
+ -
+ 2769
+ -6188
+ 51
+ 20
+
+ -
+ 2796
+ -6178
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c60b7d8a-b3ae-4380-9450-58ceb8ae5a6c
+ - 91d19239-fa22-43d8-9328-a5aaa83c29d0
+ - 2
+ - c85fbe40-8c7e-4798-9c91-10dc94e3ce94
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 81849188-b493-4caf-b711-90072846d543
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -7983
+ 144
+ 104
+
+ -
+ 2819
+ -7931
+
+
+
+
+
+ - Colour of the diffuse channel
+ - d45cbd41-93f0-467f-9696-2a9b3bf4f447
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7981
+ 67
+ 20
+
+ -
+ 2772
+ -7971
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;194;194;194
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 916b1084-e922-49cc-961b-81818ef69fbb
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7961
+ 67
+ 20
+
+ -
+ 2772
+ -7951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - d9c3425f-35ce-4ad2-bc04-7a7b6ad0c5b4
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7941
+ 67
+ 20
+
+ -
+ 2772
+ -7931
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1c04e62d-869e-4a43-bcc2-30f8bbd4de45
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7921
+ 67
+ 20
+
+ -
+ 2772
+ -7911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6e7e40e6-3813-481e-9ca1-fb96e8f08a64
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -7901
+ 67
+ 20
+
+ -
+ 2772
+ -7891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - e5f7b402-d467-469c-9339-523875c835c0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -7981
+ 43
+ 100
+
+ -
+ 2857
+ -7931
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -8045
+ 82
+ 44
+
+ -
+ 2834
+ -8023
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 393f6e0a-5bf5-4d57-9dd9-5769e8b30001
+ - Geometry
+ - Geometry
+ - false
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - 1
+
+
+
+
+ -
+ 2768
+ -8043
+ 51
+ 20
+
+ -
+ 2795
+ -8033
+
+
+
+
+
+
+
+ - The material override
+ - dbbfe754-3ecd-4a4b-b535-cc9392f3c940
+ - Material
+ - Material
+ - false
+ - e5f7b402-d467-469c-9339-523875c835c0
+ - 1
+
+
+
+
+ -
+ 2768
+ -8023
+ 51
+ 20
+
+ -
+ 2795
+ -8013
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 81849188-b493-4caf-b711-90072846d543
+ - 01de0c9e-9e9f-4576-b496-5f24525a07d9
+ - 2
+ - e6204409-8517-47d2-8bad-b618d6ba81d7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 176808cf-6dbb-4465-91a4-587fdbff58b1
+ - true
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2774
+ -9468
+ 106
+ 64
+
+ -
+ 2838
+ -9436
+
+
+
+
+
+ - Line start point
+ - 0f7ccecc-e0e9-4c5a-a5c2-37b6a1c89f94
+ - true
+ - Start
+ - Start
+ - false
+ - b2222aa6-f808-4c29-97c4-6993cf20b4b3
+ - 1
+
+
+
+
+ -
+ 2776
+ -9466
+ 47
+ 20
+
+ -
+ 2801
+ -9456
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 2dd18fad-fe56-49af-8d7c-ff770b16d28b
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 2776
+ -9446
+ 47
+ 20
+
+ -
+ 2801
+ -9436
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - d6a94cb8-a1d9-487a-b7d4-86174377d65a
+ - true
+ - Length
+ - Length
+ - false
+ - 363c1268-91ff-471d-af28-65ce38ad48b5
+ - 1
+
+
+
+
+ -
+ 2776
+ -9426
+ 47
+ 20
+
+ -
+ 2801
+ -9416
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
+ - true
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2853
+ -9466
+ 25
+ 60
+
+ -
+ 2867
+ -9436
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 689496b4-7709-4277-b48e-e5e34601568a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2709
+ -8809
+ 194
+ 28
+
+ -
+ 2809
+ -8795
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f7006f73-3992-4384-8c5d-3ba2718bac56
+ - true
+ - Variable O
+ - O
+ - true
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2711
+ -8807
+ 14
+ 24
+
+ -
+ 2719.5
+ -8795
+
+
+
+
+
+
+
+ - Result of expression
+ - 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2892
+ -8807
+ 9
+ 24
+
+ -
+ 2898
+ -8795
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - Panel
+
+ - false
+ - 1
+ - 3e3dadbe-dd8a-4bc6-8678-a7a7dc8a7cc3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2701
+ -9102
+ 214
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2701.036
+ -9101.007
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e81bf43-4be8-4eb1-864b-95a258d57f2f
+ - Relay
+ -
+ - false
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - 1
+
+
+
+
+ -
+ 2786
+ -9148
+ 40
+ 16
+
+ -
+ 2806
+ -9140
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - Relay
+ -
+ - false
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - 1
+
+
+
+
+ -
+ 2786
+ -8761
+ 40
+ 16
+
+ -
+ 2806
+ -8753
+
+
+
+
+
+
+
+
+
+ - 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
+ - Quick Graph
+
+
+
+
+ - 1
+ - Display a set of y-values as a graph
+ - bede73fe-828b-4f54-b263-8945e4b41bc3
+ - Quick Graph
+ - Quick Graph
+ - false
+ - 0
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2733
+ -9303
+ 150
+ 150
+
+ -
+ 2733.136
+ -9302.829
+
+ - 0
+
+
+
+
+
+
+
+
+ - dd17d442-3776-40b3-ad5b-5e188b56bd4c
+ - Relative Differences
+
+
+
+
+ - Compute relative differences for a list of data
+ - true
+ - c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
+ - Relative Differences
+ - Relative Differences
+
+
+
+
+ -
+ 2742
+ -8672
+ 128
+ 28
+
+ -
+ 2795
+ -8658
+
+
+
+
+
+ - 1
+ - List of data to operate on (numbers or points or vectors allowed)
+ - d846ee0d-8e0d-4df8-bb11-e468fa4098bb
+ - Values
+ - Values
+ - false
+ - d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
+ - 1
+
+
+
+
+ -
+ 2744
+ -8670
+ 36
+ 24
+
+ -
+ 2763.5
+ -8658
+
+
+
+
+
+
+
+ - 1
+ - Differences between consecutive items
+ - ecc1e601-f24b-4ebc-8c0f-4439786d6f00
+ - Differenced
+ - Differenced
+ - false
+ - 0
+
+
+
+
+ -
+ 2810
+ -8670
+ 58
+ 24
+
+ -
+ 2840.5
+ -8658
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - Relay
+
+ - false
+ - ecc1e601-f24b-4ebc-8c0f-4439786d6f00
+ - 1
+
+
+
+
+ -
+ 2786
+ -8706
+ 40
+ 16
+
+ -
+ 2806
+ -8698
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - Relay
+
+ - false
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - 1
+
+
+
+
+ -
+ 2786
+ -8565
+ 40
+ 16
+
+ -
+ 2806
+ -8557
+
+
+
+
+
+
+
+
+
+ - f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
+ - Replace Nulls
+
+
+
+
+ - Replace nulls or invalid data with other data
+ - true
+ - 70057e17-ddee-4825-99e2-ea1ec62f02db
+ - Replace Nulls
+ - Replace Nulls
+
+
+
+
+ -
+ 2738
+ -8627
+ 136
+ 44
+
+ -
+ 2824
+ -8605
+
+
+
+
+
+ - 1
+ - Items to test for null
+ - 5fe79787-3412-49fd-9e00-13330f43ed85
+ - Items
+ - Items
+ - false
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - 1
+
+
+
+
+ -
+ 2740
+ -8625
+ 69
+ 20
+
+ -
+ 2776
+ -8615
+
+
+
+
+
+
+
+ - 1
+ - Items to replace nulls with
+ - 28f7a17d-7b5f-44cf-ab0b-c58199dec7ac
+ - Replacements
+ - Replacements
+ - false
+ - 0
+
+
+
+
+ -
+ 2740
+ -8605
+ 69
+ 20
+
+ -
+ 2776
+ -8595
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - List without any nulls
+ - d1b21b3f-8f9f-4bd0-adb1-cef864d42fa1
+ - Items
+ - Items
+ - false
+ - 0
+
+
+
+
+ -
+ 2839
+ -8625
+ 33
+ 20
+
+ -
+ 2857
+ -8615
+
+
+
+
+
+
+
+ - Number of items replaced
+ - d57bd584-4a69-4286-91fb-6cf3c15a06ef
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 2839
+ -8605
+ 33
+ 20
+
+ -
+ 2857
+ -8595
+
+
+
+
+
+
+
+
+
+
+
+ - ce46b74e-00c9-43c4-805a-193b69ea4a11
+ - Multiplication
+
+
+
+
+ - Mathematical multiplication
+ - true
+ - 486b6841-9208-4a69-a5aa-9c08bdef0dcf
+ - Multiplication
+ - Multiplication
+
+
+
+
+ -
+ 2777
+ -9364
+ 82
+ 44
+
+ -
+ 2808
+ -9342
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for multiplication
+ - 2307e579-998d-4f07-9d0e-c42c822c05fb
+ - A
+ - A
+ - true
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - 1
+
+
+
+
+ -
+ 2779
+ -9362
+ 14
+ 20
+
+ -
+ 2787.5
+ -9352
+
+
+
+
+
+
+
+ - Second item for multiplication
+ - 20fd6e60-24ce-4425-b4f2-1e331622ea1b
+ - B
+ - B
+ - true
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - 1
+
+
+
+
+ -
+ 2779
+ -9342
+ 14
+ 20
+
+ -
+ 2787.5
+ -9332
+
+
+
+
+
+
+
+ - Result of multiplication
+ - 363c1268-91ff-471d-af28-65ce38ad48b5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9362
+ 34
+ 40
+
+ -
+ 2841.5
+ -9342
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 7
+
+ - 2183007.89888
+
+
+
+
+ -
+ 2688
+ -9384
+ 250
+ 20
+
+ -
+ 2688.392
+ -9383.671
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 6438715f-b0fd-4b4e-9310-90c8dc88eed7
+ - Move
+ - Move
+
+
+
+
+ -
+ 2742
+ -9656
+ 138
+ 44
+
+ -
+ 2810
+ -9634
+
+
+
+
+
+ - Base geometry
+ - 2940cc7e-bea0-49cb-9092-38052325b555
+ - Geometry
+ - Geometry
+ - true
+ - 3c7fbaad-3a66-4e9b-aa4a-1700eda029b9
+ - 1
+
+
+
+
+ -
+ 2744
+ -9654
+ 51
+ 20
+
+ -
+ 2771
+ -9644
+
+
+
+
+
+
+
+ - Translation vector
+ - ac17c328-5da0-4fe0-944f-7eda470ed7e5
+ - Motion
+ - Motion
+ - false
+ - ad7160db-5a22-4671-b943-afdf62fc6dfa
+ - 1
+
+
+
+
+ -
+ 2744
+ -9634
+ 51
+ 20
+
+ -
+ 2771
+ -9624
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 10
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9654
+ 53
+ 20
+
+ -
+ 2853
+ -9644
+
+
+
+
+
+
+
+ - Transformation data
+ - 28681979-1747-4c79-8901-2aa89c3702d7
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -9634
+ 53
+ 20
+
+ -
+ 2853
+ -9624
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 78ea33a1-9827-433a-be36-4e7b57a05958
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2728
+ -9591
+ 155
+ 64
+
+ -
+ 2829
+ -9559
+
+
+
+
+
+ - Vector {x} component
+ - a4403a75-80a5-4b9b-9744-7ae1fd69dadd
+ - -X
+ - X component
+ - X component
+ - false
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - 1
+
+
+
+
+ -
+ 2730
+ -9589
+ 84
+ 20
+
+ -
+ 2781.5
+ -9579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - -1
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - d927ae3d-fdf3-4174-bf3e-990487df0fcd
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2730
+ -9569
+ 84
+ 20
+
+ -
+ 2781.5
+ -9559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 8
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - b218b573-f5ec-4514-a850-f7ad760fc03d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2730
+ -9549
+ 84
+ 20
+
+ -
+ 2781.5
+ -9539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - ad7160db-5a22-4671-b943-afdf62fc6dfa
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 2844
+ -9589
+ 37
+ 30
+
+ -
+ 2864
+ -9574
+
+
+
+
+
+
+
+ - Vector length
+ - 5ddbae44-47e6-45a8-b8fe-0e204073488f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2844
+ -9559
+ 37
+ 30
+
+ -
+ 2864
+ -9544
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 176808cf-6dbb-4465-91a4-587fdbff58b1
+ - 689496b4-7709-4277-b48e-e5e34601568a
+ - d55c439b-a720-4f39-ad97-9b9e49606d02
+ - 1e81bf43-4be8-4eb1-864b-95a258d57f2f
+ - 1e4b2379-a416-4225-8721-480e7d2eb297
+ - bede73fe-828b-4f54-b263-8945e4b41bc3
+ - c0a3dcb9-bca7-4fc5-9bb1-7cd02527dbdb
+ - 5964343a-531a-40e7-a7bd-a34379601d4d
+ - 647a4b7c-cdbf-40b6-bf44-e74b0d6bcdbb
+ - 70057e17-ddee-4825-99e2-ea1ec62f02db
+ - 486b6841-9208-4a69-a5aa-9c08bdef0dcf
+ - 30dcb29a-3032-4f08-be32-c0d9d2fcefb5
+ - 6438715f-b0fd-4b4e-9310-90c8dc88eed7
+ - 78ea33a1-9827-433a-be36-4e7b57a05958
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - 360d26a9-188d-4a04-ab85-c54f876af341
+ - 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
+ - db4363b4-d574-4300-84c6-5450a67bacc0
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - 717103e5-0ed1-4969-ae88-8af3c23de426
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - 24
+ - 11c51077-c738-44ff-b97c-c70596e4a90c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 601aa3b6-34d0-4a75-9712-3a105ed8c617
+ - Relay
+ -
+ - false
+ - 963d551b-51b2-47ee-a44a-02c105fb8854
+ - 1
+
+
+
+
+ -
+ 2786
+ -8531
+ 40
+ 16
+
+ -
+ 2806
+ -8523
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2734
+ -9815
+ 144
+ 104
+
+ -
+ 2818
+ -9763
+
+
+
+
+
+ - Colour of the diffuse channel
+ - b174bc38-cf40-4d69-ba60-9f514adbf386
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9813
+ 67
+ 20
+
+ -
+ 2771
+ -9803
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;186;186;186
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 157d70e8-95da-47f3-a47d-565655495fb6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9793
+ 67
+ 20
+
+ -
+ 2771
+ -9783
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - ca2b9cd2-ba13-4a55-b373-e503d5fc893f
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9773
+ 67
+ 20
+
+ -
+ 2771
+ -9763
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 5001bf57-64e1-4f1d-8c22-c98e35203217
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9753
+ 67
+ 20
+
+ -
+ 2771
+ -9743
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8a3823d8-a7cf-4ed3-b142-693eb42ead70
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9733
+ 67
+ 20
+
+ -
+ 2771
+ -9723
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 5e878f84-d64f-488e-9c2b-cf28add842a9
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2833
+ -9813
+ 43
+ 100
+
+ -
+ 2856
+ -9763
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2765
+ -9877
+ 82
+ 44
+
+ -
+ 2833
+ -9855
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - c07540f6-ca1c-4703-90c1-dd0c7c7be7c5
+ - Geometry
+ - Geometry
+ - false
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - 1
+
+
+
+
+ -
+ 2767
+ -9875
+ 51
+ 20
+
+ -
+ 2794
+ -9865
+
+
+
+
+
+
+
+ - The material override
+ - c497aebf-b647-4b79-8e5e-87d73179f881
+ - Material
+ - Material
+ - false
+ - 5e878f84-d64f-488e-9c2b-cf28add842a9
+ - 1
+
+
+
+
+ -
+ 2767
+ -9855
+ 51
+ 20
+
+ -
+ 2794
+ -9845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fd693eb3-3cfe-4cd3-b0ef-0ce2b455d741
+ - e1e086c6-b972-4c75-b268-a004ac8a9dd2
+ - 2
+ - 360d26a9-188d-4a04-ab85-c54f876af341
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 28b8e0ed-0e44-4505-b866-bab948ef8584
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 4593
+ 144
+ 64
+
+ -
+ 2805
+ 4625
+
+
+
+
+
+ - Curve to evaluate
+ - caf28ead-e3d6-40a7-91e8-d4e36841eee5
+ - Curve
+ - Curve
+ - false
+ - 1a211dc6-9d12-4255-9f70-29dc0d975fda
+ - 1
+
+
+
+
+ -
+ 2733
+ 4595
+ 57
+ 20
+
+ -
+ 2763
+ 4605
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d8829370-f071-42b1-9ddc-5b2dfb1c1762
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4615
+ 57
+ 20
+
+ -
+ 2763
+ 4625
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 388410ea-9e9d-4ae1-a9fb-62980d055bc9
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4635
+ 57
+ 20
+
+ -
+ 2763
+ 4645
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 46a8ffb0-0a6f-4f4a-af17-85da32781c16
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4595
+ 53
+ 20
+
+ -
+ 2848
+ 4605
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7f8394c2-2c0f-4b2c-802d-b0a8d128058e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4615
+ 53
+ 20
+
+ -
+ 2848
+ 4625
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b25e0766-e715-4b8d-9025-3e1aa0905b22
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 4635
+ 53
+ 20
+
+ -
+ 2848
+ 4645
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 50d6ea62-1933-4585-80ec-e31ffe7454f9
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 4489
+ 125
+ 84
+
+ -
+ 2807
+ 4531
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - b93cec8f-3919-43b3-9986-4220621f67e9
+ - Vertices
+ - Vertices
+ - false
+ - 46a8ffb0-0a6f-4f4a-af17-85da32781c16
+ - 1
+
+
+
+
+ -
+ 2742
+ 4491
+ 50
+ 20
+
+ -
+ 2768.5
+ 4501
+
+
+
+
+
+
+
+ - Curve degree
+ - 4d2826ec-8084-4c8d-9464-ad0a8136d22f
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4511
+ 50
+ 20
+
+ -
+ 2768.5
+ 4521
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - d93bb10c-7eff-4cd2-be7f-d56be052b3fa
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4531
+ 50
+ 20
+
+ -
+ 2768.5
+ 4541
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - a166b497-32cf-4d01-a3d6-ac10edf23528
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 4551
+ 50
+ 20
+
+ -
+ 2768.5
+ 4561
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4491
+ 41
+ 26
+
+ -
+ 2844
+ 4504.333
+
+
+
+
+
+
+
+ - Curve length
+ - 8c5df789-be84-4bba-93f8-9bea1a4d81e1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4517
+ 41
+ 27
+
+ -
+ 2844
+ 4531
+
+
+
+
+
+
+
+ - Curve domain
+ - c8ce1e91-9a93-4efe-be71-781d6411bb46
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 4544
+ 41
+ 27
+
+ -
+ 2844
+ 4557.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 4366
+ 144
+ 104
+
+ -
+ 2815
+ 4418
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 187535bd-483f-4359-9955-cbaa80c28dfe
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4368
+ 67
+ 20
+
+ -
+ 2768
+ 4378
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;222;222;222
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 49a9589c-7e26-4199-b47f-2d628b0107f6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4388
+ 67
+ 20
+
+ -
+ 2768
+ 4398
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 59201c17-3176-4c8e-898b-9cbcc204db7c
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4408
+ 67
+ 20
+
+ -
+ 2768
+ 4418
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 11cabf8f-8e8e-411f-ab2d-5b57498b3f3b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4428
+ 67
+ 20
+
+ -
+ 2768
+ 4438
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 6401c554-d3e2-4643-b23c-9ae4e5cbb028
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 4448
+ 67
+ 20
+
+ -
+ 2768
+ 4458
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 9962f537-c0cf-46f4-a78e-ecdfe3901837
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 4368
+ 43
+ 100
+
+ -
+ 2853
+ 4418
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 232fb359-d2a7-4c55-92a5-fe7f34103c48
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 4304
+ 82
+ 44
+
+ -
+ 2830
+ 4326
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - bd1a9e35-6632-4962-8e54-90d44cf1addf
+ - Geometry
+ - Geometry
+ - false
+ - 4b3e0cfc-1bf6-4465-bf99-c5f0e54e134f
+ - 1
+
+
+
+
+ -
+ 2764
+ 4306
+ 51
+ 20
+
+ -
+ 2791
+ 4316
+
+
+
+
+
+
+
+ - The material override
+ - a854219f-c8b6-4b07-a2d4-326ff44a5612
+ - Material
+ - Material
+ - false
+ - 9962f537-c0cf-46f4-a78e-ecdfe3901837
+ - 1
+
+
+
+
+ -
+ 2764
+ 4326
+ 51
+ 20
+
+ -
+ 2791
+ 4336
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a876c89-ef58-450e-ae46-5d661fc98802
+ - 232fb359-d2a7-4c55-92a5-fe7f34103c48
+ - 2
+ - a8c2d2b8-7793-472a-add0-5c6add577a3e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0119e2c8-ab78-45ad-b993-71b743e8bc99
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 2756
+ 144
+ 64
+
+ -
+ 2805
+ 2788
+
+
+
+
+
+ - Curve to evaluate
+ - 3333f64c-2af5-44de-a880-e2fc7a1228ce
+ - Curve
+ - Curve
+ - false
+ - 05694d97-021c-4a49-a1f3-e45b41b569e0
+ - 1
+
+
+
+
+ -
+ 2733
+ 2758
+ 57
+ 20
+
+ -
+ 2763
+ 2768
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 35823d4a-07d6-45ea-bbae-4d969549a7b7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2778
+ 57
+ 20
+
+ -
+ 2763
+ 2788
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 673a3038-d415-4c1c-9d51-997cb4db2b4f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2798
+ 57
+ 20
+
+ -
+ 2763
+ 2808
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2758
+ 53
+ 20
+
+ -
+ 2848
+ 2768
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 10c424d1-9914-425e-b107-92859d7f8413
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2778
+ 53
+ 20
+
+ -
+ 2848
+ 2788
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c7495475-a113-4d0b-a2c5-244c8b3d82e3
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 2798
+ 53
+ 20
+
+ -
+ 2848
+ 2808
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - aad5e89f-1689-4ac6-8192-4f4373cbea4f
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 2652
+ 125
+ 84
+
+ -
+ 2807
+ 2694
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 5b853f36-6ff2-4cab-932b-1fc49f517c99
+ - Vertices
+ - Vertices
+ - false
+ - da6e1a4f-7342-4c2d-ba53-b75ff40d63bb
+ - 1
+
+
+
+
+ -
+ 2742
+ 2654
+ 50
+ 20
+
+ -
+ 2768.5
+ 2664
+
+
+
+
+
+
+
+ - Curve degree
+ - 3e0c70d2-c5ae-4d39-9aed-b0b3540f767b
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2674
+ 50
+ 20
+
+ -
+ 2768.5
+ 2684
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 0b0227db-9aeb-4899-b796-20910564fc8b
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2694
+ 50
+ 20
+
+ -
+ 2768.5
+ 2704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 74c0b564-26ac-4175-af76-eed0523089d3
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 2714
+ 50
+ 20
+
+ -
+ 2768.5
+ 2724
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2fda8a5c-a335-4f9c-b920-73287d3f5422
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2654
+ 41
+ 26
+
+ -
+ 2844
+ 2667.333
+
+
+
+
+
+
+
+ - Curve length
+ - a352c05d-0573-4dc9-ae04-191182727d3c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2680
+ 41
+ 27
+
+ -
+ 2844
+ 2694
+
+
+
+
+
+
+
+ - Curve domain
+ - b744393d-0624-4eaa-87c1-50dd3b860c51
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 2707
+ 41
+ 27
+
+ -
+ 2844
+ 2720.667
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 2529
+ 144
+ 104
+
+ -
+ 2815
+ 2581
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e1eb9e3a-f03b-4fc0-a345-5991dc5820ae
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2531
+ 67
+ 20
+
+ -
+ 2768
+ 2541
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;214;214;214
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 9a84ad35-7dd9-4846-81bb-43c14ea38c15
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2551
+ 67
+ 20
+
+ -
+ 2768
+ 2561
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - f667f166-c5fd-4a9c-8714-b482f16d0c90
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2571
+ 67
+ 20
+
+ -
+ 2768
+ 2581
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - a6a79189-a0df-48b8-a360-cbbf5e96e255
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2591
+ 67
+ 20
+
+ -
+ 2768
+ 2601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 0ff4fbe8-f24f-4914-bbb0-03354dc14eef
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 2611
+ 67
+ 20
+
+ -
+ 2768
+ 2621
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 2531
+ 43
+ 100
+
+ -
+ 2853
+ 2581
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 2467
+ 82
+ 44
+
+ -
+ 2830
+ 2489
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 326eedbe-9d1d-46a7-a68a-5de5a0ca6a5c
+ - Geometry
+ - Geometry
+ - false
+ - 2fda8a5c-a335-4f9c-b920-73287d3f5422
+ - 1
+
+
+
+
+ -
+ 2764
+ 2469
+ 51
+ 20
+
+ -
+ 2791
+ 2479
+
+
+
+
+
+
+
+ - The material override
+ - ec27fd3b-058e-4ef3-aeee-d5ab782d682f
+ - Material
+ - Material
+ - false
+ - 66a9c6af-38bc-4d3f-a19d-af81e5ae48cf
+ - 1
+
+
+
+
+ -
+ 2764
+ 2489
+ 51
+ 20
+
+ -
+ 2791
+ 2499
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1fc6e624-7c49-41f9-becf-1b629588cf31
+ - 3198adc1-4a36-4f37-aea4-eff18ec21c4b
+ - 2
+ - ea9452ce-f391-4a3d-9fb3-f180e8edf584
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d37fe9ae-0bf0-4e5b-b780-b8ffbbe9b87b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ 865
+ 144
+ 64
+
+ -
+ 2805
+ 897
+
+
+
+
+
+ - Curve to evaluate
+ - 07060f14-c6ce-415a-a7e3-26d336871d87
+ - Curve
+ - Curve
+ - false
+ - 5c55b193-0023-4ff8-875f-0339cdcf9c91
+ - 1
+
+
+
+
+ -
+ 2733
+ 867
+ 57
+ 20
+
+ -
+ 2763
+ 877
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4c3318bf-fa32-4624-b087-ed4c29ce7d2f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 887
+ 57
+ 20
+
+ -
+ 2763
+ 897
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 052a21ce-a9b3-4784-8d47-3d5f0cb90e27
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 907
+ 57
+ 20
+
+ -
+ 2763
+ 917
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4837c179-4459-4b6b-a179-288feb8ea049
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 867
+ 53
+ 20
+
+ -
+ 2848
+ 877
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - cc1c29d8-f214-4102-b61e-af2010d2d1bf
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 887
+ 53
+ 20
+
+ -
+ 2848
+ 897
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3bafbba0-e362-4f44-8749-bad014c79515
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 907
+ 53
+ 20
+
+ -
+ 2848
+ 917
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 66bf7298-94f5-4b70-9e91-e530523ea15e
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ 761
+ 125
+ 84
+
+ -
+ 2807
+ 803
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 3d9ce99d-7c33-4373-a86d-f6dd7ff0603d
+ - Vertices
+ - Vertices
+ - false
+ - 4837c179-4459-4b6b-a179-288feb8ea049
+ - 1
+
+
+
+
+ -
+ 2742
+ 763
+ 50
+ 20
+
+ -
+ 2768.5
+ 773
+
+
+
+
+
+
+
+ - Curve degree
+ - ec9a5bc7-e43a-40c0-86d2-b330c682b730
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 783
+ 50
+ 20
+
+ -
+ 2768.5
+ 793
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - e17b9f44-b3f9-47d6-bcb3-639799270b83
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 803
+ 50
+ 20
+
+ -
+ 2768.5
+ 813
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c1f91afb-9db6-4499-b567-2397b7e769ec
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ 823
+ 50
+ 20
+
+ -
+ 2768.5
+ 833
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 16088e98-5016-47cf-9e06-33de8403752e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 763
+ 41
+ 26
+
+ -
+ 2844
+ 776.3333
+
+
+
+
+
+
+
+ - Curve length
+ - 9eb0f0ea-2965-4fc8-b572-ef5296567ba4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 789
+ 41
+ 27
+
+ -
+ 2844
+ 803
+
+
+
+
+
+
+
+ - Curve domain
+ - b475e5c3-0c60-4abe-9d2e-5a898b27707b
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ 816
+ 41
+ 27
+
+ -
+ 2844
+ 829.6666
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ 638
+ 144
+ 104
+
+ -
+ 2815
+ 690
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 40a5ebe3-7b8d-4c9b-920f-6f90ffe39f9c
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 640
+ 67
+ 20
+
+ -
+ 2768
+ 650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;207;207;207
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - e57ee3f0-2d4e-47d4-9f76-165fa4feca9f
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 660
+ 67
+ 20
+
+ -
+ 2768
+ 670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 1fa8318b-5c7e-4f2a-a16a-9c18f1eb1c96
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 680
+ 67
+ 20
+
+ -
+ 2768
+ 690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - be82d0b7-6946-4b3f-8c47-30f33589bb4b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 700
+ 67
+ 20
+
+ -
+ 2768
+ 710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 705f39c6-8b1f-4839-874c-bab611bc7933
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ 720
+ 67
+ 20
+
+ -
+ 2768
+ 730
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 29efeab3-518b-400b-8807-f7536d0764bb
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ 640
+ 43
+ 100
+
+ -
+ 2853
+ 690
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ 576
+ 82
+ 44
+
+ -
+ 2830
+ 598
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 026cae0e-93ad-480a-a99e-61ecb378d4c4
+ - Geometry
+ - Geometry
+ - false
+ - 16088e98-5016-47cf-9e06-33de8403752e
+ - 1
+
+
+
+
+ -
+ 2764
+ 578
+ 51
+ 20
+
+ -
+ 2791
+ 588
+
+
+
+
+
+
+
+ - The material override
+ - 68d59d9f-5684-43a8-aab8-2d3b87155155
+ - Material
+ - Material
+ - false
+ - 29efeab3-518b-400b-8807-f7536d0764bb
+ - 1
+
+
+
+
+ -
+ 2764
+ 598
+ 51
+ 20
+
+ -
+ 2791
+ 608
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b7947ef7-88a1-45b5-96cb-4bbca7365312
+ - 1c193ff0-05e8-47a8-96fc-bbafada6a625
+ - 2
+ - bb422305-f56f-490b-b653-544931c09145
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a628cbff-e924-4087-b69a-6ae9e00ca171
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ -898
+ 144
+ 64
+
+ -
+ 2805
+ -866
+
+
+
+
+
+ - Curve to evaluate
+ - 7d680361-612f-4597-b92e-e7a39e433b82
+ - Curve
+ - Curve
+ - false
+ - 2b8b5cbd-995b-42e0-af86-dd9fc7d657ca
+ - 1
+
+
+
+
+ -
+ 2733
+ -896
+ 57
+ 20
+
+ -
+ 2763
+ -886
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ecb7d58d-f12b-4083-a286-3c860ec02870
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -876
+ 57
+ 20
+
+ -
+ 2763
+ -866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e74be359-5cba-4fe2-b76e-d5984b3df516
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -856
+ 57
+ 20
+
+ -
+ 2763
+ -846
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d2941202-8d0a-4dd6-bfc8-2c750ee6b352
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -896
+ 53
+ 20
+
+ -
+ 2848
+ -886
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e2bb87aa-c7e9-49e3-94d1-b6bf4496d193
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -876
+ 53
+ 20
+
+ -
+ 2848
+ -866
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 06fa28fb-0615-47b5-94dd-222c17617c39
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -856
+ 53
+ 20
+
+ -
+ 2848
+ -846
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - e02dc4a6-1ed5-4658-8ab5-2a962ae14431
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ -1002
+ 125
+ 84
+
+ -
+ 2807
+ -960
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 1c02e629-be1d-464f-a454-fb753462143c
+ - Vertices
+ - Vertices
+ - false
+ - d2941202-8d0a-4dd6-bfc8-2c750ee6b352
+ - 1
+
+
+
+
+ -
+ 2742
+ -1000
+ 50
+ 20
+
+ -
+ 2768.5
+ -990
+
+
+
+
+
+
+
+ - Curve degree
+ - e9fcd0c7-60d3-46b8-86cb-60060d76f560
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -980
+ 50
+ 20
+
+ -
+ 2768.5
+ -970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 6fb52cf2-f3cd-4410-8c7f-12b46722b7fd
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -960
+ 50
+ 20
+
+ -
+ 2768.5
+ -950
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 31efb708-8f46-42f6-9447-9c6fe45d1c6f
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -940
+ 50
+ 20
+
+ -
+ 2768.5
+ -930
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 28cadc91-34c8-4ad0-8a0c-e13862554c89
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -1000
+ 41
+ 26
+
+ -
+ 2844
+ -986.6667
+
+
+
+
+
+
+
+ - Curve length
+ - 5c7d6f64-079a-4ae4-af56-0d6f63d06ed5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -974
+ 41
+ 27
+
+ -
+ 2844
+ -960
+
+
+
+
+
+
+
+ - Curve domain
+ - 0c74b56c-c91f-4e48-8147-a035074f3602
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -947
+ 41
+ 27
+
+ -
+ 2844
+ -933.3334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -1125
+ 144
+ 104
+
+ -
+ 2815
+ -1073
+
+
+
+
+
+ - Colour of the diffuse channel
+ - fdaf6f4f-d379-4e03-8e14-1ae5af262073
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1123
+ 67
+ 20
+
+ -
+ 2768
+ -1113
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;199;199;199
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 2eb9cb51-059e-4efb-9574-6ab5d513b44b
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1103
+ 67
+ 20
+
+ -
+ 2768
+ -1093
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - a37ffe1b-5ee8-46c8-afc4-b479eacfc6b2
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1083
+ 67
+ 20
+
+ -
+ 2768
+ -1073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 08bdb14d-4890-4185-bb41-eeb1d208541b
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1063
+ 67
+ 20
+
+ -
+ 2768
+ -1053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 209ab11b-1c07-4264-b2ea-3abddf2938fb
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -1043
+ 67
+ 20
+
+ -
+ 2768
+ -1033
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -1123
+ 43
+ 100
+
+ -
+ 2853
+ -1073
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -1187
+ 82
+ 44
+
+ -
+ 2830
+ -1165
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - ee4b8549-14aa-4c33-ba01-ded1f5e8b6f1
+ - Geometry
+ - Geometry
+ - false
+ - 28cadc91-34c8-4ad0-8a0c-e13862554c89
+ - 1
+
+
+
+
+ -
+ 2764
+ -1185
+ 51
+ 20
+
+ -
+ 2791
+ -1175
+
+
+
+
+
+
+
+ - The material override
+ - feef5d5d-af6d-46de-bbd9-9be97643707e
+ - Material
+ - Material
+ - false
+ - 0465f47b-cc56-49f2-a4a4-1c51e7d15db0
+ - 1
+
+
+
+
+ -
+ 2764
+ -1165
+ 51
+ 20
+
+ -
+ 2791
+ -1155
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8a5a7e2c-67ec-458b-b19b-c7e51a8e067f
+ - 4793db3b-823e-4fc7-9363-44884123053d
+ - 2
+ - 36470645-ff8a-4059-9665-a25ef0bc1bff
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3e7cc59c-5d43-43d2-a2fc-3ff56e225a0a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2731
+ -2696
+ 144
+ 64
+
+ -
+ 2805
+ -2664
+
+
+
+
+
+ - Curve to evaluate
+ - 5291eaad-112f-4858-b476-8a63ec73f9ab
+ - Curve
+ - Curve
+ - false
+ - 124d9bdf-ab24-4fa1-acfd-0f24e78ae4f3
+ - 1
+
+
+
+
+ -
+ 2733
+ -2694
+ 57
+ 20
+
+ -
+ 2763
+ -2684
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f531c7b0-3e27-4250-b0e1-ceadc8fd1bfc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2674
+ 57
+ 20
+
+ -
+ 2763
+ -2664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6bbfeab5-3df3-42c1-91d8-4cd62b4e9d7c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2654
+ 57
+ 20
+
+ -
+ 2763
+ -2644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2694
+ 53
+ 20
+
+ -
+ 2848
+ -2684
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 0b49d03c-7253-4a06-aed5-ea6f4c64964f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2674
+ 53
+ 20
+
+ -
+ 2848
+ -2664
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 39ee3f46-1864-4eb2-812d-8b03f5df68cd
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ -2654
+ 53
+ 20
+
+ -
+ 2848
+ -2644
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 23406fea-d648-42ad-a9a6-9e6a5e871332
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2740
+ -2800
+ 125
+ 84
+
+ -
+ 2807
+ -2758
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 28909a9b-01ce-4f31-a16d-6322153d5598
+ - Vertices
+ - Vertices
+ - false
+ - 392dd8ca-50b1-4832-9c2a-70b3c5c08ace
+ - 1
+
+
+
+
+ -
+ 2742
+ -2798
+ 50
+ 20
+
+ -
+ 2768.5
+ -2788
+
+
+
+
+
+
+
+ - Curve degree
+ - 722d2441-f0fc-4557-a48d-18c999cf1aa6
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2778
+ 50
+ 20
+
+ -
+ 2768.5
+ -2768
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 9654d4c8-c749-4e5b-9f92-86217d9b75d1
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2758
+ 50
+ 20
+
+ -
+ 2768.5
+ -2748
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 083481ca-4714-4e50-bbdb-975ab796d19d
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2742
+ -2738
+ 50
+ 20
+
+ -
+ 2768.5
+ -2728
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - cf73f88f-731e-4747-b666-01db880b93b4
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2798
+ 41
+ 26
+
+ -
+ 2844
+ -2784.667
+
+
+
+
+
+
+
+ - Curve length
+ - eab89f53-0c10-44ed-b69e-b76065c74526
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2772
+ 41
+ 27
+
+ -
+ 2844
+ -2758
+
+
+
+
+
+
+
+ - Curve domain
+ - 74f2a6ab-5a65-4809-ae93-c553136974db
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2822
+ -2745
+ 41
+ 27
+
+ -
+ 2844
+ -2731.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2731
+ -2923
+ 144
+ 104
+
+ -
+ 2815
+ -2871
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 1b77150c-56dc-458c-96ed-001110e8d77e
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2921
+ 67
+ 20
+
+ -
+ 2768
+ -2911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;191;191;191
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 3fc82104-3c05-4b51-8b46-e5715460b6d8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2901
+ 67
+ 20
+
+ -
+ 2768
+ -2891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - bbb5f55a-b345-4752-a8f8-d6d623e4fdca
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2881
+ 67
+ 20
+
+ -
+ 2768
+ -2871
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - d0b3ee2c-3902-4b56-9522-710d7ec8d8f5
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2861
+ 67
+ 20
+
+ -
+ 2768
+ -2851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1e93df78-1421-4a87-8d5e-81f66824b877
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2733
+ -2841
+ 67
+ 20
+
+ -
+ 2768
+ -2831
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2830
+ -2921
+ 43
+ 100
+
+ -
+ 2853
+ -2871
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2762
+ -2985
+ 82
+ 44
+
+ -
+ 2830
+ -2963
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - e4f0e23f-3d02-4af6-8ddd-9eb89b7f9270
+ - Geometry
+ - Geometry
+ - false
+ - cf73f88f-731e-4747-b666-01db880b93b4
+ - 1
+
+
+
+
+ -
+ 2764
+ -2983
+ 51
+ 20
+
+ -
+ 2791
+ -2973
+
+
+
+
+
+
+
+ - The material override
+ - 7de66a47-dc70-4ff5-a337-9a15eca19455
+ - Material
+ - Material
+ - false
+ - 4842bdcf-dc78-4ab6-8b3a-93e6f341072f
+ - 1
+
+
+
+
+ -
+ 2764
+ -2963
+ 51
+ 20
+
+ -
+ 2791
+ -2953
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6e9a05fd-a63f-46c8-8e9c-6c2090966168
+ - 5b1003b9-09b0-4476-8f1b-58290691bc28
+ - 2
+ - dcb7528a-ecb2-455e-a7a9-bbc1925d8141
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 33d169ca-0346-4d9c-8215-357b9043028e
+ - 8dc32522-c682-4ff8-8b97-cbd1b23da515
+ - 7b86bb78-229e-4e92-8975-52158c20193e
+ - 81207625-50b7-466b-a33d-23c0e88f3ac9
+ - c9a63204-827d-4fc8-89ca-1e01148b0d3d
+ - 5
+ - d4852463-f9fa-4e3e-83d1-08d306826395
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8500138e-2946-4f7c-be93-c3c7109b4c2f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2735
+ -4493
+ 144
+ 64
+
+ -
+ 2809
+ -4461
+
+
+
+
+
+ - Curve to evaluate
+ - 1bd32a94-d147-45be-8a0f-1e4dce95c4a4
+ - Curve
+ - Curve
+ - false
+ - 2c9695ba-b315-4f78-85cd-abc3b3a78187
+ - 1
+
+
+
+
+ -
+ 2737
+ -4491
+ 57
+ 20
+
+ -
+ 2767
+ -4481
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - f024bb82-6011-45dd-bff5-acfe413195ee
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4471
+ 57
+ 20
+
+ -
+ 2767
+ -4461
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 59ab80ba-f9eb-4352-b012-6afab2e1bc28
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4451
+ 57
+ 20
+
+ -
+ 2767
+ -4441
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4491
+ 53
+ 20
+
+ -
+ 2852
+ -4481
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a3e505b1-2bf5-4fb5-8813-cbaff30d53da
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4471
+ 53
+ 20
+
+ -
+ 2852
+ -4461
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b5d70c8b-a430-4da0-b488-c56572a09b2d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -4451
+ 53
+ 20
+
+ -
+ 2852
+ -4441
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - cad9f703-3621-4a15-835e-3c62c5728043
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2744
+ -4599
+ 125
+ 84
+
+ -
+ 2811
+ -4557
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 5ed9bce7-4015-4df0-b8f5-0de94c1cbf95
+ - Vertices
+ - Vertices
+ - false
+ - 0dc9f2cb-fa29-4c8e-8186-db35e5abf4af
+ - 1
+
+
+
+
+ -
+ 2746
+ -4597
+ 50
+ 20
+
+ -
+ 2772.5
+ -4587
+
+
+
+
+
+
+
+ - Curve degree
+ - 151fcd36-e8e1-4f57-a353-9e136351155b
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4577
+ 50
+ 20
+
+ -
+ 2772.5
+ -4567
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 44d97364-de0d-42c1-b461-d89223876d34
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4557
+ 50
+ 20
+
+ -
+ 2772.5
+ -4547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 25ca8fff-1ec8-414d-95c3-374462bea822
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -4537
+ 50
+ 20
+
+ -
+ 2772.5
+ -4527
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 66845570-eed1-42c1-b834-160fef10c84f
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4597
+ 41
+ 26
+
+ -
+ 2848
+ -4583.667
+
+
+
+
+
+
+
+ - Curve length
+ - 36c22447-bf2f-47c5-87e0-7772131609ba
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4571
+ 41
+ 27
+
+ -
+ 2848
+ -4557
+
+
+
+
+
+
+
+ - Curve domain
+ - 531ca2f9-4502-433d-a846-7e6e38102384
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -4544
+ 41
+ 27
+
+ -
+ 2848
+ -4530.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -4722
+ 144
+ 104
+
+ -
+ 2819
+ -4670
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 798af4f9-0b91-4c67-a146-f8ad1602f43d
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4720
+ 67
+ 20
+
+ -
+ 2772
+ -4710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;184;184;184
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 161df7f9-b363-4f5b-a5d8-62681df0dfb6
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4700
+ 67
+ 20
+
+ -
+ 2772
+ -4690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 22752c53-b4e2-4979-abb6-386367b72112
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4680
+ 67
+ 20
+
+ -
+ 2772
+ -4670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - b34e8871-494d-47ba-a649-f8b835b14530
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4660
+ 67
+ 20
+
+ -
+ 2772
+ -4650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - e3c15594-84a4-42e2-80f7-176381f104a4
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -4640
+ 67
+ 20
+
+ -
+ 2772
+ -4630
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 4acb491c-4b2c-4547-9db6-02d779e78cef
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -4720
+ 43
+ 100
+
+ -
+ 2857
+ -4670
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -4784
+ 82
+ 44
+
+ -
+ 2834
+ -4762
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 365e9e83-b0ce-4edf-92d4-e61353683006
+ - Geometry
+ - Geometry
+ - false
+ - 66845570-eed1-42c1-b834-160fef10c84f
+ - 1
+
+
+
+
+ -
+ 2768
+ -4782
+ 51
+ 20
+
+ -
+ 2795
+ -4772
+
+
+
+
+
+
+
+ - The material override
+ - 195e77de-8ce9-40c3-940e-66add71fd5a7
+ - Material
+ - Material
+ - false
+ - 4acb491c-4b2c-4547-9db6-02d779e78cef
+ - 1
+
+
+
+
+ -
+ 2768
+ -4762
+ 51
+ 20
+
+ -
+ 2795
+ -4752
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 19800ae1-a0b6-4fea-a742-1c5c30324ec3
+ - ceffa153-887e-4858-9494-ff4113ed6ec8
+ - 2
+ - e9181e89-67db-453a-a90b-03cf875e54e4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1ed8af89-73d9-46fb-9f92-85e97b1954ab
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2736
+ -6294
+ 144
+ 64
+
+ -
+ 2810
+ -6262
+
+
+
+
+
+ - Curve to evaluate
+ - 317be7dc-eb4a-4b04-a50a-3d099775df9f
+ - Curve
+ - Curve
+ - false
+ - 6887d1d4-79dc-484f-ba0b-cbc72eeea403
+ - 1
+
+
+
+
+ -
+ 2738
+ -6292
+ 57
+ 20
+
+ -
+ 2768
+ -6282
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - cf6786f7-c209-49b2-9c1d-b5738c2930bf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6272
+ 57
+ 20
+
+ -
+ 2768
+ -6262
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5a5a4805-c174-42bf-b1c2-2dabbf02147b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6252
+ 57
+ 20
+
+ -
+ 2768
+ -6242
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6292
+ 53
+ 20
+
+ -
+ 2853
+ -6282
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 73cb7946-f977-44ec-b1c4-35587265ebd7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6272
+ 53
+ 20
+
+ -
+ 2853
+ -6262
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 6d9240b7-36e9-49be-9f55-bc39647103ec
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -6252
+ 53
+ 20
+
+ -
+ 2853
+ -6242
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 35cf69c6-1a64-47f3-beee-9ffa3d777872
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2745
+ -6400
+ 125
+ 84
+
+ -
+ 2812
+ -6358
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 0e79b795-d38e-4540-9f76-3cae416aa75d
+ - Vertices
+ - Vertices
+ - false
+ - 5fcc74ba-0e29-4f6c-85df-f1a715ae68be
+ - 1
+
+
+
+
+ -
+ 2747
+ -6398
+ 50
+ 20
+
+ -
+ 2773.5
+ -6388
+
+
+
+
+
+
+
+ - Curve degree
+ - 023486d2-3d90-4c94-85a8-6ec7e26d3f54
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6378
+ 50
+ 20
+
+ -
+ 2773.5
+ -6368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - f0bd6571-6ddf-4f9a-9010-6afb2db35516
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6358
+ 50
+ 20
+
+ -
+ 2773.5
+ -6348
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c29a4089-d1df-4eb7-87b8-5760006cd8f1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2747
+ -6338
+ 50
+ 20
+
+ -
+ 2773.5
+ -6328
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 3d8a624c-87ce-442d-bd4d-01088ae62c90
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6398
+ 41
+ 26
+
+ -
+ 2849
+ -6384.667
+
+
+
+
+
+
+
+ - Curve length
+ - 5bf8f24a-c210-4f9f-b69d-6bc3edeb020a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6372
+ 41
+ 27
+
+ -
+ 2849
+ -6358
+
+
+
+
+
+
+
+ - Curve domain
+ - b2911b12-0c31-412f-b48e-4c87f541b21d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2827
+ -6345
+ 41
+ 27
+
+ -
+ 2849
+ -6331.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2736
+ -6523
+ 144
+ 104
+
+ -
+ 2820
+ -6471
+
+
+
+
+
+ - Colour of the diffuse channel
+ - e4ebfa9c-8dff-4e98-9e81-9e94f8912f89
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6521
+ 67
+ 20
+
+ -
+ 2773
+ -6511
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;176;176;176
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - a45bbbd8-5417-4fa8-a90e-537d5562f7ff
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6501
+ 67
+ 20
+
+ -
+ 2773
+ -6491
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - 74ef5c1a-cb30-48a5-9045-fc4ac82ef322
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6481
+ 67
+ 20
+
+ -
+ 2773
+ -6471
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 3064c491-155d-4541-a63b-4d60abb4fd63
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6461
+ 67
+ 20
+
+ -
+ 2773
+ -6451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 8a33f754-f6af-46d8-9c3b-b4e8a215f771
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2738
+ -6441
+ 67
+ 20
+
+ -
+ 2773
+ -6431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 11050eac-b82c-4dfe-b312-13b0f6b7bd38
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2835
+ -6521
+ 43
+ 100
+
+ -
+ 2858
+ -6471
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2767
+ -6585
+ 82
+ 44
+
+ -
+ 2835
+ -6563
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - cdc9bf03-a4a6-4d0b-8389-a75eda5e95c6
+ - Geometry
+ - Geometry
+ - false
+ - 3d8a624c-87ce-442d-bd4d-01088ae62c90
+ - 1
+
+
+
+
+ -
+ 2769
+ -6583
+ 51
+ 20
+
+ -
+ 2796
+ -6573
+
+
+
+
+
+
+
+ - The material override
+ - 2a5f5d5d-72d3-442e-996f-30723a10cdf5
+ - Material
+ - Material
+ - false
+ - 11050eac-b82c-4dfe-b312-13b0f6b7bd38
+ - 1
+
+
+
+
+ -
+ 2769
+ -6563
+ 51
+ 20
+
+ -
+ 2796
+ -6553
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9cb83053-a3f1-4d08-bad8-b0b6d4352272
+ - b0dc11e3-028a-4c68-abf7-dc7f220168c2
+ - 2
+ - 957995f5-c366-463c-b3ce-f70bdb0ab1f3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f204596d-0539-42bc-b3c3-7a6c11f93504
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2735
+ -8127
+ 144
+ 64
+
+ -
+ 2809
+ -8095
+
+
+
+
+
+ - Curve to evaluate
+ - 5d07980d-9b5d-4839-9837-673407fab7e2
+ - Curve
+ - Curve
+ - false
+ - 1ebf94f7-22a6-4eab-9980-97aba6b6bb19
+ - 1
+
+
+
+
+ -
+ 2737
+ -8125
+ 57
+ 20
+
+ -
+ 2767
+ -8115
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4fba7df1-34b1-4fae-842c-94ab12f833d3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8105
+ 57
+ 20
+
+ -
+ 2767
+ -8095
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4da6ac45-93c0-4778-bf44-2170ee05988f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8085
+ 57
+ 20
+
+ -
+ 2767
+ -8075
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ac7b3481-1027-4677-86c0-0467cd2f6b29
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8125
+ 53
+ 20
+
+ -
+ 2852
+ -8115
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9b09da1b-d90b-4e0e-8413-616830d9269b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8105
+ 53
+ 20
+
+ -
+ 2852
+ -8095
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - aa85df81-6dd0-4755-83a0-661676b646df
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2824
+ -8085
+ 53
+ 20
+
+ -
+ 2852
+ -8075
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - 4188728e-68e2-4d42-82f2-19bb6c40b380
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2744
+ -8233
+ 125
+ 84
+
+ -
+ 2811
+ -8191
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 20e3d53a-42b1-4313-b071-46dba1b25a71
+ - Vertices
+ - Vertices
+ - false
+ - ac7b3481-1027-4677-86c0-0467cd2f6b29
+ - 1
+
+
+
+
+ -
+ 2746
+ -8231
+ 50
+ 20
+
+ -
+ 2772.5
+ -8221
+
+
+
+
+
+
+
+ - Curve degree
+ - 6ce624b9-0b32-4b5c-a581-6fc102f9456f
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8211
+ 50
+ 20
+
+ -
+ 2772.5
+ -8201
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 4f7b9876-037c-489e-a1ee-d69840321db6
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8191
+ 50
+ 20
+
+ -
+ 2772.5
+ -8181
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c75613a9-6ea8-4f77-a3e5-6e2d236bed31
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2746
+ -8171
+ 50
+ 20
+
+ -
+ 2772.5
+ -8161
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - b577260e-1f33-4ead-9e5e-d3fd4bde379a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8231
+ 41
+ 26
+
+ -
+ 2848
+ -8217.667
+
+
+
+
+
+
+
+ - Curve length
+ - 8c82ae2b-09c9-4079-ac43-d59ad8341e81
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8205
+ 41
+ 27
+
+ -
+ 2848
+ -8191
+
+
+
+
+
+
+
+ - Curve domain
+ - 52e29a2f-1c7b-4db7-8117-c0141924e05e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2826
+ -8178
+ 41
+ 27
+
+ -
+ 2848
+ -8164.333
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2735
+ -8356
+ 144
+ 104
+
+ -
+ 2819
+ -8304
+
+
+
+
+
+ - Colour of the diffuse channel
+ - 2fabe4e0-a17b-4cc8-8636-c46f20d35512
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8354
+ 67
+ 20
+
+ -
+ 2772
+ -8344
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;168;168;168
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6e381911-f2cd-4b19-8843-4a7b22a3c5b8
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8334
+ 67
+ 20
+
+ -
+ 2772
+ -8324
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b57b9b21-e4a7-4532-9d71-e0c219a7f3ba
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8314
+ 67
+ 20
+
+ -
+ 2772
+ -8304
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 1a3bb167-f4f0-42a7-a29d-15464d045612
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8294
+ 67
+ 20
+
+ -
+ 2772
+ -8284
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - a67b3a4e-371b-4da9-8e68-d995d117f98e
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2737
+ -8274
+ 67
+ 20
+
+ -
+ 2772
+ -8264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - 13d86a2c-22d1-4f55-9666-48646c3be46e
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2834
+ -8354
+ 43
+ 100
+
+ -
+ 2857
+ -8304
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2766
+ -8418
+ 82
+ 44
+
+ -
+ 2834
+ -8396
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - c9c40787-4cec-4597-b4a0-acedae807771
+ - Geometry
+ - Geometry
+ - false
+ - b577260e-1f33-4ead-9e5e-d3fd4bde379a
+ - 1
+
+
+
+
+ -
+ 2768
+ -8416
+ 51
+ 20
+
+ -
+ 2795
+ -8406
+
+
+
+
+
+
+
+ - The material override
+ - 557aa6cd-3da5-442a-aaf3-bee6d3c4fa2a
+ - Material
+ - Material
+ - false
+ - 13d86a2c-22d1-4f55-9666-48646c3be46e
+ - 1
+
+
+
+
+ -
+ 2768
+ -8396
+ 51
+ 20
+
+ -
+ 2795
+ -8386
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 844999aa-f0e7-431f-b0df-673861258066
+ - aced67d1-3056-41dd-ae2f-76dd69e0987e
+ - 2
+ - 820d65ee-b16e-41e8-bf3f-4da0ede194da
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 849853a5-9fa1-44dc-a6cb-6a6bd83c05a7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2734
+ -9961
+ 144
+ 64
+
+ -
+ 2808
+ -9929
+
+
+
+
+
+ - Curve to evaluate
+ - e0f26723-e6ff-4ce9-b582-f65ee6484a2a
+ - Curve
+ - Curve
+ - false
+ - a5bf42cc-02c5-44fd-830f-c8fe1aab6b5a
+ - 1
+
+
+
+
+ -
+ 2736
+ -9959
+ 57
+ 20
+
+ -
+ 2766
+ -9949
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 681bc8ed-8583-4ef7-98fd-e37c031a5189
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9939
+ 57
+ 20
+
+ -
+ 2766
+ -9929
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - eb5fc821-c2da-4bae-b1ec-e9520fb0ce91
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -9919
+ 57
+ 20
+
+ -
+ 2766
+ -9909
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - b579a4ce-06f7-4362-ab8d-dcced9e2a355
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9959
+ 53
+ 20
+
+ -
+ 2851
+ -9949
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 901e95ff-01af-4061-8ffd-d8fe531bd4a7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9939
+ 53
+ 20
+
+ -
+ 2851
+ -9929
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5b6fd995-922d-4361-891b-63b05b0af517
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2823
+ -9919
+ 53
+ 20
+
+ -
+ 2851
+ -9909
+
+
+
+
+
+
+
+
+
+
+
+ - 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
+ - Interpolate
+
+
+
+
+ - Create an interpolated curve through a set of points.
+ - true
+ - db4363b4-d574-4300-84c6-5450a67bacc0
+ - Interpolate
+ - Interpolate
+
+
+
+
+ -
+ 2743
+ -10067
+ 125
+ 84
+
+ -
+ 2810
+ -10025
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - e67764f8-b843-4b5f-bda6-7642b40f29e6
+ - Vertices
+ - Vertices
+ - false
+ - b579a4ce-06f7-4362-ab8d-dcced9e2a355
+ - 1
+
+
+
+
+ -
+ 2745
+ -10065
+ 50
+ 20
+
+ -
+ 2771.5
+ -10055
+
+
+
+
+
+
+
+ - Curve degree
+ - a4cad95c-dfd4-4581-8d89-b20327c89a1e
+ - Degree
+ - Degree
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -10045
+ 50
+ 20
+
+ -
+ 2771.5
+ -10035
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Periodic curve
+ - 1cb94c23-c004-45a3-924b-67f12eca2f39
+ - Periodic
+ - Periodic
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -10025
+ 50
+ 20
+
+ -
+ 2771.5
+ -10015
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - bd640419-7486-46af-91f3-bc0a191b0cd4
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2745
+ -10005
+ 50
+ 20
+
+ -
+ 2771.5
+ -9995
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ec5436f0-1b36-4ea0-81a5-dc0d95baba79
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10065
+ 41
+ 26
+
+ -
+ 2847
+ -10051.67
+
+
+
+
+
+
+
+ - Curve length
+ - cb23c111-31ed-4d24-a5df-095fee07f63b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10039
+ 41
+ 27
+
+ -
+ 2847
+ -10025
+
+
+
+
+
+
+
+ - Curve domain
+ - 28600d5d-d27b-4fc7-92e2-d6b582f95712
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2825
+ -10012
+ 41
+ 27
+
+ -
+ 2847
+ -9998.334
+
+
+
+
+
+
+
+
+
+
+
+ - 76975309-75a6-446a-afed-f8653720a9f2
+ - Create Material
+
+
+
+
+ - Create an OpenGL material.
+ - true
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - Create Material
+ - Create Material
+
+
+
+
+ -
+ 2734
+ -10190
+ 144
+ 104
+
+ -
+ 2818
+ -10138
+
+
+
+
+
+ - Colour of the diffuse channel
+ - c5926cab-4646-449b-904f-b2af563a3fee
+ - Diffuse
+ - Diffuse
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10188
+ 67
+ 20
+
+ -
+ 2771
+ -10178
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;161;161;161
+
+
+
+
+
+
+
+
+
+
+
+ - Colour of the specular highlight
+ - 6fc6c729-2250-4c8f-84d7-bc281aac89f1
+ - Specular
+ - Specular
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10168
+ 67
+ 20
+
+ -
+ 2771
+ -10158
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;255;255
+
+
+
+
+
+
+
+
+
+
+
+ - Emissive colour of the material
+ - b16c46b9-0e96-4ad5-8781-82c985711738
+ - Emission
+ - Emission
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10148
+ 67
+ 20
+
+ -
+ 2771
+ -10138
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;0;0;0
+
+
+
+
+
+
+
+
+
+
+
+ - Amount of transparency (0.0 = opaque, 1.0 = transparent
+ - 940ae8b1-661d-4b15-a408-4a4a2eb2e3b3
+ - Transparency
+ - Transparency
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10128
+ 67
+ 20
+
+ -
+ 2771
+ -10118
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
+ - 1ab3380c-8e2c-471a-bc81-cef12c23e22f
+ - Shine
+ - Shine
+ - false
+ - 0
+
+
+
+
+ -
+ 2736
+ -10108
+ 67
+ 20
+
+ -
+ 2771
+ -10098
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 100
+
+
+
+
+
+
+
+
+
+
+ - Resulting material
+ - fd4cd563-5745-49a3-a2b6-97794306ac59
+ - Material
+ - Material
+ - false
+ - 0
+
+
+
+
+ -
+ 2833
+ -10188
+ 43
+ 100
+
+ -
+ 2856
+ -10138
+
+
+
+
+
+
+
+
+
+
+
+ - 537b0419-bbc2-4ff4-bf08-afe526367b2c
+ - Custom Preview
+
+
+
+
+ - Allows for customized geometry previews
+ - true
+ - true
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - Custom Preview
+ - Custom Preview
+
+
+
+
+
+ -
+ 2765
+ -10252
+ 82
+ 44
+
+ -
+ 2833
+ -10230
+
+
+
+
+
+ - Geometry to preview
+ - true
+ - 49248837-c4b5-4f81-a8c4-2a5f6db96f58
+ - Geometry
+ - Geometry
+ - false
+ - ec5436f0-1b36-4ea0-81a5-dc0d95baba79
+ - 1
+
+
+
+
+ -
+ 2767
+ -10250
+ 51
+ 20
+
+ -
+ 2794
+ -10240
+
+
+
+
+
+
+
+ - The material override
+ - 92d87252-f0c4-46f8-9a9a-d4cef4af76a1
+ - Material
+ - Material
+ - false
+ - fd4cd563-5745-49a3-a2b6-97794306ac59
+ - 1
+
+
+
+
+ -
+ 2767
+ -10230
+ 51
+ 20
+
+ -
+ 2794
+ -10220
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 255;221;160;221
+
+ -
+ 255;66;48;66
+
+ - 0.5
+ -
+ 255;255;255;255
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a72749a1-3b33-4ce0-9980-144fc2c4dfd6
+ - d890eaf4-c21c-45e8-ac03-75c58ccbdf99
+ - 2
+ - 717103e5-0ed1-4969-ae88-8af3c23de426
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f77a5006-5ba9-4819-b46f-c7f246c09821
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 6
+
+ - 0.750000
+
+
+
+
+ -
+ 4189
+ -416
+ 250
+ 20
+
+ -
+ 4189.567
+ -415.0449
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c27a5a9f-3110-49e1-91f7-6ebafb7c4bc0
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0246093750
+
+
+
+
+ -
+ 4195
+ 982
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b565abfe-af28-4a3d-8aa5-8aa19a0a05d7
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.07031250000
+
+
+
+
+ -
+ 4205
+ 3328
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 2cf94056-6af5-459d-9d0b-edb8f8adea38
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 6
+
+ - 0.100000
+
+
+
+
+ -
+ 4183
+ -4641
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d20d51a6-0c15-4c64-97de-546619bd377a
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 6
+
+ - 0.130000
+
+
+
+
+ -
+ 4176
+ -7611
+ 250
+ 20
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5d91aef4-3441-4a3b-9dc2-547980473cf4
+ - 85ee6eeb-392d-4c79-b3c5-af1bf84e29a9
+ - 2
+ - 9260f95b-108f-4253-b9a3-822f423289c2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c805c655-6882-4bac-bcea-fd9c2844f949
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3948
+ 7726
+ 50
+ 24
+
+ -
+ 3973.903
+ 7738.546
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d8b69669-a2bd-4187-9589-204f3dbe274a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2773
+ 3175
+ 40
+ 16
+
+ -
+ 2793
+ 3183
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 45cacb59-db8f-4bcf-92f7-9858295e7129
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2782
+ 1281
+ 40
+ 16
+
+ -
+ 2802
+ 1289
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f0a46a15-062c-4b96-9a51-0ebf280e5a4a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2789
+ -479
+ 40
+ 16
+
+ -
+ 2809
+ -471
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f49ae725-c6ea-4bce-920d-d82e9007d475
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2782
+ -2286
+ 40
+ 16
+
+ -
+ 2802
+ -2278
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - eecc13d9-74f4-4560-a0dc-f0d6eb44d03c
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2786
+ -4075
+ 40
+ 16
+
+ -
+ 2806
+ -4067
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 647310bf-b19d-44df-ae6f-ffbd5b863fe9
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2788
+ -5874
+ 40
+ 16
+
+ -
+ 2808
+ -5866
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3dafff0e-0659-48ab-98e3-7c33bcf0fda5
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2787
+ -7678
+ 40
+ 16
+
+ -
+ 2807
+ -7670
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a5231a70-f4f4-4b81-9867-e1428a4b482a
+ - Relay
+
+ - false
+ - e987d189-a3ef-46bd-bffd-d627e83d8e15
+ - 1
+
+
+
+
+ -
+ 2790
+ -9508
+ 40
+ 16
+
+ -
+ 2810
+ -9500
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 817a1f1b-9353-4d8d-84f9-673116fd6d05
+ - Relay
+
+ - false
+ - 1f4d203a-7210-473f-9482-f99a19778d4f
+ - 1
+
+
+
+
+ -
+ 4327
+ -1809
+ 40
+ 16
+
+ -
+ 4347
+ -1801
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 515aa4ed-7d0b-41c2-8a15-e458b1f9659f
+ - 1735ea28-d9c2-460e-8036-e182399799eb
+ - 72240493-81f6-452f-95bf-65412ec6da40
+ - abd2599c-b66f-4796-b135-505f6671f818
+ - 7b9d6ded-0c99-487c-9351-2a3cca1c2110
+ - c2e639ee-1c56-4725-9c22-3c83610edc53
+ - 6
+ - 43b023af-f07e-4a31-a9df-6190e568ad23
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4758f29a-fcd1-49e3-b3cc-e2a0f1f2ea21
+ - 2a742a75-74ce-40db-9edd-69648e8ca64b
+ - 10b2a433-1080-4d9a-abca-e4f123bebcf3
+ - 32b23ba0-c30f-438d-81e9-ec3c7b83ffa5
+ - 120b5798-7e93-4f8d-a27d-8c208f89e6e7
+ - cc5800cb-d854-4add-8c32-efe50fa3d2eb
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 4efe6b4e-959d-49f7-b9de-2270f0224cdd
+ - 3dc0f67e-ce3c-40e2-84c3-dd399d89c1e0
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - e5326a5c-380c-4faf-be70-a5ef64ca144c
+ - 711a6046-10d3-4bbf-bc8b-838cffa466d5
+ - 8c9f984b-f9d5-472c-8b9b-1a382ce7fd31
+ - b073a17e-c314-4385-81b2-7fbf1d49f248
+ - dd0d43a1-de87-4342-8507-d855b718c931
+ - 8ec23702-5fe2-4be1-8332-98f416ab5ddc
+ - 4d10f13d-6355-45d6-87eb-ccaaefa51805
+ - 9e2762c3-ea73-4bee-ae02-cb37abac4507
+ - 07432975-046f-408a-b936-f3cc88f52ba8
+ - df348b4a-11d0-42c2-8b77-bf4df126b9b4
+ - c6db8cd0-9eb3-4673-bc52-c07eba1c8691
+ - 8020b978-8059-4fb8-9dfc-499634e3eb36
+ - 0080791e-d2ab-4d97-92f0-aa070e790b17
+ - 03e045d1-2ed6-4631-95ce-9a0b3d4a109d
+ - 852a904e-5051-41c4-bd2e-4fa4a61a1412
+ - 81a6a5dd-5254-4136-8fa8-e24714b0cbad
+ - 45266b01-7b74-4de8-9ea4-1aaeed8c1eec
+ - 66c7d9bd-29ad-462d-b663-7baf7b463b5a
+ - 374cb792-533f-446a-ae0e-b3bc386a0522
+ - f1845088-2665-4e94-b3b9-78b3dcda391d
+ - bac62c71-29c9-436a-b5bb-4e2895fa0124
+ - c9a78eeb-6570-40b7-a6b2-6846321790d3
+ - 985368d2-fe10-4d78-ab09-0fb0a2c36be2
+ - a95966a7-ea64-4957-b7d7-09be00ba5fe2
+ - df8758b2-500d-4069-81dd-a88445f1e688
+ - eb120ca0-0ff6-46cb-b130-cf60a5f94465
+ - 389aa786-c3b4-496b-83f0-a1a246a30e2b
+ - aded80e6-bb12-4515-a081-336e91457834
+ - 27ccc10c-171d-4c69-a49b-b16712c5b030
+ - d27685f1-474c-4ad8-a45e-702164d36f6d
+ - 5eb498a8-9e2a-4f4d-817c-7ad083a5967c
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 3ad53410-543a-415e-9b3c-24de86d30cb0
+ - 4b26507f-868d-45c5-8260-3c0775a0897d
+ - b87313ab-683d-437f-84f9-c4631a1cfdfb
+ - d5df7362-ace1-438d-a2e8-b69f30a93618
+ - 15fd20f0-1058-4765-bd6d-bf7e3601c6ea
+ - b4ca4350-099e-4bb2-a4bc-362a6f55955e
+ - acf3251a-f637-45d9-9c01-5780e7bdd10b
+ - 67c46ea0-3552-4a78-9bad-2a4011c0ee60
+ - e377c3a4-d1c3-496e-9d02-4580852cab7f
+ - efb9e513-73c3-4e1d-af61-ff13277f6386
+ - 006de0bd-a99a-4cec-937d-c3306770ce03
+ - b1b40210-218f-4eda-9d9f-b666946fe136
+ - 0eb87ca0-6ac5-40ff-9940-c146c824e945
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 99bde510-8938-4c7b-a447-2b979324a643
+ - d6496b1d-3cbc-47ce-a7e8-7ec952159dbc
+ - 469590de-f73d-4fcc-ae7d-120c40eb69d3
+ - 51f60437-3aff-4578-a646-e734c437b992
+ - 97169a5c-4e5b-4b8b-88ff-cb094938af11
+ - 916c0763-c6f9-41e1-a247-a9935450203a
+ - 62
+ - 78390c78-fa9d-462a-ac30-4ea767408457
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - df348b4a-11d0-42c2-8b77-bf4df126b9b4
+ - 1
+ - 4758f29a-fcd1-49e3-b3cc-e2a0f1f2ea21
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10b2a433-1080-4d9a-abca-e4f123bebcf3
+ - 32b23ba0-c30f-438d-81e9-ec3c7b83ffa5
+ - 120b5798-7e93-4f8d-a27d-8c208f89e6e7
+ - cc5800cb-d854-4add-8c32-efe50fa3d2eb
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 4efe6b4e-959d-49f7-b9de-2270f0224cdd
+ - 3dc0f67e-ce3c-40e2-84c3-dd399d89c1e0
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 711a6046-10d3-4bbf-bc8b-838cffa466d5
+ - e5326a5c-380c-4faf-be70-a5ef64ca144c
+ - 4758f29a-fcd1-49e3-b3cc-e2a0f1f2ea21
+ - 97169a5c-4e5b-4b8b-88ff-cb094938af11
+ - 916c0763-c6f9-41e1-a247-a9935450203a
+ - 13
+ - 2a742a75-74ce-40db-9edd-69648e8ca64b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 10b2a433-1080-4d9a-abca-e4f123bebcf3
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 2846
+ 12834
+ 104
+ 64
+
+ -
+ 2905
+ 12866
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 39022369-8009-4619-ac85-45305291e4d4
+ - Data
+ - Data
+ - false
+ - c49582fd-259a-4b4b-aac3-ff1ee9763cfb
+ - 1
+
+
+
+
+ -
+ 2848
+ 12836
+ 42
+ 20
+
+ -
+ 2870.5
+ 12846
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 82d1be17-2774-4b26-b555-ade5d661ee12
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 2848
+ 12856
+ 42
+ 20
+
+ -
+ 2870.5
+ 12866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 1ef46d32-8eca-4348-a849-f5a00514337c
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 2848
+ 12876
+ 42
+ 20
+
+ -
+ 2870.5
+ 12886
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 57b53898-8f7d-44d8-a1ae-1666c8e1dc5f
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 2920
+ 12836
+ 28
+ 60
+
+ -
+ 2935.5
+ 12866
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 32b23ba0-c30f-438d-81e9-ec3c7b83ffa5
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 2841
+ 11760
+ 116
+ 44
+
+ -
+ 2902
+ 11782
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 4d7f558e-a67e-48b3-a167-22e84e270a82
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 57b53898-8f7d-44d8-a1ae-1666c8e1dc5f
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 2843
+ 11762
+ 44
+ 20
+
+ -
+ 2866.5
+ 11772
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 954cdc51-7b47-42ef-bb13-1963de0736b8
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 51f60437-3aff-4578-a646-e734c437b992
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 2843
+ 11782
+ 44
+ 20
+
+ -
+ 2866.5
+ 11792
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 1c4524ee-982e-496e-940e-b76dc9d05b6a
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11762
+ 38
+ 20
+
+ -
+ 2937.5
+ 11772
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 63c92217-d37f-4363-846e-d0e6c9bbeff9
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11782
+ 38
+ 20
+
+ -
+ 2937.5
+ 11792
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 120b5798-7e93-4f8d-a27d-8c208f89e6e7
+ - Point
+ - Point
+ - false
+ - 59a00a81-4b6c-4039-a191-eefacc5e6e0e
+ - 1
+
+
+
+
+ -
+ 2859
+ 11460
+ 50
+ 24
+
+ -
+ 2884.913
+ 11472.83
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - cc5800cb-d854-4add-8c32-efe50fa3d2eb
+ - Series
+ - Series
+
+
+
+
+ -
+ 2849
+ 12228
+ 101
+ 64
+
+ -
+ 2899
+ 12260
+
+
+
+
+
+ - First number in the series
+ - f1e5a406-fccd-42ba-bc76-0641686130c8
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2851
+ 12230
+ 33
+ 20
+
+ -
+ 2869
+ 12240
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 7ff299e3-25a1-46ed-a125-ec5dc67e9908
+ - Step
+ - Step
+ - false
+ - 42c73156-b980-4c30-a0e4-f33968a6c162
+ - 1
+
+
+
+
+ -
+ 2851
+ 12250
+ 33
+ 20
+
+ -
+ 2869
+ 12260
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - d4c81d22-01c4-49b1-ae64-d9163b176eb3
+ - Count
+ - Count
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 2851
+ 12270
+ 33
+ 20
+
+ -
+ 2869
+ 12280
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - f1a5d7bc-42be-4799-83f9-ac28feb25791
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 2914
+ 12230
+ 34
+ 60
+
+ -
+ 2932.5
+ 12260
+
+
+
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 4efe6b4e-959d-49f7-b9de-2270f0224cdd
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 2839
+ 12376
+ 120
+ 28
+
+ -
+ 2900
+ 12390
+
+
+
+
+
+ - Angle in degrees
+ - 86d2687b-e8ed-42be-be19-17b2ac144398
+ - Degrees
+ - Degrees
+ - false
+ - bb7c6e56-db88-4b95-97d6-7f9c63deab58
+ - 1
+
+
+
+
+ -
+ 2841
+ 12378
+ 44
+ 24
+
+ -
+ 2864.5
+ 12390
+
+
+
+
+
+
+
+ - Angle in radians
+ - 42c73156-b980-4c30-a0e4-f33968a6c162
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 2915
+ 12378
+ 42
+ 24
+
+ -
+ 2937.5
+ 12390
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3dc0f67e-ce3c-40e2-84c3-dd399d89c1e0
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000007490
+
+
+
+
+ -
+ 2773
+ 12707
+ 250
+ 20
+
+ -
+ 2773.903
+ 12707.24
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - e5326a5c-380c-4faf-be70-a5ef64ca144c
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 2816
+ 11189
+ 144
+ 84
+
+ -
+ 2902
+ 11231
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 73643587-5c3d-4e81-b6ee-755cc723d65d
+ - Vertices
+ - Vertices
+ - false
+ - b05b142f-4c7d-4ff8-8a0d-e4cc0cf78eb2
+ - 1
+
+
+
+
+ -
+ 2818
+ 11191
+ 69
+ 20
+
+ -
+ 2854
+ 11201
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 40ab1b9f-3fd9-4c95-815b-693311852928
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 11211
+ 69
+ 20
+
+ -
+ 2854
+ 11221
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - d678c573-372c-40a6-918a-7a4ac2a4d88f
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 11231
+ 69
+ 20
+
+ -
+ 2854
+ 11241
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 644e5c80-3fe1-4187-8639-0f5c02a7e4f1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 11251
+ 69
+ 20
+
+ -
+ 2854
+ 11261
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - ab685143-f515-47d5-bdf0-735b4b5153bd
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11191
+ 41
+ 26
+
+ -
+ 2939
+ 11204.33
+
+
+
+
+
+
+
+ - Curve length
+ - f8ebec05-89f2-493b-b8e5-109f1edbe578
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11217
+ 41
+ 27
+
+ -
+ 2939
+ 11231
+
+
+
+
+
+
+
+ - Curve domain
+ - d512ab32-3866-4496-9223-be577a000368
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11244
+ 41
+ 27
+
+ -
+ 2939
+ 11257.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10b2a433-1080-4d9a-abca-e4f123bebcf3
+ - 32b23ba0-c30f-438d-81e9-ec3c7b83ffa5
+ - 120b5798-7e93-4f8d-a27d-8c208f89e6e7
+ - cc5800cb-d854-4add-8c32-efe50fa3d2eb
+ - 6d2839a1-e43f-4aae-8139-56c8a3457cb7
+ - 4efe6b4e-959d-49f7-b9de-2270f0224cdd
+ - 3dc0f67e-ce3c-40e2-84c3-dd399d89c1e0
+ - 6e65bcbe-4b23-49e9-a8a9-1695d9f5d7eb
+ - 930e1928-ff32-4623-a204-dbf6553b9ace
+ - 589075b9-2b51-480f-92d4-4420a7b92fd9
+ - b1b40210-218f-4eda-9d9f-b666946fe136
+ - 006de0bd-a99a-4cec-937d-c3306770ce03
+ - 37c75f14-1e75-4f2c-b59c-513984ea2ab4
+ - 13
+ - 711a6046-10d3-4bbf-bc8b-838cffa466d5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8c9f984b-f9d5-472c-8b9b-1a382ce7fd31
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2816
+ 11021
+ 144
+ 64
+
+ -
+ 2890
+ 11053
+
+
+
+
+
+ - Curve to evaluate
+ - 216ba8ea-573c-4ed4-87ac-501b75d0851f
+ - Curve
+ - Curve
+ - false
+ - ab685143-f515-47d5-bdf0-735b4b5153bd
+ - 1
+
+
+
+
+ -
+ 2818
+ 11023
+ 57
+ 20
+
+ -
+ 2848
+ 11033
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3f0a5dd8-130c-4c8f-8a08-7f5bb28c440f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 11043
+ 57
+ 20
+
+ -
+ 2848
+ 11053
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 015ab1eb-497b-48d8-af27-55613993e498
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 11063
+ 57
+ 20
+
+ -
+ 2848
+ 11073
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 5e1fb162-6236-4bd4-8041-e5fc2d038352
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 11023
+ 53
+ 20
+
+ -
+ 2933
+ 11033
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 8964f33a-f8a6-41c4-8adc-a9b58fafc7c8
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 11043
+ 53
+ 20
+
+ -
+ 2933
+ 11053
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3de66104-8d61-416b-9229-03e45df8f0d4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 11063
+ 53
+ 20
+
+ -
+ 2933
+ 11073
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - b073a17e-c314-4385-81b2-7fbf1d49f248
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 2819
+ 10959
+ 138
+ 44
+
+ -
+ 2887
+ 10981
+
+
+
+
+
+ - Base geometry
+ - 969f3e76-0c15-4474-a907-6af6626a5e57
+ - Geometry
+ - Geometry
+ - true
+ - ab685143-f515-47d5-bdf0-735b4b5153bd
+ - 1
+
+
+
+
+ -
+ 2821
+ 10961
+ 51
+ 20
+
+ -
+ 2848
+ 10971
+
+
+
+
+
+
+
+ - Mirror plane
+ - 6c61a70a-cbde-4b9f-98fd-33038fd1e40c
+ - Plane
+ - Plane
+ - false
+ - c67847e9-14e4-460b-a3e7-f4d5d496aaec
+ - 1
+
+
+
+
+ -
+ 2821
+ 10981
+ 51
+ 20
+
+ -
+ 2848
+ 10991
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 8b5c246f-4879-4ee1-8ded-08505b93eaff
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2902
+ 10961
+ 53
+ 20
+
+ -
+ 2930
+ 10971
+
+
+
+
+
+
+
+ - Transformation data
+ - 261d0969-6b5c-4d4b-a782-d609cc216f6c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2902
+ 10981
+ 53
+ 20
+
+ -
+ 2930
+ 10991
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - dd0d43a1-de87-4342-8507-d855b718c931
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2835
+ 11105
+ 106
+ 64
+
+ -
+ 2899
+ 11137
+
+
+
+
+
+ - Line start point
+ - f0375c46-8ab1-47ac-8d0b-17e20c132caf
+ - Start
+ - Start
+ - false
+ - 5e1fb162-6236-4bd4-8041-e5fc2d038352
+ - 1
+
+
+
+
+ -
+ 2837
+ 11107
+ 47
+ 20
+
+ -
+ 2862
+ 11117
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 1b08bf37-6aa1-45d1-b097-cfb735bfc0bc
+ - Direction
+ - Direction
+ - false
+ - 8964f33a-f8a6-41c4-8adc-a9b58fafc7c8
+ - 1
+
+
+
+
+ -
+ 2837
+ 11127
+ 47
+ 20
+
+ -
+ 2862
+ 11137
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - b61b5581-4b29-4fec-95dd-d8515f30bce0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2837
+ 11147
+ 47
+ 20
+
+ -
+ 2862
+ 11157
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c67847e9-14e4-460b-a3e7-f4d5d496aaec
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 2914
+ 11107
+ 25
+ 60
+
+ -
+ 2928
+ 11137
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 8ec23702-5fe2-4be1-8332-98f416ab5ddc
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 2829
+ 10897
+ 118
+ 44
+
+ -
+ 2892
+ 10919
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 369956ec-3d36-46ed-a424-24c8883bd5fd
+ - Curves
+ - Curves
+ - false
+ - ab685143-f515-47d5-bdf0-735b4b5153bd
+ - 8b5c246f-4879-4ee1-8ded-08505b93eaff
+ - 2
+
+
+
+
+ -
+ 2831
+ 10899
+ 46
+ 20
+
+ -
+ 2855.5
+ 10909
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 08679527-ca8f-4f96-a49c-33c156c8ad04
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 10919
+ 46
+ 20
+
+ -
+ 2855.5
+ 10929
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - a16d9668-d615-49d8-bd88-f7c5d0263a61
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 2907
+ 10899
+ 38
+ 40
+
+ -
+ 2927.5
+ 10919
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4d10f13d-6355-45d6-87eb-ccaaefa51805
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2816
+ 10813
+ 144
+ 64
+
+ -
+ 2890
+ 10845
+
+
+
+
+
+ - Curve to evaluate
+ - d686837e-9bcd-488a-830a-e2b72b687a76
+ - Curve
+ - Curve
+ - false
+ - a16d9668-d615-49d8-bd88-f7c5d0263a61
+ - 1
+
+
+
+
+ -
+ 2818
+ 10815
+ 57
+ 20
+
+ -
+ 2848
+ 10825
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2307a3b0-5c64-46e2-a3c9-5fc5d613ec84
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 10835
+ 57
+ 20
+
+ -
+ 2848
+ 10845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - e9c10ff4-8e68-48fd-92ce-23f5d1884e82
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 10855
+ 57
+ 20
+
+ -
+ 2848
+ 10865
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 29c4abcc-8a61-4b59-a3f5-01aec3dd7884
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10815
+ 53
+ 20
+
+ -
+ 2933
+ 10825
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 14cce23f-6b3f-4c61-ad91-66fbcddd7d58
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10835
+ 53
+ 20
+
+ -
+ 2933
+ 10845
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2fcbfec6-f66c-45de-881f-07f8445f134d
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10855
+ 53
+ 20
+
+ -
+ 2933
+ 10865
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 9e2762c3-ea73-4bee-ae02-cb37abac4507
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 2819
+ 10730
+ 138
+ 64
+
+ -
+ 2887
+ 10762
+
+
+
+
+
+ - Base geometry
+ - 7c503bf9-0363-4afb-961c-c44bbc071267
+ - Geometry
+ - Geometry
+ - true
+ - a16d9668-d615-49d8-bd88-f7c5d0263a61
+ - 1
+
+
+
+
+ -
+ 2821
+ 10732
+ 51
+ 20
+
+ -
+ 2848
+ 10742
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - e70e7b40-7ce3-4830-9d3e-c2231ea40a2c
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 2821
+ 10752
+ 51
+ 20
+
+ -
+ 2848
+ 10762
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 7692ee51-76b9-448f-aa9e-bac38e5d4abb
+ - Plane
+ - Plane
+ - false
+ - 29c4abcc-8a61-4b59-a3f5-01aec3dd7884
+ - 1
+
+
+
+
+ -
+ 2821
+ 10772
+ 51
+ 20
+
+ -
+ 2848
+ 10782
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - bf0f2ce2-2957-4cc4-98d9-494d053f5904
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2902
+ 10732
+ 53
+ 30
+
+ -
+ 2930
+ 10747
+
+
+
+
+
+
+
+ - Transformation data
+ - a95874c0-197c-4794-bfcc-a539b1b14af5
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2902
+ 10762
+ 53
+ 30
+
+ -
+ 2930
+ 10777
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 07432975-046f-408a-b936-f3cc88f52ba8
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 2829
+ 10667
+ 118
+ 44
+
+ -
+ 2892
+ 10689
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 6016bebc-23fb-479f-acdc-76d0c5abc04c
+ - Curves
+ - Curves
+ - false
+ - a16d9668-d615-49d8-bd88-f7c5d0263a61
+ - bf0f2ce2-2957-4cc4-98d9-494d053f5904
+ - 2
+
+
+
+
+ -
+ 2831
+ 10669
+ 46
+ 20
+
+ -
+ 2855.5
+ 10679
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 1771f275-0a51-4ba0-a603-511f63db61ef
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 2831
+ 10689
+ 46
+ 20
+
+ -
+ 2855.5
+ 10699
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - a1fd42b8-c6dd-4799-a97e-644d20681eee
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 2907
+ 10669
+ 38
+ 40
+
+ -
+ 2927.5
+ 10689
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5326a5c-380c-4faf-be70-a5ef64ca144c
+ - 8c9f984b-f9d5-472c-8b9b-1a382ce7fd31
+ - b073a17e-c314-4385-81b2-7fbf1d49f248
+ - dd0d43a1-de87-4342-8507-d855b718c931
+ - 8ec23702-5fe2-4be1-8332-98f416ab5ddc
+ - 4d10f13d-6355-45d6-87eb-ccaaefa51805
+ - 9e2762c3-ea73-4bee-ae02-cb37abac4507
+ - 07432975-046f-408a-b936-f3cc88f52ba8
+ - 8020b978-8059-4fb8-9dfc-499634e3eb36
+ - 9
+ - df348b4a-11d0-42c2-8b77-bf4df126b9b4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c6db8cd0-9eb3-4673-bc52-c07eba1c8691
+ - Panel
+
+ - false
+ - 0
+ - a95966a7-ea64-4957-b7d7-09be00ba5fe2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2829
+ 12333
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2829.287
+ 12333.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8020b978-8059-4fb8-9dfc-499634e3eb36
+ - Curve
+ - Curve
+ - false
+ - a1fd42b8-c6dd-4799-a97e-644d20681eee
+ - 1
+
+
+
+
+ -
+ 2865
+ 10635
+ 50
+ 24
+
+ -
+ 2890.651
+ 10647.03
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8020b978-8059-4fb8-9dfc-499634e3eb36
+ - 1
+ - 0080791e-d2ab-4d97-92f0-aa070e790b17
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 03e045d1-2ed6-4631-95ce-9a0b3d4a109d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695*4*4
+
+
+
+
+ -
+ 2801
+ 12456
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2801.668
+ 12456.35
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 852a904e-5051-41c4-bd2e-4fa4a61a1412
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2816
+ 10541
+ 144
+ 64
+
+ -
+ 2890
+ 10573
+
+
+
+
+
+ - Curve to evaluate
+ - 4714887a-6a76-445e-80db-1ac7d26fcc2b
+ - Curve
+ - Curve
+ - false
+ - a1fd42b8-c6dd-4799-a97e-644d20681eee
+ - 1
+
+
+
+
+ -
+ 2818
+ 10543
+ 57
+ 20
+
+ -
+ 2848
+ 10553
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3c415b24-4842-42da-a2c5-d7d56b124c52
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 10563
+ 57
+ 20
+
+ -
+ 2848
+ 10573
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a00e067a-2433-4d4e-bfcf-1395ed3570db
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 10583
+ 57
+ 20
+
+ -
+ 2848
+ 10593
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2ca71a11-832e-437e-8324-1091bbde1db1
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10543
+ 53
+ 20
+
+ -
+ 2933
+ 10553
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ef8f9d17-df24-437e-877c-b1e41d85b138
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10563
+ 53
+ 20
+
+ -
+ 2933
+ 10573
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a82441d4-4a52-4645-a0a1-79576a50c728
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 10583
+ 53
+ 20
+
+ -
+ 2933
+ 10593
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 81a6a5dd-5254-4136-8fa8-e24714b0cbad
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 10319
+ 194
+ 28
+
+ -
+ 2891
+ 10333
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 157206c1-ab42-4318-96ab-ad74bada3374
+ - Variable O
+ - O
+ - true
+ - 2b2ee6d2-d98e-4bdf-9429-42273788f8ff
+ - 1
+
+
+
+
+ -
+ 2793
+ 10321
+ 14
+ 24
+
+ -
+ 2801.5
+ 10333
+
+
+
+
+
+
+
+ - Result of expression
+ - aa9e8752-ce5c-42d3-8dc2-5932c4fb9e08
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 10321
+ 9
+ 24
+
+ -
+ 2980
+ 10333
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 45266b01-7b74-4de8-9ea4-1aaeed8c1eec
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 2822
+ 10453
+ 132
+ 64
+
+ -
+ 2869
+ 10485
+
+
+
+
+
+ - Input point
+ - 9c49fa7c-a96f-49d4-b2e3-9064f5977a10
+ - Point
+ - Point
+ - false
+ - 2ca71a11-832e-437e-8324-1091bbde1db1
+ - 1
+
+
+
+
+ -
+ 2824
+ 10455
+ 30
+ 60
+
+ -
+ 2840.5
+ 10485
+
+
+
+
+
+
+
+ - Point {x} component
+ - 2b2ee6d2-d98e-4bdf-9429-42273788f8ff
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 10455
+ 68
+ 20
+
+ -
+ 2919.5
+ 10465
+
+
+
+
+
+
+
+ - Point {y} component
+ - 504f6ffa-55e6-43e4-bda1-de4df5ad0700
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 10475
+ 68
+ 20
+
+ -
+ 2919.5
+ 10485
+
+
+
+
+
+
+
+ - Point {z} component
+ - 15b65946-9ce1-428d-93ce-5c1a40cb9cb8
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 10495
+ 68
+ 20
+
+ -
+ 2919.5
+ 10505
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 66c7d9bd-29ad-462d-b663-7baf7b463b5a
+ - Panel
+
+ - false
+ - 0
+ - aa9e8752-ce5c-42d3-8dc2-5932c4fb9e08
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 10291
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.145
+ 10291.03
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 374cb792-533f-446a-ae0e-b3bc386a0522
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 10233
+ 194
+ 28
+
+ -
+ 2891
+ 10247
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4568c64c-2f77-4d7c-b013-9072ec0eaa8f
+ - Variable O
+ - O
+ - true
+ - 504f6ffa-55e6-43e4-bda1-de4df5ad0700
+ - 1
+
+
+
+
+ -
+ 2793
+ 10235
+ 14
+ 24
+
+ -
+ 2801.5
+ 10247
+
+
+
+
+
+
+
+ - Result of expression
+ - 24498af1-4bef-4f71-b7a7-f0a40381fc09
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 10235
+ 9
+ 24
+
+ -
+ 2980
+ 10247
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f1845088-2665-4e94-b3b9-78b3dcda391d
+ - Panel
+
+ - false
+ - 0
+ - 24498af1-4bef-4f71-b7a7-f0a40381fc09
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 10202
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.145
+ 10202.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - bac62c71-29c9-436a-b5bb-4e2895fa0124
+ - Division
+ - Division
+
+
+
+
+ -
+ 2847
+ 10131
+ 82
+ 44
+
+ -
+ 2878
+ 10153
+
+
+
+
+
+ - Item to divide (dividend)
+ - 8d6c97b4-990b-4de2-8932-3a52dec3e215
+ - A
+ - A
+ - false
+ - 66c7d9bd-29ad-462d-b663-7baf7b463b5a
+ - 1
+
+
+
+
+ -
+ 2849
+ 10133
+ 14
+ 20
+
+ -
+ 2857.5
+ 10143
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - ca8f01e2-4cd1-402a-a667-dd3e7cb74f49
+ - B
+ - B
+ - false
+ - f1845088-2665-4e94-b3b9-78b3dcda391d
+ - 1
+
+
+
+
+ -
+ 2849
+ 10153
+ 14
+ 20
+
+ -
+ 2857.5
+ 10163
+
+
+
+
+
+
+
+ - The result of the Division
+ - c0a66db3-05c3-4a8c-b9dc-4d9db92778ae
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ 10133
+ 34
+ 40
+
+ -
+ 2911.5
+ 10153
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c9a78eeb-6570-40b7-a6b2-6846321790d3
+ - Panel
+
+ - false
+ - 0
+ - a95966a7-ea64-4957-b7d7-09be00ba5fe2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 10047
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.203
+ 10047.72
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 985368d2-fe10-4d78-ab09-0fb0a2c36be2
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 10084
+ 194
+ 28
+
+ -
+ 2891
+ 10098
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2c5c6136-77d7-487c-803a-208d46548e7e
+ - Variable O
+ - O
+ - true
+ - c0a66db3-05c3-4a8c-b9dc-4d9db92778ae
+ - 1
+
+
+
+
+ -
+ 2793
+ 10086
+ 14
+ 24
+
+ -
+ 2801.5
+ 10098
+
+
+
+
+
+
+
+ - Result of expression
+ - edcf80aa-6916-43fb-a4f1-c6c283257647
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 10086
+ 9
+ 24
+
+ -
+ 2980
+ 10098
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a95966a7-ea64-4957-b7d7-09be00ba5fe2
+ - Relay
+
+ - false
+ - edcf80aa-6916-43fb-a4f1-c6c283257647
+ - 1
+
+
+
+
+ -
+ 2868
+ 10009
+ 40
+ 16
+
+ -
+ 2888
+ 10017
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - df8758b2-500d-4069-81dd-a88445f1e688
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 2847
+ 9946
+ 82
+ 44
+
+ -
+ 2878
+ 9968
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - a4cb56d1-b5b5-4d26-bbb7-c654fcfeede4
+ - A
+ - A
+ - true
+ - f1845088-2665-4e94-b3b9-78b3dcda391d
+ - 1
+
+
+
+
+ -
+ 2849
+ 9948
+ 14
+ 20
+
+ -
+ 2857.5
+ 9958
+
+
+
+
+
+
+
+ - Second item for addition
+ - e6b30dfa-02be-473f-80f7-dedf65668b30
+ - B
+ - B
+ - true
+ - 66c7d9bd-29ad-462d-b663-7baf7b463b5a
+ - 1
+
+
+
+
+ -
+ 2849
+ 9968
+ 14
+ 20
+
+ -
+ 2857.5
+ 9978
+
+
+
+
+
+
+
+ - Result of addition
+ - c06abffe-5c17-4448-957b-aa786d18d656
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ 9948
+ 34
+ 40
+
+ -
+ 2911.5
+ 9968
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - eb120ca0-0ff6-46cb-b130-cf60a5f94465
+ - Division
+ - Division
+
+
+
+
+ -
+ 2847
+ 9796
+ 82
+ 44
+
+ -
+ 2878
+ 9818
+
+
+
+
+
+ - Item to divide (dividend)
+ - dc7eb66d-e721-4fd1-a3ab-7b1c7d172c84
+ - A
+ - A
+ - false
+ - 27ccc10c-171d-4c69-a49b-b16712c5b030
+ - 1
+
+
+
+
+ -
+ 2849
+ 9798
+ 14
+ 20
+
+ -
+ 2857.5
+ 9808
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - d0dfc509-725f-407f-aa70-1c2cefd4200e
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 2849
+ 9818
+ 14
+ 20
+
+ -
+ 2857.5
+ 9828
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - f889d4f2-95c1-4ce8-b6b7-68da75fe5436
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 2893
+ 9798
+ 34
+ 40
+
+ -
+ 2911.5
+ 9818
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 389aa786-c3b4-496b-83f0-a1a246a30e2b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 9748
+ 194
+ 28
+
+ -
+ 2891
+ 9762
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7a60aad7-c372-4c57-86cb-4c684003fe52
+ - Variable O
+ - O
+ - true
+ - f889d4f2-95c1-4ce8-b6b7-68da75fe5436
+ - 1
+
+
+
+
+ -
+ 2793
+ 9750
+ 14
+ 24
+
+ -
+ 2801.5
+ 9762
+
+
+
+
+
+
+
+ - Result of expression
+ - aee029a4-9aa4-479c-86d7-8c49ca9805b2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 9750
+ 9
+ 24
+
+ -
+ 2980
+ 9762
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - aded80e6-bb12-4515-a081-336e91457834
+ - Panel
+
+ - false
+ - 0
+ - aee029a4-9aa4-479c-86d7-8c49ca9805b2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 9718
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.145
+ 9718.942
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 27ccc10c-171d-4c69-a49b-b16712c5b030
+ - Panel
+
+ - false
+ - 0
+ - c5d9651e-226e-4f93-b2fd-90bb3dbf63d9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 9870
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.145
+ 9870.853
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d27685f1-474c-4ad8-a45e-702164d36f6d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 9899
+ 194
+ 28
+
+ -
+ 2891
+ 9913
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 410640f2-10f1-4b9c-a6cf-553733d8f7cb
+ - Variable O
+ - O
+ - true
+ - c06abffe-5c17-4448-957b-aa786d18d656
+ - 1
+
+
+
+
+ -
+ 2793
+ 9901
+ 14
+ 24
+
+ -
+ 2801.5
+ 9913
+
+
+
+
+
+
+
+ - Result of expression
+ - c5d9651e-226e-4f93-b2fd-90bb3dbf63d9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 9901
+ 9
+ 24
+
+ -
+ 2980
+ 9913
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 5eb498a8-9e2a-4f4d-817c-7ad083a5967c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2811
+ 9625
+ 154
+ 64
+
+ -
+ 2895
+ 9657
+
+
+
+
+
+ - Base geometry
+ - 61d635cf-7d82-44d9-8287-80e464f5b694
+ - Geometry
+ - Geometry
+ - true
+ - 8020b978-8059-4fb8-9dfc-499634e3eb36
+ - 1
+
+
+
+
+ -
+ 2813
+ 9627
+ 67
+ 20
+
+ -
+ 2856
+ 9637
+
+
+
+
+
+
+
+ - Center of scaling
+ - 206a0f7a-667d-4788-afba-45f96f0c6905
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2813
+ 9647
+ 67
+ 20
+
+ -
+ 2856
+ 9657
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - d1b5d377-575b-41af-95da-56e8a19c7f59
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - aded80e6-bb12-4515-a081-336e91457834
+ - 1
+
+
+
+
+ -
+ 2813
+ 9667
+ 67
+ 20
+
+ -
+ 2856
+ 9677
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c07ab784-3c82-4b45-8ddc-07ac374aeffa
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2910
+ 9627
+ 53
+ 30
+
+ -
+ 2938
+ 9642
+
+
+
+
+
+
+
+ - Transformation data
+ - 27dd4a64-043b-43bb-a256-0a45ea81567f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2910
+ 9657
+ 53
+ 30
+
+ -
+ 2938
+ 9672
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - Curve
+ - Curve
+ - false
+ - c07ab784-3c82-4b45-8ddc-07ac374aeffa
+ - 1
+
+
+
+
+ -
+ 2879
+ 9129
+ 50
+ 24
+
+ -
+ 2904.118
+ 9141.304
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3ad53410-543a-415e-9b3c-24de86d30cb0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 10406
+ 194
+ 28
+
+ -
+ 2891
+ 10420
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4c745894-eaa5-4669-8cbf-c69e90e5c5ba
+ - Variable O
+ - O
+ - true
+ - 15b65946-9ce1-428d-93ce-5c1a40cb9cb8
+ - 1
+
+
+
+
+ -
+ 2793
+ 10408
+ 14
+ 24
+
+ -
+ 2801.5
+ 10420
+
+
+
+
+
+
+
+ - Result of expression
+ - 3e48293e-a9a4-4b7a-9e70-854c51987645
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 10408
+ 9
+ 24
+
+ -
+ 2980
+ 10420
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4b26507f-868d-45c5-8260-3c0775a0897d
+ - Panel
+
+ - false
+ - 0
+ - 3e48293e-a9a4-4b7a-9e70-854c51987645
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 10376
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.017
+ 10376.8
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b87313ab-683d-437f-84f9-c4631a1cfdfb
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2816
+ 9542
+ 144
+ 64
+
+ -
+ 2890
+ 9574
+
+
+
+
+
+ - Curve to evaluate
+ - 69475151-b588-4d2e-afa9-ea5c3c17fb6e
+ - Curve
+ - Curve
+ - false
+ - c07ab784-3c82-4b45-8ddc-07ac374aeffa
+ - 1
+
+
+
+
+ -
+ 2818
+ 9544
+ 57
+ 20
+
+ -
+ 2848
+ 9554
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5a470922-56e6-499f-bea0-07027ee34d9e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 9564
+ 57
+ 20
+
+ -
+ 2848
+ 9574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 0f6a5a19-7acc-4965-ab8d-50a9a096737a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2818
+ 9584
+ 57
+ 20
+
+ -
+ 2848
+ 9594
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c1b5e8bc-9fbc-402a-a7df-de66d786dc1f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 9544
+ 53
+ 20
+
+ -
+ 2933
+ 9554
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5b8dd0bb-4d03-478e-b66a-b8d6e987f354
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 9564
+ 53
+ 20
+
+ -
+ 2933
+ 9574
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c2ffa1b1-5414-4a45-b3f6-ede4f543b020
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 2905
+ 9584
+ 53
+ 20
+
+ -
+ 2933
+ 9594
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d5df7362-ace1-438d-a2e8-b69f30a93618
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 9325
+ 194
+ 28
+
+ -
+ 2891
+ 9339
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9258d55a-68e1-42e7-ba8d-43fe08f28eca
+ - Variable O
+ - O
+ - true
+ - 772165b2-0aa3-4b64-9628-839c09327ef0
+ - 1
+
+
+
+
+ -
+ 2793
+ 9327
+ 14
+ 24
+
+ -
+ 2801.5
+ 9339
+
+
+
+
+
+
+
+ - Result of expression
+ - 9f03dc3c-6605-4a0b-8bfe-4d803586c26b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 9327
+ 9
+ 24
+
+ -
+ 2980
+ 9339
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 15fd20f0-1058-4765-bd6d-bf7e3601c6ea
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 2822
+ 9459
+ 132
+ 64
+
+ -
+ 2869
+ 9491
+
+
+
+
+
+ - Input point
+ - 4ee98b37-12d2-44aa-87fa-92c4937e4f98
+ - Point
+ - Point
+ - false
+ - c1b5e8bc-9fbc-402a-a7df-de66d786dc1f
+ - 1
+
+
+
+
+ -
+ 2824
+ 9461
+ 30
+ 60
+
+ -
+ 2840.5
+ 9491
+
+
+
+
+
+
+
+ - Point {x} component
+ - 772165b2-0aa3-4b64-9628-839c09327ef0
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 9461
+ 68
+ 20
+
+ -
+ 2919.5
+ 9471
+
+
+
+
+
+
+
+ - Point {y} component
+ - 07724da5-4f70-4ab0-a131-d2bc9e1d0490
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 9481
+ 68
+ 20
+
+ -
+ 2919.5
+ 9491
+
+
+
+
+
+
+
+ - Point {z} component
+ - f53326c4-29ba-4f2d-8f77-be5f2f627c59
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2884
+ 9501
+ 68
+ 20
+
+ -
+ 2919.5
+ 9511
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b4ca4350-099e-4bb2-a4bc-362a6f55955e
+ - Panel
+
+ - false
+ - 0
+ - 9f03dc3c-6605-4a0b-8bfe-4d803586c26b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2823
+ 9259
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2823.4
+ 9259.304
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - acf3251a-f637-45d9-9c01-5780e7bdd10b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2804
+ 9201
+ 194
+ 28
+
+ -
+ 2904
+ 9215
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0c1ccd0d-1424-4483-bbf7-e2035b1be211
+ - Variable O
+ - O
+ - true
+ - 07724da5-4f70-4ab0-a131-d2bc9e1d0490
+ - 1
+
+
+
+
+ -
+ 2806
+ 9203
+ 14
+ 24
+
+ -
+ 2814.5
+ 9215
+
+
+
+
+
+
+
+ - Result of expression
+ - 12b40d20-1096-4520-bf74-1865c0504a2b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2987
+ 9203
+ 9
+ 24
+
+ -
+ 2993
+ 9215
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 67c46ea0-3552-4a78-9bad-2a4011c0ee60
+ - Panel
+
+ - false
+ - 0
+ - 12b40d20-1096-4520-bf74-1865c0504a2b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2823
+ 9172
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2823.4
+ 9172.603
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e377c3a4-d1c3-496e-9d02-4580852cab7f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2791
+ 9411
+ 194
+ 28
+
+ -
+ 2891
+ 9425
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 21ea2b06-e65f-4b86-bfc2-f0f5a8940e78
+ - Variable O
+ - O
+ - true
+ - f53326c4-29ba-4f2d-8f77-be5f2f627c59
+ - 1
+
+
+
+
+ -
+ 2793
+ 9413
+ 14
+ 24
+
+ -
+ 2801.5
+ 9425
+
+
+
+
+
+
+
+ - Result of expression
+ - 4d0482bf-0d45-41cd-a279-b89b98c6634f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2974
+ 9413
+ 9
+ 24
+
+ -
+ 2980
+ 9425
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - efb9e513-73c3-4e1d-af61-ff13277f6386
+ - Panel
+
+ - false
+ - 0
+ - 4d0482bf-0d45-41cd-a279-b89b98c6634f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2811
+ 9383
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2811.145
+ 9383.522
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 006de0bd-a99a-4cec-937d-c3306770ce03
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0 256 0.0013733120705119695
+0 4096 0.0000053644183496292
+
+
+
+
+ -
+ 2720
+ 12495
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 2720.645
+ 12495.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b1b40210-218f-4eda-9d9f-b666946fe136
+ - Panel
+
+ - false
+ - 1
+ - 9e758df8-3eb2-4a9b-a2a7-31ff7eb0b610
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2714
+ 11530
+ 355
+ 100
+
+ - 0
+ - 0
+ - 0
+ -
+ 2714.224
+ 11530.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0eb87ca0-6ac5-40ff-9940-c146c824e945
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2802
+ 11722
+ 194
+ 28
+
+ -
+ 2902
+ 11736
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bb9ecb24-d4d2-43db-83d4-970904babf5f
+ - Variable O
+ - O
+ - true
+ - 63c92217-d37f-4363-846e-d0e6c9bbeff9
+ - 1
+
+
+
+
+ -
+ 2804
+ 11724
+ 14
+ 24
+
+ -
+ 2812.5
+ 11736
+
+
+
+
+
+
+
+ - Result of expression
+ - 9e758df8-3eb2-4a9b-a2a7-31ff7eb0b610
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2985
+ 11724
+ 9
+ 24
+
+ -
+ 2991
+ 11736
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - Number
+ - Number
+ - false
+ - fce57c1e-7c8c-442e-8c34-f03322b193c3
+ - 1
+
+
+
+
+ -
+ 2880
+ 12976
+ 50
+ 24
+
+ -
+ 2905
+ 12988.25
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+ - 64923356-6497-46c4-a05e-5b8f988355e4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 99bde510-8938-4c7b-a447-2b979324a643
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2802
+ 12157
+ 194
+ 28
+
+ -
+ 2902
+ 12171
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - dd37c0ef-f4e0-4aae-86ec-02a981a1c5c5
+ - Variable O
+ - O
+ - true
+ - 51f60437-3aff-4578-a646-e734c437b992
+ - 1
+
+
+
+
+ -
+ 2804
+ 12159
+ 14
+ 24
+
+ -
+ 2812.5
+ 12171
+
+
+
+
+
+
+
+ - Result of expression
+ - cffc8100-2777-4619-b131-1a5e819d40fd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2985
+ 12159
+ 9
+ 24
+
+ -
+ 2991
+ 12171
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d6496b1d-3cbc-47ce-a7e8-7ec952159dbc
+ - Panel
+
+ - false
+ - 0
+ - cffc8100-2777-4619-b131-1a5e819d40fd
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2804
+ 11875
+ 194
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2804.914
+ 11875.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 469590de-f73d-4fcc-ae7d-120c40eb69d3
+ - Relay
+ -
+ - false
+ - d6496b1d-3cbc-47ce-a7e8-7ec952159dbc
+ - 1
+
+
+
+
+ -
+ 2879
+ 11834
+ 40
+ 16
+
+ -
+ 2899
+ 11842
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51f60437-3aff-4578-a646-e734c437b992
+ - Relay
+ -
+ - false
+ - f1a5d7bc-42be-4799-83f9-ac28feb25791
+ - 1
+
+
+
+
+ -
+ 2879
+ 12202
+ 40
+ 16
+
+ -
+ 2899
+ 12210
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 814a02f9-581f-4e49-8bf6-3bf7302aebc5
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 3248
+ 9642
+ 96
+ 44
+
+ -
+ 3298
+ 9664
+
+
+
+
+
+ - Curve to evaluate
+ - 93f29955-6784-4f34-a401-d9bc3adc595b
+ - Curve
+ - Curve
+ - false
+ - 3a9461d7-facc-4583-996d-d7d4e94813c3
+ - 1
+
+
+
+
+ -
+ 3250
+ 9644
+ 33
+ 40
+
+ -
+ 3268
+ 9664
+
+
+
+
+
+
+
+ - Curve start point
+ - 9ee6a458-c21b-4a29-a210-ad0beb88e15d
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3313
+ 9644
+ 29
+ 20
+
+ -
+ 3329
+ 9654
+
+
+
+
+
+
+
+ - Curve end point
+ - 772a479f-460c-4857-b161-78e28aa2baad
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 3313
+ 9664
+ 29
+ 20
+
+ -
+ 3329
+ 9674
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - c839cd89-8621-40a9-9be8-12b4c18d2007
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 3233
+ 9539
+ 126
+ 84
+
+ -
+ 3291
+ 9581
+
+
+
+
+
+ - Rectangle base plane
+ - b916715c-5f60-4ccc-898f-6f59c6412c27
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3235
+ 9541
+ 41
+ 20
+
+ -
+ 3257
+ 9551
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 8684c51f-07d4-4d76-a04b-9622da64aca6
+ - Point A
+ - Point A
+ - false
+ - 9ee6a458-c21b-4a29-a210-ad0beb88e15d
+ - 1
+
+
+
+
+ -
+ 3235
+ 9561
+ 41
+ 20
+
+ -
+ 3257
+ 9571
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - a46377f7-8012-4046-91fe-271430f55d19
+ - Point B
+ - Point B
+ - false
+ - 772a479f-460c-4857-b161-78e28aa2baad
+ - 1
+
+
+
+
+ -
+ 3235
+ 9581
+ 41
+ 20
+
+ -
+ 3257
+ 9591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 90b47f91-3db2-4afa-a796-1a8cdb5cb354
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 3235
+ 9601
+ 41
+ 20
+
+ -
+ 3257
+ 9611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - e29cb3aa-a7ca-4d17-ad50-0ab6c7208efd
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 3306
+ 9541
+ 51
+ 40
+
+ -
+ 3333
+ 9561
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 8483333f-27ca-48da-a2e0-d09035ba4bf9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3306
+ 9581
+ 51
+ 40
+
+ -
+ 3333
+ 9601
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - 8054dab8-ba00-4865-aba6-d62643f5c374
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 3225
+ 9456
+ 142
+ 64
+
+ -
+ 3293
+ 9488
+
+
+
+
+
+ - Rectangle to deconstruct
+ - b217f484-1fc1-4362-97e6-f64c6540e8d3
+ - Rectangle
+ - Rectangle
+ - false
+ - e29cb3aa-a7ca-4d17-ad50-0ab6c7208efd
+ - 1
+
+
+
+
+ -
+ 3227
+ 9458
+ 51
+ 60
+
+ -
+ 3254
+ 9488
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - a8bf20ad-eece-47ab-8014-92cec9444699
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3308
+ 9458
+ 57
+ 20
+
+ -
+ 3338
+ 9468
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - ea727ea2-7915-4659-918a-519045370508
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 3308
+ 9478
+ 57
+ 20
+
+ -
+ 3338
+ 9488
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - a7098e89-7eb6-4849-a975-7649e1c718d7
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 3308
+ 9498
+ 57
+ 20
+
+ -
+ 3338
+ 9508
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 7810f986-6d49-4017-a9c8-6d62a5e28af6
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 3244
+ 9329
+ 104
+ 44
+
+ -
+ 3302
+ 9351
+
+
+
+
+
+ - Base domain
+ - 4cf2f1e7-60ed-4e4e-8484-ee187d7254bc
+ - Domain
+ - Domain
+ - false
+ - a7098e89-7eb6-4849-a975-7649e1c718d7
+ - 1
+
+
+
+
+ -
+ 3246
+ 9331
+ 41
+ 40
+
+ -
+ 3268
+ 9351
+
+
+
+
+
+
+
+ - Start of domain
+ - cfc707e1-fb19-4645-b47a-be20d5541996
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3317
+ 9331
+ 29
+ 20
+
+ -
+ 3333
+ 9341
+
+
+
+
+
+
+
+ - End of domain
+ - 8cbecbaa-a916-43b7-8f3e-74429cfbc1e3
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 3317
+ 9351
+ 29
+ 20
+
+ -
+ 3333
+ 9361
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 930f3d63-3833-416d-b6b8-c52c5c8ad2a3
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 3244
+ 9391
+ 104
+ 44
+
+ -
+ 3302
+ 9413
+
+
+
+
+
+ - Base domain
+ - 4d64d7c0-704a-49ea-a418-c45337c01f72
+ - Domain
+ - Domain
+ - false
+ - ea727ea2-7915-4659-918a-519045370508
+ - 1
+
+
+
+
+ -
+ 3246
+ 9393
+ 41
+ 40
+
+ -
+ 3268
+ 9413
+
+
+
+
+
+
+
+ - Start of domain
+ - 78aee327-8269-48f4-b511-852990d37069
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3317
+ 9393
+ 29
+ 20
+
+ -
+ 3333
+ 9403
+
+
+
+
+
+
+
+ - End of domain
+ - 49f5104f-5deb-4f91-879f-01c9f892ff25
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 3317
+ 9413
+ 29
+ 20
+
+ -
+ 3333
+ 9423
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 388908ed-2b06-4fca-9122-445447916565
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 3209
+ 9194
+ 154
+ 104
+
+ -
+ 3293
+ 9246
+
+
+
+
+
+ - Base geometry
+ - 51616615-bd72-4841-b87b-f1ee188a115f
+ - Geometry
+ - Geometry
+ - true
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+
+
+
+
+ -
+ 3211
+ 9196
+ 67
+ 20
+
+ -
+ 3254
+ 9206
+
+
+
+
+
+
+
+ - Base plane
+ - a4b61279-6b13-4434-bffa-0ce34b0ed10d
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3211
+ 9216
+ 67
+ 20
+
+ -
+ 3254
+ 9226
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - d3f46b4f-b22f-4d60-97d6-18b964d98b3d
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - 49f5104f-5deb-4f91-879f-01c9f892ff25
+ - 1
+
+
+
+
+ -
+ 3211
+ 9236
+ 67
+ 20
+
+ -
+ 3254
+ 9246
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - cef63be5-44fa-4f83-b3ef-9b4534759bdc
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 8cbecbaa-a916-43b7-8f3e-74429cfbc1e3
+ - 1
+
+
+
+
+ -
+ 3211
+ 9256
+ 67
+ 20
+
+ -
+ 3254
+ 9266
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - d4066134-43b6-493b-a641-de935e9079de
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 3211
+ 9276
+ 67
+ 20
+
+ -
+ 3254
+ 9286
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 4b1bb837-b044-4eaa-9877-25583c26adba
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3308
+ 9196
+ 53
+ 50
+
+ -
+ 3336
+ 9221
+
+
+
+
+
+
+
+ - Transformation data
+ - 8571b2f5-43a8-4fa7-be2a-129942ea7664
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3308
+ 9246
+ 53
+ 50
+
+ -
+ 3336
+ 9271
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 814a02f9-581f-4e49-8bf6-3bf7302aebc5
+ - c839cd89-8621-40a9-9be8-12b4c18d2007
+ - 8054dab8-ba00-4865-aba6-d62643f5c374
+ - 7810f986-6d49-4017-a9c8-6d62a5e28af6
+ - 930f3d63-3833-416d-b6b8-c52c5c8ad2a3
+ - 388908ed-2b06-4fca-9122-445447916565
+ - 3a9461d7-facc-4583-996d-d7d4e94813c3
+ - f32e469d-5411-4757-a641-2639d4f5739a
+ - 8
+ - 2f0d796f-cc5c-4432-9d09-1e4402880507
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3a9461d7-facc-4583-996d-d7d4e94813c3
+ - Curve
+ - Curve
+ - false
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+
+
+
+
+ -
+ 3273
+ 9708
+ 50
+ 24
+
+ -
+ 3298.409
+ 9720.144
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f32e469d-5411-4757-a641-2639d4f5739a
+ - Curve
+ - Curve
+ - false
+ - 4b1bb837-b044-4eaa-9877-25583c26adba
+ - 1
+
+
+
+
+ -
+ 3252
+ 9129
+ 50
+ 24
+
+ -
+ 3277.651
+ 9141.914
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 288f5162-987e-4cef-b3b6-6aacb9ca7b1c
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 2773
+ 12653
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2773.709
+ 12653.13
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bead7499-c245-46b1-b24d-388fd63224ee
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0000710748925500000001421
+
+
+
+
+ -
+ 2773
+ 12632
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2773.709
+ 12632.48
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e858f749-079f-4103-af42-3ad8b3c8087d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.0013733120705119695
+
+
+
+
+ -
+ 2773
+ 12687
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2773.709
+ 12687.9
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 4b201f39-b0bc-4219-a4e7-450d7470f118
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 2867
+ 8912
+ 50
+ 24
+
+ -
+ 2892.659
+ 8924.342
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 59a00a81-4b6c-4039-a191-eefacc5e6e0e
+ - Relay
+
+ - false
+ - 63c92217-d37f-4363-846e-d0e6c9bbeff9
+ - 1
+
+
+
+
+ -
+ 2859
+ 11519
+ 40
+ 16
+
+ -
+ 2879
+ 11527
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b05b142f-4c7d-4ff8-8a0d-e4cc0cf78eb2
+ - Relay
+
+ - false
+ - 01865622-a23d-4cbb-8415-2e750fb3994b
+ - 1
+
+
+
+
+ -
+ 2869
+ 11296
+ 40
+ 16
+
+ -
+ 2889
+ 11304
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 97169a5c-4e5b-4b8b-88ff-cb094938af11
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2818
+ 11332
+ 154
+ 64
+
+ -
+ 2902
+ 11364
+
+
+
+
+
+ - Base geometry
+ - 0f872278-1ab8-4ef6-ac37-b839281a9d4d
+ - Geometry
+ - Geometry
+ - true
+ - 120b5798-7e93-4f8d-a27d-8c208f89e6e7
+ - 1
+
+
+
+
+ -
+ 2820
+ 11334
+ 67
+ 20
+
+ -
+ 2863
+ 11344
+
+
+
+
+
+
+
+ - Center of scaling
+ - d90ea1a8-7a12-4940-9d5f-7f77d1ed0c20
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2820
+ 11354
+ 67
+ 20
+
+ -
+ 2863
+ 11364
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 37773065-9f8d-4741-84be-9dfb031cf33d
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 916c0763-c6f9-41e1-a247-a9935450203a
+ - 1
+
+
+
+
+ -
+ 2820
+ 11374
+ 67
+ 20
+
+ -
+ 2863
+ 11384
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 01865622-a23d-4cbb-8415-2e750fb3994b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11334
+ 53
+ 30
+
+ -
+ 2945
+ 11349
+
+
+
+
+
+
+
+ - Transformation data
+ - 90f87fe3-5646-43a3-8067-c36fc01b17cc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2917
+ 11364
+ 53
+ 30
+
+ -
+ 2945
+ 11379
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 916c0763-c6f9-41e1-a247-a9935450203a
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 2765
+ 11420
+ 250
+ 20
+
+ -
+ 2765.691
+ 11420.19
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97169a5c-4e5b-4b8b-88ff-cb094938af11
+ - 916c0763-c6f9-41e1-a247-a9935450203a
+ - 2
+ - 9cd7c784-9711-43cc-9f95-327b458a1a47
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 930e1928-ff32-4623-a204-dbf6553b9ace
+ - Expression
+
+
+
+
+
+ -
+ 2858
+ 12917
+ 79
+ 28
+
+ -
+ 2900
+ 12931
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 13a7ab7c-aa1b-4d68-9510-29263815e578
+ - Variable X
+ - X
+ - true
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 2860
+ 12919
+ 14
+ 24
+
+ -
+ 2868.5
+ 12931
+
+
+
+
+
+
+
+ - Result of expression
+ - c49582fd-259a-4b4b-aac3-ff1ee9763cfb
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 2926
+ 12919
+ 9
+ 24
+
+ -
+ 2932
+ 12931
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 357984e9-07d0-47d5-bd53-1370d57f58af
+ - cf825612-496f-4821-a060-32d498929978
+ - 40a7806f-4c7b-4563-879e-89409bce4ef4
+ - c0a08530-53a6-442d-ad4f-464e9427d0a4
+ - bf2ac55c-385c-4c6d-86e8-213bd1ba6066
+ - d7c3ad86-c94e-4259-87fc-5bd033cf3022
+ - eaa5c098-f7dd-4527-9c0c-09e062a36c27
+ - 5a116c03-7b29-4cd7-acc7-0f3b65d433c8
+ - 2d7fc846-37ba-46ee-b7b2-2d9ce679e10b
+ - 7be1de6d-4099-4390-89b1-36b6971b74cd
+ - d0fd9224-6131-4bf4-b87c-38f421c7eb9b
+ - 01ecd1cf-cf8f-42c1-aaae-520eaa3d299a
+ - f3c622b3-a086-4c07-93a2-a707bfffeb89
+ - 6e70809d-a15c-4679-b924-e6684569dc93
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 397453ad-d11d-42cc-870f-39a716fd5c56
+ - 2518abde-6525-444a-9e84-6bac6a5882c6
+ - 0326c0d8-acda-48f2-bcd5-dd44a9093472
+ - ab7a7616-c46b-47bb-ae5a-f8c00065e6df
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - cc518380-b3c5-4e15-b7d1-1f9222b726c1
+ - 7732fd6b-bd62-4a13-85b1-335385eebd9d
+ - 44749250-6b73-416e-860a-b02fc977fb2c
+ - f661b51e-e4dc-43fe-bad3-489f23f1f015
+ - f5774bb8-b16f-43a6-b6f9-3c1f5b5eb901
+ - 07b4f452-14fe-4d9b-8911-2846ce8a2353
+ - 6fee8773-befa-4289-9a03-49e8c8b7ab59
+ - 9c0a4513-44a8-42f6-bd2e-6973fda8c833
+ - aff11164-81a4-4b6a-b426-3c37a3aba6f8
+ - ae5b7e4a-1487-4326-8be1-d0dd4205e7d4
+ - 5a087567-6dc6-4ef0-a76f-11cea61ca2cc
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - 7e40e0e9-af69-4c40-b8e2-54fdb5ed7cdf
+ - f9d75b4a-e834-4f23-9f97-3ee0281841ee
+ - 7973db4b-dfc0-471b-8bf6-36d4d73ba79b
+ - 5753fe7b-bb38-45ab-951e-b95292caba06
+ - 9fd26e2e-159b-45d3-a3aa-eb9c6db66eee
+ - 6559e3c8-fde8-4749-b27b-98e461438f55
+ - ed38ed7d-e0f5-462b-b8a3-49c29637923a
+ - da5cd8a7-461a-49a2-8c10-1a3debd51b8f
+ - 2878bc0e-f4f4-4aab-9925-622ba3ba7071
+ - b8997139-20b8-4636-9c2f-bdd73da0dd59
+ - 8a3128cb-9869-4bc0-884d-c17fe7f9ee09
+ - 373efc7b-7ef0-439a-9a16-1f7258fc5e55
+ - d5da0918-289c-48b2-8b9a-1c914601ede0
+ - ae54b2b4-eb20-470c-a4f7-1a494adc928b
+ - dcc2bd9f-6534-44f7-95b6-bc46f92222ab
+ - 36451f6a-9e35-4841-85e1-09e88eb0bd66
+ - 57ebdb18-79ac-4540-a02c-aff0d33ff282
+ - 1afe9178-133d-445c-a7bd-86fe87bf0dd8
+ - fdfcd0ad-d760-4e1d-be39-1c77b926f7b9
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - a5bf279a-43c6-4872-8c06-fa8d70488afc
+ - 2ab020dd-779c-4643-9971-14caeca422df
+ - 2dd7f30c-898d-4362-85f0-9bbdb136696d
+ - 53074449-1825-4369-9713-d1fab997895f
+ - 8f15d4df-a295-4c2a-a427-ed66de400789
+ - c8ee08ba-9303-4b8a-985e-59ebf8f261a8
+ - bc46a4e8-63e5-43b7-8292-10edf85be72e
+ - 6f154ebb-c8eb-4572-8858-a3b020c29c72
+ - ff7c83e6-f826-4fb2-97e8-da374b6987b1
+ - 9fcc136a-c294-42e3-afde-ea1143063a36
+ - 3031dd95-64d2-4192-879f-cabe57cc464d
+ - 675924a5-f92c-48d7-83e2-3c58b8d6ec02
+ - 88626db3-5a1c-4d34-a75d-9c38c845ef23
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - 764b73d1-9f00-406d-b582-3e039098b1dd
+ - a5b20955-e9d2-4861-9b22-ec91cd61b1f9
+ - 03bb9ca6-76d4-43b8-9d81-8fb62e3faffd
+ - aa551f67-344e-49d0-8c74-be78e2d0fe04
+ - 0503038e-a06a-4699-9a40-2b74c5e39009
+ - 7522b52d-f670-48c2-91d4-f06965855205
+ - e02fd8ec-0d7c-46b2-a3f4-d5df4817f722
+ - 274e2ba4-a290-4d43-a98e-6d03ec5eed7f
+ - b76e1c16-6cff-4ccb-8b5a-ff60c32fb01a
+ - 3f1fbdb4-eb91-4b3a-a8df-0596dfc0a31b
+ - cdb54c3a-c1fe-47a5-b525-f5ed5bd3e9f9
+ - 7cf9c2b7-629e-4d4a-8851-b1749f393b38
+ - 48d28623-467f-490c-b1c3-34bfd421b511
+ - a5db96b2-971c-49df-9a5e-d9d32338d413
+ - 1ccb8a7e-2e79-44bd-955d-63367d09c98f
+ - fe2bd48c-8bc7-431d-a3d5-89319eee1ab4
+ - f6d60644-d11a-4362-89c4-d1805280f077
+ - 83
+ - feb35d09-6af9-44d3-93b7-44d16535d96d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cf825612-496f-4821-a060-32d498929978
+ - 40a7806f-4c7b-4563-879e-89409bce4ef4
+ - c0a08530-53a6-442d-ad4f-464e9427d0a4
+ - bf2ac55c-385c-4c6d-86e8-213bd1ba6066
+ - d7c3ad86-c94e-4259-87fc-5bd033cf3022
+ - eaa5c098-f7dd-4527-9c0c-09e062a36c27
+ - 5a116c03-7b29-4cd7-acc7-0f3b65d433c8
+ - 2d7fc846-37ba-46ee-b7b2-2d9ce679e10b
+ - 7be1de6d-4099-4390-89b1-36b6971b74cd
+ - d0fd9224-6131-4bf4-b87c-38f421c7eb9b
+ - 01ecd1cf-cf8f-42c1-aaae-520eaa3d299a
+ - f3c622b3-a086-4c07-93a2-a707bfffeb89
+ - 6e70809d-a15c-4679-b924-e6684569dc93
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 397453ad-d11d-42cc-870f-39a716fd5c56
+ - 2518abde-6525-444a-9e84-6bac6a5882c6
+ - 0326c0d8-acda-48f2-bcd5-dd44a9093472
+ - ab7a7616-c46b-47bb-ae5a-f8c00065e6df
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - cc518380-b3c5-4e15-b7d1-1f9222b726c1
+ - 7732fd6b-bd62-4a13-85b1-335385eebd9d
+ - 44749250-6b73-416e-860a-b02fc977fb2c
+ - f661b51e-e4dc-43fe-bad3-489f23f1f015
+ - f5774bb8-b16f-43a6-b6f9-3c1f5b5eb901
+ - 07b4f452-14fe-4d9b-8911-2846ce8a2353
+ - 6fee8773-befa-4289-9a03-49e8c8b7ab59
+ - 9c0a4513-44a8-42f6-bd2e-6973fda8c833
+ - aff11164-81a4-4b6a-b426-3c37a3aba6f8
+ - ae5b7e4a-1487-4326-8be1-d0dd4205e7d4
+ - 5a087567-6dc6-4ef0-a76f-11cea61ca2cc
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - 7e40e0e9-af69-4c40-b8e2-54fdb5ed7cdf
+ - f9d75b4a-e834-4f23-9f97-3ee0281841ee
+ - 7973db4b-dfc0-471b-8bf6-36d4d73ba79b
+ - 5753fe7b-bb38-45ab-951e-b95292caba06
+ - 9fd26e2e-159b-45d3-a3aa-eb9c6db66eee
+ - 6559e3c8-fde8-4749-b27b-98e461438f55
+ - ed38ed7d-e0f5-462b-b8a3-49c29637923a
+ - da5cd8a7-461a-49a2-8c10-1a3debd51b8f
+ - 2878bc0e-f4f4-4aab-9925-622ba3ba7071
+ - b8997139-20b8-4636-9c2f-bdd73da0dd59
+ - 8a3128cb-9869-4bc0-884d-c17fe7f9ee09
+ - 373efc7b-7ef0-439a-9a16-1f7258fc5e55
+ - d5da0918-289c-48b2-8b9a-1c914601ede0
+ - ae54b2b4-eb20-470c-a4f7-1a494adc928b
+ - dcc2bd9f-6534-44f7-95b6-bc46f92222ab
+ - 36451f6a-9e35-4841-85e1-09e88eb0bd66
+ - 57ebdb18-79ac-4540-a02c-aff0d33ff282
+ - 1afe9178-133d-445c-a7bd-86fe87bf0dd8
+ - fdfcd0ad-d760-4e1d-be39-1c77b926f7b9
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - a5bf279a-43c6-4872-8c06-fa8d70488afc
+ - 2ab020dd-779c-4643-9971-14caeca422df
+ - 2dd7f30c-898d-4362-85f0-9bbdb136696d
+ - 53074449-1825-4369-9713-d1fab997895f
+ - 8f15d4df-a295-4c2a-a427-ed66de400789
+ - c8ee08ba-9303-4b8a-985e-59ebf8f261a8
+ - bc46a4e8-63e5-43b7-8292-10edf85be72e
+ - 6f154ebb-c8eb-4572-8858-a3b020c29c72
+ - ff7c83e6-f826-4fb2-97e8-da374b6987b1
+ - 9fcc136a-c294-42e3-afde-ea1143063a36
+ - 3031dd95-64d2-4192-879f-cabe57cc464d
+ - 675924a5-f92c-48d7-83e2-3c58b8d6ec02
+ - 88626db3-5a1c-4d34-a75d-9c38c845ef23
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - 764b73d1-9f00-406d-b582-3e039098b1dd
+ - a5b20955-e9d2-4861-9b22-ec91cd61b1f9
+ - 03bb9ca6-76d4-43b8-9d81-8fb62e3faffd
+ - aa551f67-344e-49d0-8c74-be78e2d0fe04
+ - 0503038e-a06a-4699-9a40-2b74c5e39009
+ - 7522b52d-f670-48c2-91d4-f06965855205
+ - e02fd8ec-0d7c-46b2-a3f4-d5df4817f722
+ - 274e2ba4-a290-4d43-a98e-6d03ec5eed7f
+ - b76e1c16-6cff-4ccb-8b5a-ff60c32fb01a
+ - 3f1fbdb4-eb91-4b3a-a8df-0596dfc0a31b
+ - cdb54c3a-c1fe-47a5-b525-f5ed5bd3e9f9
+ - 7cf9c2b7-629e-4d4a-8851-b1749f393b38
+ - 48d28623-467f-490c-b1c3-34bfd421b511
+ - a5db96b2-971c-49df-9a5e-d9d32338d413
+ - 79
+ - 357984e9-07d0-47d5-bd53-1370d57f58af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7cf9c2b7-629e-4d4a-8851-b1749f393b38
+ - 1
+ - cf825612-496f-4821-a060-32d498929978
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c0a08530-53a6-442d-ad4f-464e9427d0a4
+ - 1
+ - 40a7806f-4c7b-4563-879e-89409bce4ef4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bf2ac55c-385c-4c6d-86e8-213bd1ba6066
+ - 1
+ - c0a08530-53a6-442d-ad4f-464e9427d0a4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d7c3ad86-c94e-4259-87fc-5bd033cf3022
+ - 1
+ - bf2ac55c-385c-4c6d-86e8-213bd1ba6066
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eaa5c098-f7dd-4527-9c0c-09e062a36c27
+ - 1
+ - d7c3ad86-c94e-4259-87fc-5bd033cf3022
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5a116c03-7b29-4cd7-acc7-0f3b65d433c8
+ - 1
+ - eaa5c098-f7dd-4527-9c0c-09e062a36c27
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7be1de6d-4099-4390-89b1-36b6971b74cd
+ - 1
+ - 5a116c03-7b29-4cd7-acc7-0f3b65d433c8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2d7fc846-37ba-46ee-b7b2-2d9ce679e10b
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4321
+ 13010
+ 50
+ 24
+
+ -
+ 4346.781
+ 13022.76
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2d7fc846-37ba-46ee-b7b2-2d9ce679e10b
+ - 1
+ - 7be1de6d-4099-4390-89b1-36b6971b74cd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ae5b7e4a-1487-4326-8be1-d0dd4205e7d4
+ - 1
+ - d0fd9224-6131-4bf4-b87c-38f421c7eb9b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f3c622b3-a086-4c07-93a2-a707bfffeb89
+ - 6e70809d-a15c-4679-b924-e6684569dc93
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 397453ad-d11d-42cc-870f-39a716fd5c56
+ - 2518abde-6525-444a-9e84-6bac6a5882c6
+ - 0326c0d8-acda-48f2-bcd5-dd44a9093472
+ - ab7a7616-c46b-47bb-ae5a-f8c00065e6df
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 7732fd6b-bd62-4a13-85b1-335385eebd9d
+ - cc518380-b3c5-4e15-b7d1-1f9222b726c1
+ - d0fd9224-6131-4bf4-b87c-38f421c7eb9b
+ - 7be1de6d-4099-4390-89b1-36b6971b74cd
+ - 764b73d1-9f00-406d-b582-3e039098b1dd
+ - a5b20955-e9d2-4861-9b22-ec91cd61b1f9
+ - 03bb9ca6-76d4-43b8-9d81-8fb62e3faffd
+ - aa551f67-344e-49d0-8c74-be78e2d0fe04
+ - 0503038e-a06a-4699-9a40-2b74c5e39009
+ - 7522b52d-f670-48c2-91d4-f06965855205
+ - 675924a5-f92c-48d7-83e2-3c58b8d6ec02
+ - 88626db3-5a1c-4d34-a75d-9c38c845ef23
+ - 20
+ - 01ecd1cf-cf8f-42c1-aaae-520eaa3d299a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - f3c622b3-a086-4c07-93a2-a707bfffeb89
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 4298
+ 14176
+ 104
+ 64
+
+ -
+ 4357
+ 14208
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 14343319-cd02-4669-a49f-f73ffeb2bb4e
+ - Data
+ - Data
+ - false
+ - 5abd580c-23ca-4d9b-bf80-26481e23e448
+ - 1
+
+
+
+
+ -
+ 4300
+ 14178
+ 42
+ 20
+
+ -
+ 4322.5
+ 14188
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 28895895-62f0-4b0d-af8d-ab8b2592f9cd
+ - Number
+ - Number
+ - false
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - 1
+
+
+
+
+ -
+ 4300
+ 14198
+ 42
+ 20
+
+ -
+ 4322.5
+ 14208
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - aec13b7b-053a-40b6-b550-536c26a6a70b
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 4300
+ 14218
+ 42
+ 20
+
+ -
+ 4322.5
+ 14228
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - d99df55a-1c8d-40da-bccc-7dad57de9fb0
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 4372
+ 14178
+ 28
+ 60
+
+ -
+ 4387.5
+ 14208
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 6e70809d-a15c-4679-b924-e6684569dc93
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 4284
+ 12248
+ 116
+ 44
+
+ -
+ 4345
+ 12270
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 76999fdd-a81f-4946-abc6-f09c4a2a8313
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - d99df55a-1c8d-40da-bccc-7dad57de9fb0
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 4286
+ 12250
+ 44
+ 20
+
+ -
+ 4309.5
+ 12260
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 29e54bf6-96e2-4879-8dfe-1f3d551cb8c5
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - add59c49-60fd-466e-8329-83e0f790e31d
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 4286
+ 12270
+ 44
+ 20
+
+ -
+ 4309.5
+ 12280
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - f663f938-b589-4f5a-829d-1ccb35528ac4
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 12250
+ 38
+ 20
+
+ -
+ 4380.5
+ 12260
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 31c6e3ed-8058-4483-b952-0f2d075ed585
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 12270
+ 38
+ 20
+
+ -
+ 4380.5
+ 12280
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 397453ad-d11d-42cc-870f-39a716fd5c56
+ - Series
+ - Series
+
+
+
+
+ -
+ 4295
+ 13505
+ 101
+ 64
+
+ -
+ 4345
+ 13537
+
+
+
+
+
+ - First number in the series
+ - add8c1e8-fb04-47dc-b246-02137afd684e
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4297
+ 13507
+ 33
+ 20
+
+ -
+ 4315
+ 13517
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 95419e6e-036c-4c31-82a8-709fb060a427
+ - Step
+ - Step
+ - false
+ - cdb54c3a-c1fe-47a5-b525-f5ed5bd3e9f9
+ - 1
+
+
+
+
+ -
+ 4297
+ 13527
+ 33
+ 20
+
+ -
+ 4315
+ 13537
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - df9ee48d-319a-4a97-a9d8-6ec1af799c58
+ - Count
+ - Count
+ - false
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - 1
+
+
+
+
+ -
+ 4297
+ 13547
+ 33
+ 20
+
+ -
+ 4315
+ 13557
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 2e8e7cb4-d964-4195-ba8c-9a22e2b2b635
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 13507
+ 34
+ 60
+
+ -
+ 4378.5
+ 13537
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 2518abde-6525-444a-9e84-6bac6a5882c6
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4279
+ 14354
+ 150
+ 20
+
+ -
+ 4279.461
+ 14354.6
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 0326c0d8-acda-48f2-bcd5-dd44a9093472
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 4282
+ 13718
+ 120
+ 28
+
+ -
+ 4343
+ 13732
+
+
+
+
+
+ - Angle in degrees
+ - e7e27e80-c658-4fcc-9307-b068b2b384e4
+ - Degrees
+ - Degrees
+ - false
+ - dc3d55d3-969a-4cf8-b13b-b7109ec1f5c7
+ - 1
+
+
+
+
+ -
+ 4284
+ 13720
+ 44
+ 24
+
+ -
+ 4307.5
+ 13732
+
+
+
+
+
+
+
+ - Angle in radians
+ - 11fa45ca-88cf-4812-aee3-063f9be7f594
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 4358
+ 13720
+ 42
+ 24
+
+ -
+ 4380.5
+ 13732
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ab7a7616-c46b-47bb-ae5a-f8c00065e6df
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 4219
+ 14046
+ 251
+ 20
+
+ -
+ 4219.173
+ 14046.87
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - cc518380-b3c5-4e15-b7d1-1f9222b726c1
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 4270
+ 11483
+ 144
+ 84
+
+ -
+ 4356
+ 11525
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - a8c577b2-7068-49df-b6b6-00f6b99beef7
+ - Vertices
+ - Vertices
+ - false
+ - 72240493-81f6-452f-95bf-65412ec6da40
+ - 1
+
+
+
+
+ -
+ 4272
+ 11485
+ 69
+ 20
+
+ -
+ 4308
+ 11495
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 9ed96564-3f60-422b-ab1f-e1fdb6b4359e
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11505
+ 69
+ 20
+
+ -
+ 4308
+ 11515
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 60ee1ef5-c1ba-4111-b8f6-a0158bdb7595
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11525
+ 69
+ 20
+
+ -
+ 4308
+ 11535
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 4268a259-be56-469b-95d2-37f3e4d28ef3
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11545
+ 69
+ 20
+
+ -
+ 4308
+ 11555
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 863776ad-d527-4591-8dd4-bc625085f22d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4371
+ 11485
+ 41
+ 26
+
+ -
+ 4393
+ 11498.33
+
+
+
+
+
+
+
+ - Curve length
+ - 78c1753b-10e3-46ec-8da8-90ccd5672ef4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4371
+ 11511
+ 41
+ 27
+
+ -
+ 4393
+ 11525
+
+
+
+
+
+
+
+ - Curve domain
+ - 05bc9511-f012-404c-8dfb-a23edd105dff
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4371
+ 11538
+ 41
+ 27
+
+ -
+ 4393
+ 11551.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f3c622b3-a086-4c07-93a2-a707bfffeb89
+ - 6e70809d-a15c-4679-b924-e6684569dc93
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 397453ad-d11d-42cc-870f-39a716fd5c56
+ - 2518abde-6525-444a-9e84-6bac6a5882c6
+ - 0326c0d8-acda-48f2-bcd5-dd44a9093472
+ - ab7a7616-c46b-47bb-ae5a-f8c00065e6df
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 274e2ba4-a290-4d43-a98e-6d03ec5eed7f
+ - f9d75b4a-e834-4f23-9f97-3ee0281841ee
+ - 3031dd95-64d2-4192-879f-cabe57cc464d
+ - e02fd8ec-0d7c-46b2-a3f4-d5df4817f722
+ - b76e1c16-6cff-4ccb-8b5a-ff60c32fb01a
+ - f7481ad9-51e1-4172-944b-f2589d39af07
+ - 14
+ - 7732fd6b-bd62-4a13-85b1-335385eebd9d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 44749250-6b73-416e-860a-b02fc977fb2c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4270
+ 11315
+ 144
+ 64
+
+ -
+ 4344
+ 11347
+
+
+
+
+
+ - Curve to evaluate
+ - fec06318-2e33-4c0e-83d7-b9eb819b3690
+ - Curve
+ - Curve
+ - false
+ - 863776ad-d527-4591-8dd4-bc625085f22d
+ - 1
+
+
+
+
+ -
+ 4272
+ 11317
+ 57
+ 20
+
+ -
+ 4302
+ 11327
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - e485ef61-f73f-4742-bd60-908a0367a2ff
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11337
+ 57
+ 20
+
+ -
+ 4302
+ 11347
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6b896b0e-eb30-4d08-80ad-10ea01bd0d71
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11357
+ 57
+ 20
+
+ -
+ 4302
+ 11367
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d1f63c62-1fc6-43f4-984e-5a3f31d7fa82
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11317
+ 53
+ 20
+
+ -
+ 4387
+ 11327
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 01954e4e-3e53-4331-9299-7aa2455ff1b9
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11337
+ 53
+ 20
+
+ -
+ 4387
+ 11347
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3e21c90e-9910-46af-b93a-e71336fbe876
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11357
+ 53
+ 20
+
+ -
+ 4387
+ 11367
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - f661b51e-e4dc-43fe-bad3-489f23f1f015
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 4273
+ 11253
+ 138
+ 44
+
+ -
+ 4341
+ 11275
+
+
+
+
+
+ - Base geometry
+ - 67a1874d-f5fa-466e-adca-75b0d5932a0c
+ - Geometry
+ - Geometry
+ - true
+ - 863776ad-d527-4591-8dd4-bc625085f22d
+ - 1
+
+
+
+
+ -
+ 4275
+ 11255
+ 51
+ 20
+
+ -
+ 4302
+ 11265
+
+
+
+
+
+
+
+ - Mirror plane
+ - eb5e4124-5ed1-4651-97dd-0af329c36bff
+ - Plane
+ - Plane
+ - false
+ - c418f22a-e379-47bb-8a32-905852302bd2
+ - 1
+
+
+
+
+ -
+ 4275
+ 11275
+ 51
+ 20
+
+ -
+ 4302
+ 11285
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 35b2b835-7b88-4a11-89fe-e0be7e201791
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4356
+ 11255
+ 53
+ 20
+
+ -
+ 4384
+ 11265
+
+
+
+
+
+
+
+ - Transformation data
+ - 043acb07-f1ac-40c9-a370-8fc83ee3e455
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4356
+ 11275
+ 53
+ 20
+
+ -
+ 4384
+ 11285
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - f5774bb8-b16f-43a6-b6f9-3c1f5b5eb901
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4289
+ 11399
+ 106
+ 64
+
+ -
+ 4353
+ 11431
+
+
+
+
+
+ - Line start point
+ - 8244e541-2ced-4a4e-b309-84d06ccb9adf
+ - Start
+ - Start
+ - false
+ - d1f63c62-1fc6-43f4-984e-5a3f31d7fa82
+ - 1
+
+
+
+
+ -
+ 4291
+ 11401
+ 47
+ 20
+
+ -
+ 4316
+ 11411
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - b4d7535f-5cca-40e2-8162-2476e2d34649
+ - Direction
+ - Direction
+ - false
+ - 01954e4e-3e53-4331-9299-7aa2455ff1b9
+ - 1
+
+
+
+
+ -
+ 4291
+ 11421
+ 47
+ 20
+
+ -
+ 4316
+ 11431
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - ae4d63f9-8730-4a19-b61f-a73e961a3b7b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4291
+ 11441
+ 47
+ 20
+
+ -
+ 4316
+ 11451
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - c418f22a-e379-47bb-8a32-905852302bd2
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4368
+ 11401
+ 25
+ 60
+
+ -
+ 4382
+ 11431
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 07b4f452-14fe-4d9b-8911-2846ce8a2353
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 4283
+ 11191
+ 118
+ 44
+
+ -
+ 4346
+ 11213
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 12edb447-65b3-4983-a8d7-0e23a1f80f44
+ - Curves
+ - Curves
+ - false
+ - 863776ad-d527-4591-8dd4-bc625085f22d
+ - 35b2b835-7b88-4a11-89fe-e0be7e201791
+ - 2
+
+
+
+
+ -
+ 4285
+ 11193
+ 46
+ 20
+
+ -
+ 4309.5
+ 11203
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - c4239273-9dcc-4aee-bf3e-82b9decc9ccb
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 4285
+ 11213
+ 46
+ 20
+
+ -
+ 4309.5
+ 11223
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 8aa2612b-f8eb-4f73-913a-215914b33537
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4361
+ 11193
+ 38
+ 40
+
+ -
+ 4381.5
+ 11213
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 6fee8773-befa-4289-9a03-49e8c8b7ab59
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4270
+ 11107
+ 144
+ 64
+
+ -
+ 4344
+ 11139
+
+
+
+
+
+ - Curve to evaluate
+ - c50ca3c0-7a8f-49f6-8da7-2550b01d289d
+ - Curve
+ - Curve
+ - false
+ - 8aa2612b-f8eb-4f73-913a-215914b33537
+ - 1
+
+
+
+
+ -
+ 4272
+ 11109
+ 57
+ 20
+
+ -
+ 4302
+ 11119
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6e69ffe7-67c2-405e-b780-8e4f450dd06a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11129
+ 57
+ 20
+
+ -
+ 4302
+ 11139
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 24f5cbd6-94c2-434b-b482-4d56ad82739a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 11149
+ 57
+ 20
+
+ -
+ 4302
+ 11159
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 700a6ac8-0642-4a1a-a01d-19696e376980
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11109
+ 53
+ 20
+
+ -
+ 4387
+ 11119
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ddd1b345-57f7-4a7e-a8a9-c3546c397256
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11129
+ 53
+ 20
+
+ -
+ 4387
+ 11139
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 52221b13-3da1-40ba-9a40-9f25b00dd057
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 11149
+ 53
+ 20
+
+ -
+ 4387
+ 11159
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 9c0a4513-44a8-42f6-bd2e-6973fda8c833
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 4273
+ 11024
+ 138
+ 64
+
+ -
+ 4341
+ 11056
+
+
+
+
+
+ - Base geometry
+ - 8780100c-743c-4e7a-8245-bafbd0b4f697
+ - Geometry
+ - Geometry
+ - true
+ - 8aa2612b-f8eb-4f73-913a-215914b33537
+ - 1
+
+
+
+
+ -
+ 4275
+ 11026
+ 51
+ 20
+
+ -
+ 4302
+ 11036
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 2c462e21-a186-42cf-ba36-b46044446373
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 4275
+ 11046
+ 51
+ 20
+
+ -
+ 4302
+ 11056
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 432af13a-11c9-45c9-b67c-e3f4ec9873df
+ - Plane
+ - Plane
+ - false
+ - 700a6ac8-0642-4a1a-a01d-19696e376980
+ - 1
+
+
+
+
+ -
+ 4275
+ 11066
+ 51
+ 20
+
+ -
+ 4302
+ 11076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - a90581b3-9723-4e63-9246-27556bd497d1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4356
+ 11026
+ 53
+ 30
+
+ -
+ 4384
+ 11041
+
+
+
+
+
+
+
+ - Transformation data
+ - 612c4865-2ad8-4b55-99b5-f1d581b2b45c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4356
+ 11056
+ 53
+ 30
+
+ -
+ 4384
+ 11071
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - aff11164-81a4-4b6a-b426-3c37a3aba6f8
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 4283
+ 10961
+ 118
+ 44
+
+ -
+ 4346
+ 10983
+
+
+
+
+
+ - 1
+ - Curves to join
+ - d45068ea-57fe-48ef-94a4-a548100c51a1
+ - Curves
+ - Curves
+ - false
+ - 8aa2612b-f8eb-4f73-913a-215914b33537
+ - a90581b3-9723-4e63-9246-27556bd497d1
+ - 2
+
+
+
+
+ -
+ 4285
+ 10963
+ 46
+ 20
+
+ -
+ 4309.5
+ 10973
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 5b936b77-0fe1-4437-b7f4-74a4252402c6
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 4285
+ 10983
+ 46
+ 20
+
+ -
+ 4309.5
+ 10993
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 6af0e887-0681-4409-af28-8215d357f8c9
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4361
+ 10963
+ 38
+ 40
+
+ -
+ 4381.5
+ 10983
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cc518380-b3c5-4e15-b7d1-1f9222b726c1
+ - 44749250-6b73-416e-860a-b02fc977fb2c
+ - f661b51e-e4dc-43fe-bad3-489f23f1f015
+ - f5774bb8-b16f-43a6-b6f9-3c1f5b5eb901
+ - 07b4f452-14fe-4d9b-8911-2846ce8a2353
+ - 6fee8773-befa-4289-9a03-49e8c8b7ab59
+ - 9c0a4513-44a8-42f6-bd2e-6973fda8c833
+ - aff11164-81a4-4b6a-b426-3c37a3aba6f8
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - 515aa4ed-7d0b-41c2-8a15-e458b1f9659f
+ - 1735ea28-d9c2-460e-8036-e182399799eb
+ - 72240493-81f6-452f-95bf-65412ec6da40
+ - abd2599c-b66f-4796-b135-505f6671f818
+ - c2e639ee-1c56-4725-9c22-3c83610edc53
+ - 7b9d6ded-0c99-487c-9351-2a3cca1c2110
+ - 15
+ - ae5b7e4a-1487-4326-8be1-d0dd4205e7d4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5a087567-6dc6-4ef0-a76f-11cea61ca2cc
+ - Panel
+
+ - false
+ - 0
+ - 373efc7b-7ef0-439a-9a16-1f7258fc5e55
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4273
+ 13596
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4273.201
+ 13596.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - Curve
+ - Curve
+ - false
+ - 6af0e887-0681-4409-af28-8215d357f8c9
+ - 1
+
+
+
+
+ -
+ 4321
+ 10923
+ 50
+ 24
+
+ -
+ 4346.781
+ 10935.67
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - 1
+ - 7e40e0e9-af69-4c40-b8e2-54fdb5ed7cdf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f9d75b4a-e834-4f23-9f97-3ee0281841ee
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 4126
+ 13801
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4126.762
+ 13801.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 7973db4b-dfc0-471b-8bf6-36d4d73ba79b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4270
+ 10835
+ 144
+ 64
+
+ -
+ 4344
+ 10867
+
+
+
+
+
+ - Curve to evaluate
+ - f934131b-4cbc-4be0-b49b-1c98053fab08
+ - Curve
+ - Curve
+ - false
+ - 6af0e887-0681-4409-af28-8215d357f8c9
+ - 1
+
+
+
+
+ -
+ 4272
+ 10837
+ 57
+ 20
+
+ -
+ 4302
+ 10847
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 8dc9a449-2286-4de8-94a1-2bb90edf3fa2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 10857
+ 57
+ 20
+
+ -
+ 4302
+ 10867
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 29e76ccb-9dbb-4084-b741-17af9039dd65
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 10877
+ 57
+ 20
+
+ -
+ 4302
+ 10887
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0ba0b4b2-a742-4786-b8e9-5e1a821df95f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 10837
+ 53
+ 20
+
+ -
+ 4387
+ 10847
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a9ce64a4-5e56-4d68-adbc-28ee24824063
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 10857
+ 53
+ 20
+
+ -
+ 4387
+ 10867
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - dcf61bb7-e585-4148-92ad-183e091173bc
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 10877
+ 53
+ 20
+
+ -
+ 4387
+ 10887
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5753fe7b-bb38-45ab-951e-b95292caba06
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10613
+ 194
+ 28
+
+ -
+ 4345
+ 10627
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8e890fc1-ea1d-4d75-8635-314dfe731cf8
+ - Variable O
+ - O
+ - true
+ - b8c70b09-8d3b-47ed-bff9-2af86f17106d
+ - 1
+
+
+
+
+ -
+ 4247
+ 10615
+ 14
+ 24
+
+ -
+ 4255.5
+ 10627
+
+
+
+
+
+
+
+ - Result of expression
+ - d132c280-f40a-41cd-bbe6-9e3c6e7ec570
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10615
+ 9
+ 24
+
+ -
+ 4434
+ 10627
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 9fd26e2e-159b-45d3-a3aa-eb9c6db66eee
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 4276
+ 10747
+ 132
+ 64
+
+ -
+ 4323
+ 10779
+
+
+
+
+
+ - Input point
+ - 7452be01-2448-4d50-b155-605eb4d60ded
+ - Point
+ - Point
+ - false
+ - 0ba0b4b2-a742-4786-b8e9-5e1a821df95f
+ - 1
+
+
+
+
+ -
+ 4278
+ 10749
+ 30
+ 60
+
+ -
+ 4294.5
+ 10779
+
+
+
+
+
+
+
+ - Point {x} component
+ - b8c70b09-8d3b-47ed-bff9-2af86f17106d
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 10749
+ 68
+ 20
+
+ -
+ 4373.5
+ 10759
+
+
+
+
+
+
+
+ - Point {y} component
+ - 2aaa7234-feb7-4e51-9fc6-859d5ff39723
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 10769
+ 68
+ 20
+
+ -
+ 4373.5
+ 10779
+
+
+
+
+
+
+
+ - Point {z} component
+ - 2b443961-cdcf-4f46-8cd7-fa188559a05e
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 10789
+ 68
+ 20
+
+ -
+ 4373.5
+ 10799
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6559e3c8-fde8-4749-b27b-98e461438f55
+ - Panel
+
+ - false
+ - 0
+ - d132c280-f40a-41cd-bbe6-9e3c6e7ec570
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 10589
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.551
+ 10589.25
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ed38ed7d-e0f5-462b-b8a3-49c29637923a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10527
+ 194
+ 28
+
+ -
+ 4345
+ 10541
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0e24a867-c3d2-4745-a8c7-bb7d7c43f557
+ - Variable O
+ - O
+ - true
+ - 2aaa7234-feb7-4e51-9fc6-859d5ff39723
+ - 1
+
+
+
+
+ -
+ 4247
+ 10529
+ 14
+ 24
+
+ -
+ 4255.5
+ 10541
+
+
+
+
+
+
+
+ - Result of expression
+ - b49d97f3-eba6-4ff1-b36c-c256f7f1f1e9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10529
+ 9
+ 24
+
+ -
+ 4434
+ 10541
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - da5cd8a7-461a-49a2-8c10-1a3debd51b8f
+ - Panel
+
+ - false
+ - 0
+ - b49d97f3-eba6-4ff1-b36c-c256f7f1f1e9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 10500
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.551
+ 10500.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 2878bc0e-f4f4-4aab-9925-622ba3ba7071
+ - Division
+ - Division
+
+
+
+
+ -
+ 4301
+ 10425
+ 82
+ 44
+
+ -
+ 4332
+ 10447
+
+
+
+
+
+ - Item to divide (dividend)
+ - e713da62-9c9a-46af-9232-ea40d7a23a5b
+ - A
+ - A
+ - false
+ - 6559e3c8-fde8-4749-b27b-98e461438f55
+ - 1
+
+
+
+
+ -
+ 4303
+ 10427
+ 14
+ 20
+
+ -
+ 4311.5
+ 10437
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 81d3aa96-ab40-4301-bd50-51ba63f6194c
+ - B
+ - B
+ - false
+ - da5cd8a7-461a-49a2-8c10-1a3debd51b8f
+ - 1
+
+
+
+
+ -
+ 4303
+ 10447
+ 14
+ 20
+
+ -
+ 4311.5
+ 10457
+
+
+
+
+
+
+
+ - The result of the Division
+ - 6986f205-ea52-479e-865c-62962fe6009d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 10427
+ 34
+ 40
+
+ -
+ 4365.5
+ 10447
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b8997139-20b8-4636-9c2f-bdd73da0dd59
+ - Panel
+
+ - false
+ - 0
+ - 373efc7b-7ef0-439a-9a16-1f7258fc5e55
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 10353
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.79
+ 10353.31
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8a3128cb-9869-4bc0-884d-c17fe7f9ee09
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10378
+ 194
+ 28
+
+ -
+ 4345
+ 10392
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3744d691-30cf-4977-95e3-b14280bf3a09
+ - Variable O
+ - O
+ - true
+ - 6986f205-ea52-479e-865c-62962fe6009d
+ - 1
+
+
+
+
+ -
+ 4247
+ 10380
+ 14
+ 24
+
+ -
+ 4255.5
+ 10392
+
+
+
+
+
+
+
+ - Result of expression
+ - d4fef3ac-e25b-46fa-adfa-fff3236e87a8
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10380
+ 9
+ 24
+
+ -
+ 4434
+ 10392
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 373efc7b-7ef0-439a-9a16-1f7258fc5e55
+ - Relay
+
+ - false
+ - d4fef3ac-e25b-46fa-adfa-fff3236e87a8
+ - 1
+
+
+
+
+ -
+ 4322
+ 10303
+ 40
+ 16
+
+ -
+ 4342
+ 10311
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - d5da0918-289c-48b2-8b9a-1c914601ede0
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 4301
+ 10240
+ 82
+ 44
+
+ -
+ 4332
+ 10262
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 1bb0c28a-3640-4d24-9e6e-9a373ae061ad
+ - A
+ - A
+ - true
+ - da5cd8a7-461a-49a2-8c10-1a3debd51b8f
+ - 1
+
+
+
+
+ -
+ 4303
+ 10242
+ 14
+ 20
+
+ -
+ 4311.5
+ 10252
+
+
+
+
+
+
+
+ - Second item for addition
+ - 64c08142-a331-48d6-93f2-06524b0d3d6c
+ - B
+ - B
+ - true
+ - 6559e3c8-fde8-4749-b27b-98e461438f55
+ - 1
+
+
+
+
+ -
+ 4303
+ 10262
+ 14
+ 20
+
+ -
+ 4311.5
+ 10272
+
+
+
+
+
+
+
+ - Result of addition
+ - 03d3bb06-4ebd-452f-ba3c-3597173f8558
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 10242
+ 34
+ 40
+
+ -
+ 4365.5
+ 10262
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - ae54b2b4-eb20-470c-a4f7-1a494adc928b
+ - Division
+ - Division
+
+
+
+
+ -
+ 4301
+ 10090
+ 82
+ 44
+
+ -
+ 4332
+ 10112
+
+
+
+
+
+ - Item to divide (dividend)
+ - 5192dc74-838f-4ef3-941f-1ed552c69417
+ - A
+ - A
+ - false
+ - 57ebdb18-79ac-4540-a02c-aff0d33ff282
+ - 1
+
+
+
+
+ -
+ 4303
+ 10092
+ 14
+ 20
+
+ -
+ 4311.5
+ 10102
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 47d6323d-c97a-4d5d-a995-c76014e1f2e2
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 4303
+ 10112
+ 14
+ 20
+
+ -
+ 4311.5
+ 10122
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 0f64f4cf-69cf-4775-a4f8-646ded844be4
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 10092
+ 34
+ 40
+
+ -
+ 4365.5
+ 10112
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - dcc2bd9f-6534-44f7-95b6-bc46f92222ab
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10042
+ 194
+ 28
+
+ -
+ 4345
+ 10056
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 09061244-8eec-4292-99df-ade1dbddccb1
+ - Variable O
+ - O
+ - true
+ - 0f64f4cf-69cf-4775-a4f8-646ded844be4
+ - 1
+
+
+
+
+ -
+ 4247
+ 10044
+ 14
+ 24
+
+ -
+ 4255.5
+ 10056
+
+
+
+
+
+
+
+ - Result of expression
+ - b4496208-9ca2-400c-9626-c13615227878
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10044
+ 9
+ 24
+
+ -
+ 4434
+ 10056
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 36451f6a-9e35-4841-85e1-09e88eb0bd66
+ - Panel
+
+ - false
+ - 0
+ - b4496208-9ca2-400c-9626-c13615227878
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 10017
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.551
+ 10017.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 57ebdb18-79ac-4540-a02c-aff0d33ff282
+ - Panel
+
+ - false
+ - 0
+ - 85d513ae-5bf8-49bd-ba24-122bdc1e4747
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 10169
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.551
+ 10169.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1afe9178-133d-445c-a7bd-86fe87bf0dd8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10193
+ 194
+ 28
+
+ -
+ 4345
+ 10207
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3992a2fa-80ee-4b38-898a-8aa9b9ae1cf1
+ - Variable O
+ - O
+ - true
+ - 03d3bb06-4ebd-452f-ba3c-3597173f8558
+ - 1
+
+
+
+
+ -
+ 4247
+ 10195
+ 14
+ 24
+
+ -
+ 4255.5
+ 10207
+
+
+
+
+
+
+
+ - Result of expression
+ - 85d513ae-5bf8-49bd-ba24-122bdc1e4747
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10195
+ 9
+ 24
+
+ -
+ 4434
+ 10207
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - fdfcd0ad-d760-4e1d-be39-1c77b926f7b9
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4265
+ 9919
+ 154
+ 64
+
+ -
+ 4349
+ 9951
+
+
+
+
+
+ - Base geometry
+ - 601abc7f-6161-4682-a652-379136f24c2f
+ - Geometry
+ - Geometry
+ - true
+ - bc0743aa-659e-45d5-9bea-0db4a089f73c
+ - 1
+
+
+
+
+ -
+ 4267
+ 9921
+ 67
+ 20
+
+ -
+ 4310
+ 9931
+
+
+
+
+
+
+
+ - Center of scaling
+ - 88498385-a7b2-4e57-b718-29bfa4987571
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4267
+ 9941
+ 67
+ 20
+
+ -
+ 4310
+ 9951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 9945e95b-f03f-47e5-81c8-fe07d0f73718
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 36451f6a-9e35-4841-85e1-09e88eb0bd66
+ - 1
+
+
+
+
+ -
+ 4267
+ 9961
+ 67
+ 20
+
+ -
+ 4310
+ 9971
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 1fa87ae5-b607-4bb0-a9a4-be0e3a79e3cf
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ 9921
+ 53
+ 30
+
+ -
+ 4392
+ 9936
+
+
+
+
+
+
+
+ - Transformation data
+ - 1b2d8a2f-4c43-40e0-a3a2-9b6120b29ff4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ 9951
+ 53
+ 30
+
+ -
+ 4392
+ 9966
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - Curve
+ - Curve
+ - false
+ - 1fa87ae5-b607-4bb0-a9a4-be0e3a79e3cf
+ - 1
+
+
+
+
+ -
+ 4319
+ 9322
+ 50
+ 24
+
+ -
+ 4344.531
+ 9334.673
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a5bf279a-43c6-4872-8c06-fa8d70488afc
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 10700
+ 194
+ 28
+
+ -
+ 4345
+ 10714
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e2e7b1c6-301d-49bc-852f-99da0457658a
+ - Variable O
+ - O
+ - true
+ - 2b443961-cdcf-4f46-8cd7-fa188559a05e
+ - 1
+
+
+
+
+ -
+ 4247
+ 10702
+ 14
+ 24
+
+ -
+ 4255.5
+ 10714
+
+
+
+
+
+
+
+ - Result of expression
+ - 7fc7069a-9d35-4dec-95e2-b1e61602cb83
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 10702
+ 9
+ 24
+
+ -
+ 4434
+ 10714
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2ab020dd-779c-4643-9971-14caeca422df
+ - Panel
+
+ - false
+ - 0
+ - 7fc7069a-9d35-4dec-95e2-b1e61602cb83
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4266
+ 10675
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4266.421
+ 10675.02
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2dd7f30c-898d-4362-85f0-9bbdb136696d
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4270
+ 9709
+ 144
+ 64
+
+ -
+ 4344
+ 9741
+
+
+
+
+
+ - Curve to evaluate
+ - 09dab483-8251-48ec-a1f5-aabd1271b9a4
+ - Curve
+ - Curve
+ - false
+ - 1fa87ae5-b607-4bb0-a9a4-be0e3a79e3cf
+ - 1
+
+
+
+
+ -
+ 4272
+ 9711
+ 57
+ 20
+
+ -
+ 4302
+ 9721
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b816c4b6-466d-4bc7-89cb-2e2799e834f3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 9731
+ 57
+ 20
+
+ -
+ 4302
+ 9741
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1e8da7ec-9d0a-4043-8c05-2b75ecbb5e9c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4272
+ 9751
+ 57
+ 20
+
+ -
+ 4302
+ 9761
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 74ece60c-1962-4112-992d-ea664917d145
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 9711
+ 53
+ 20
+
+ -
+ 4387
+ 9721
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 44c55250-9efd-4a59-8e8f-d45f7b3f14fd
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 9731
+ 53
+ 20
+
+ -
+ 4387
+ 9741
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0a9155ea-57af-4445-ae62-22e022ec50e8
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 9751
+ 53
+ 20
+
+ -
+ 4387
+ 9761
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 53074449-1825-4369-9713-d1fab997895f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 9492
+ 194
+ 28
+
+ -
+ 4345
+ 9506
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 040fce0c-91e8-49d3-9f1d-8e08eef2bc79
+ - Variable O
+ - O
+ - true
+ - 9ca7f978-1031-4d21-b51c-5f7e91be7113
+ - 1
+
+
+
+
+ -
+ 4247
+ 9494
+ 14
+ 24
+
+ -
+ 4255.5
+ 9506
+
+
+
+
+
+
+
+ - Result of expression
+ - c8add31d-7d2f-4cf6-8f75-08feddfa8a96
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 9494
+ 9
+ 24
+
+ -
+ 4434
+ 9506
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 8f15d4df-a295-4c2a-a427-ed66de400789
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 4276
+ 9626
+ 132
+ 64
+
+ -
+ 4323
+ 9658
+
+
+
+
+
+ - Input point
+ - d674362e-075a-4b40-908c-4d01e4bbee44
+ - Point
+ - Point
+ - false
+ - 74ece60c-1962-4112-992d-ea664917d145
+ - 1
+
+
+
+
+ -
+ 4278
+ 9628
+ 30
+ 60
+
+ -
+ 4294.5
+ 9658
+
+
+
+
+
+
+
+ - Point {x} component
+ - 9ca7f978-1031-4d21-b51c-5f7e91be7113
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 9628
+ 68
+ 20
+
+ -
+ 4373.5
+ 9638
+
+
+
+
+
+
+
+ - Point {y} component
+ - 0b5f77d7-b1bb-4988-a6b7-77025f58fa77
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 9648
+ 68
+ 20
+
+ -
+ 4373.5
+ 9658
+
+
+
+
+
+
+
+ - Point {z} component
+ - 8a834027-718b-4dbf-8138-a12160a8bcb1
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 4338
+ 9668
+ 68
+ 20
+
+ -
+ 4373.5
+ 9678
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c8ee08ba-9303-4b8a-985e-59ebf8f261a8
+ - Panel
+
+ - false
+ - 0
+ - c8add31d-7d2f-4cf6-8f75-08feddfa8a96
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 9462
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.801
+ 9462.593
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bc46a4e8-63e5-43b7-8292-10edf85be72e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 9406
+ 194
+ 28
+
+ -
+ 4345
+ 9420
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - dbbdc80c-45c3-416f-b688-b3cee69f1dbf
+ - Variable O
+ - O
+ - true
+ - 0b5f77d7-b1bb-4988-a6b7-77025f58fa77
+ - 1
+
+
+
+
+ -
+ 4247
+ 9408
+ 14
+ 24
+
+ -
+ 4255.5
+ 9420
+
+
+
+
+
+
+
+ - Result of expression
+ - 7ec73af9-805c-42f4-9530-a66f2272162b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 9408
+ 9
+ 24
+
+ -
+ 4434
+ 9420
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6f154ebb-c8eb-4572-8858-a3b020c29c72
+ - Panel
+
+ - false
+ - 0
+ - 7ec73af9-805c-42f4-9530-a66f2272162b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 9376
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.811
+ 9376.964
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ff7c83e6-f826-4fb2-97e8-da374b6987b1
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 9578
+ 194
+ 28
+
+ -
+ 4345
+ 9592
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3946e9c9-23e1-476b-be89-02a4229cb57b
+ - Variable O
+ - O
+ - true
+ - 8a834027-718b-4dbf-8138-a12160a8bcb1
+ - 1
+
+
+
+
+ -
+ 4247
+ 9580
+ 14
+ 24
+
+ -
+ 4255.5
+ 9592
+
+
+
+
+
+
+
+ - Result of expression
+ - f8d8054d-d42d-4488-bfc2-6c79b7d6f355
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 9580
+ 9
+ 24
+
+ -
+ 4434
+ 9592
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9fcc136a-c294-42e3-afde-ea1143063a36
+ - Panel
+
+ - false
+ - 0
+ - f8d8054d-d42d-4488-bfc2-6c79b7d6f355
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4265
+ 9548
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4265.551
+ 9548.804
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3031dd95-64d2-4192-879f-cabe57cc464d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 4159
+ 13884
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 4159.018
+ 13884.44
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 675924a5-f92c-48d7-83e2-3c58b8d6ec02
+ - Panel
+
+ - false
+ - 0
+ - 8b578c9a-c85f-42ed-8563-e93e57644ab9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4177
+ 11912
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 4177.741
+ 11912.59
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 88626db3-5a1c-4d34-a75d-9c38c845ef23
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 12200
+ 194
+ 28
+
+ -
+ 4345
+ 12214
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 051d7a2c-8c1b-4eaf-b60e-de25336068b7
+ - Variable O
+ - O
+ - true
+ - 31c6e3ed-8058-4483-b952-0f2d075ed585
+ - 1
+
+
+
+
+ -
+ 4247
+ 12202
+ 14
+ 24
+
+ -
+ 4255.5
+ 12214
+
+
+
+
+
+
+
+ - Result of expression
+ - 8b578c9a-c85f-42ed-8563-e93e57644ab9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 12202
+ 9
+ 24
+
+ -
+ 4434
+ 12214
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 4329
+ 14312
+ 50
+ 24
+
+ -
+ 4354.512
+ 14324.89
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 764b73d1-9f00-406d-b582-3e039098b1dd
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 4173
+ 12482
+ 160
+ 224
+
+ -
+ 4241
+ 12594
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - f913820d-13fb-4726-8385-8676239fc0a0
+ - true
+ - Curves
+ - Curves
+ - false
+ - 6ad5409f-9040-4b69-97ef-0d8c927d93a9
+ - 1
+
+
+
+
+ -
+ 4175
+ 12484
+ 51
+ 27
+
+ -
+ 4202
+ 12497.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 3f9f7a81-b3e4-4031-9efd-3f8ec72b68e8
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 0ce1c710-a6cb-45ca-98bc-07397ae680cf
+ - 1
+
+
+
+
+ -
+ 4175
+ 12511
+ 51
+ 28
+
+ -
+ 4202
+ 12525.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 66e5a705-c325-427c-ad58-b6ec50f83252
+ - true
+ - Values
+ - Values
+ - false
+ - 2e8e7cb4-d964-4195-ba8c-9a22e2b2b635
+ - 1
+
+
+
+
+ -
+ 4175
+ 12539
+ 51
+ 27
+
+ -
+ 4202
+ 12552.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - ea47884e-dbf1-4a63-8327-d3a79c54ec80
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 4175
+ 12566
+ 51
+ 28
+
+ -
+ 4202
+ 12580.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - a5aa49ca-a27a-4eb0-b567-957c28736508
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 4175
+ 12594
+ 51
+ 27
+
+ -
+ 4202
+ 12607.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 357b3e1c-8bc7-4310-b3bf-6e115203dd09
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 4175
+ 12621
+ 51
+ 28
+
+ -
+ 4202
+ 12635.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - fe3998b8-1fa4-4746-aeea-f92b879adfad
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 4175
+ 12649
+ 51
+ 27
+
+ -
+ 4202
+ 12662.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - faeb2bd7-d5d7-459b-abb6-a8c871327ce9
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 4175
+ 12676
+ 51
+ 28
+
+ -
+ 4202
+ 12690.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - b76b10c6-a236-4dc9-a093-fe71594b08e6
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12484
+ 75
+ 20
+
+ -
+ 4295
+ 12494
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 94f06bd7-be8b-4012-8a69-126e24ab82aa
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12504
+ 75
+ 20
+
+ -
+ 4295
+ 12514
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - a72054f4-f3a6-4794-8e35-717dd4a1a122
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12524
+ 75
+ 20
+
+ -
+ 4295
+ 12534
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 68037f6c-446e-45aa-9c40-3c2a5e492eeb
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12544
+ 75
+ 20
+
+ -
+ 4295
+ 12554
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - bf118017-592f-4ea4-8076-1efb9504bdfb
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12564
+ 75
+ 20
+
+ -
+ 4295
+ 12574
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 59453791-4306-47c7-b89f-b0f4e600a461
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12584
+ 75
+ 20
+
+ -
+ 4295
+ 12594
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 567f6be0-adaa-492d-aacf-cef917ecee20
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12604
+ 75
+ 20
+
+ -
+ 4295
+ 12614
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - e3763d7a-6671-4d99-88ee-88fbf6337c25
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12624
+ 75
+ 20
+
+ -
+ 4295
+ 12634
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - eee71c2a-5954-408c-9ef3-eac48cb9401e
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12644
+ 75
+ 20
+
+ -
+ 4295
+ 12654
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 6600e656-ce7d-42e5-a0b9-ac01ad584174
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12664
+ 75
+ 20
+
+ -
+ 4295
+ 12674
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 0f64d5d6-712b-44e6-8bc1-3896d4a10f69
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 4256
+ 12684
+ 75
+ 20
+
+ -
+ 4295
+ 12694
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - a5b20955-e9d2-4861-9b22-ec91cd61b1f9
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4294
+ 12907
+ 96
+ 44
+
+ -
+ 4344
+ 12929
+
+
+
+
+
+ - Curve to evaluate
+ - e00b32f7-9bfb-4905-ba22-539dc77c8679
+ - Curve
+ - Curve
+ - false
+ - 6ad5409f-9040-4b69-97ef-0d8c927d93a9
+ - 1
+
+
+
+
+ -
+ 4296
+ 12909
+ 33
+ 40
+
+ -
+ 4314
+ 12929
+
+
+
+
+
+
+
+ - Curve start point
+ - 1238b2dc-91fc-4bf8-bfc8-315ec7d8857d
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 12909
+ 29
+ 20
+
+ -
+ 4375
+ 12919
+
+
+
+
+
+
+
+ - Curve end point
+ - a8ceda9c-8920-45ec-a875-3ecf14d56bdf
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4359
+ 12929
+ 29
+ 20
+
+ -
+ 4375
+ 12939
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 03bb9ca6-76d4-43b8-9d81-8fb62e3faffd
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4279
+ 12805
+ 126
+ 84
+
+ -
+ 4337
+ 12847
+
+
+
+
+
+ - Rectangle base plane
+ - 6c593d5a-15c9-4f30-9f19-7550921a7928
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4281
+ 12807
+ 41
+ 20
+
+ -
+ 4303
+ 12817
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - f19f336c-13f1-4e46-87eb-07fa40c21ceb
+ - Point A
+ - Point A
+ - false
+ - 1238b2dc-91fc-4bf8-bfc8-315ec7d8857d
+ - 1
+
+
+
+
+ -
+ 4281
+ 12827
+ 41
+ 20
+
+ -
+ 4303
+ 12837
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - fd7acc6b-1cff-4d94-b936-db5b0dbec2b6
+ - Point B
+ - Point B
+ - false
+ - a8ceda9c-8920-45ec-a875-3ecf14d56bdf
+ - 1
+
+
+
+
+ -
+ 4281
+ 12847
+ 41
+ 20
+
+ -
+ 4303
+ 12857
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - b1b185b1-7b88-423e-bb09-aad03d2ea6d7
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4281
+ 12867
+ 41
+ 20
+
+ -
+ 4303
+ 12877
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 0ce1c710-a6cb-45ca-98bc-07397ae680cf
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 12807
+ 51
+ 40
+
+ -
+ 4379
+ 12827
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 0006e875-b744-4291-b1f6-fa7244194984
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4352
+ 12847
+ 51
+ 40
+
+ -
+ 4379
+ 12867
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - aa551f67-344e-49d0-8c74-be78e2d0fe04
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 4333
+ 12602
+ 126
+ 104
+
+ -
+ 4400
+ 12654
+
+
+
+
+
+ - External curve as a graph
+ - 67da4800-a413-45fd-abcb-9d5ba3052621
+ - Curve
+ - Curve
+ - false
+ - 6ad5409f-9040-4b69-97ef-0d8c927d93a9
+ - 1
+
+
+
+
+ -
+ 4335
+ 12604
+ 50
+ 20
+
+ -
+ 4361.5
+ 12614
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 4788ef60-f872-4c23-a50b-898e95f928d5
+ - Boundary
+ - Boundary
+ - true
+ - 0ce1c710-a6cb-45ca-98bc-07397ae680cf
+ - 1
+
+
+
+
+ -
+ 4335
+ 12624
+ 50
+ 20
+
+ -
+ 4361.5
+ 12634
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - b3d6a9b3-6919-4a2f-9c45-2a6b7e1a8e41
+ - Numbers
+ - Numbers
+ - false
+ - 2e8e7cb4-d964-4195-ba8c-9a22e2b2b635
+ - 1
+
+
+
+
+ -
+ 4335
+ 12644
+ 50
+ 20
+
+ -
+ 4361.5
+ 12654
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 92ee7239-ffa4-42b3-9b6a-647c42896f6e
+ - Input
+ - Input
+ - true
+ - d85bd426-e5d9-4225-aec5-1f93c57ea102
+ - 1
+
+
+
+
+ -
+ 4335
+ 12664
+ 50
+ 20
+
+ -
+ 4361.5
+ 12674
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 7d51b8b0-acbe-4102-8d23-8491f8dc6518
+ - Output
+ - Output
+ - true
+ - d85bd426-e5d9-4225-aec5-1f93c57ea102
+ - 1
+
+
+
+
+ -
+ 4335
+ 12684
+ 50
+ 20
+
+ -
+ 4361.5
+ 12694
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 52a52012-94ed-4352-9843-c25568652aeb
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 4415
+ 12604
+ 42
+ 100
+
+ -
+ 4437.5
+ 12654
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 0503038e-a06a-4699-9a40-2b74c5e39009
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 4308
+ 12399
+ 89
+ 64
+
+ -
+ 4353
+ 12431
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 0deaf66c-86f0-4bc6-b0d9-5517ceb1d85c
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 4310
+ 12401
+ 28
+ 20
+
+ -
+ 4325.5
+ 12411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - f244ebe1-83e9-431d-8c00-64cac7a42e76
+ - false
+ - Stream 0
+ - 0
+ - true
+ - b76b10c6-a236-4dc9-a093-fe71594b08e6
+ - 1
+
+
+
+
+ -
+ 4310
+ 12421
+ 28
+ 20
+
+ -
+ 4325.5
+ 12431
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 250dace0-8eaf-463f-8856-3264b671f7d1
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 52a52012-94ed-4352-9843-c25568652aeb
+ - 1
+
+
+
+
+ -
+ 4310
+ 12441
+ 28
+ 20
+
+ -
+ 4325.5
+ 12451
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - add59c49-60fd-466e-8329-83e0f790e31d
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 4368
+ 12401
+ 27
+ 60
+
+ -
+ 4383
+ 12431
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 7522b52d-f670-48c2-91d4-f06965855205
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4266
+ 12310
+ 150
+ 20
+
+ -
+ 4266.171
+ 12310.19
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e02fd8ec-0d7c-46b2-a3f4-d5df4817f722
+ - Panel
+
+ - false
+ - 1
+ - bc68d9ff-0a73-48ce-bcc5-908d79eca709
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4256
+ 13099
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4256.241
+ 13099.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 274e2ba4-a290-4d43-a98e-6d03ec5eed7f
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4283
+ 13046
+ 122
+ 28
+
+ -
+ 4347
+ 13060
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 16d026a5-74e5-49bb-a70d-6713cb17b64b
+ - Numbers
+ - Numbers
+ - false
+ - 2e8e7cb4-d964-4195-ba8c-9a22e2b2b635
+ - 1
+
+
+
+
+ -
+ 4285
+ 13048
+ 47
+ 24
+
+ -
+ 4310
+ 13060
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - d85bd426-e5d9-4225-aec5-1f93c57ea102
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4362
+ 13048
+ 41
+ 24
+
+ -
+ 4384
+ 13060
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b76e1c16-6cff-4ccb-8b5a-ff60c32fb01a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4245
+ 13460
+ 194
+ 28
+
+ -
+ 4345
+ 13474
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7d2eb29b-982e-4000-b8ba-068fb301b77c
+ - true
+ - Variable O
+ - O
+ - true
+ - 2e8e7cb4-d964-4195-ba8c-9a22e2b2b635
+ - 1
+
+
+
+
+ -
+ 4247
+ 13462
+ 14
+ 24
+
+ -
+ 4255.5
+ 13474
+
+
+
+
+
+
+
+ - Result of expression
+ - bc68d9ff-0a73-48ce-bcc5-908d79eca709
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 13462
+ 9
+ 24
+
+ -
+ 4434
+ 13474
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 3f1fbdb4-eb91-4b3a-a8df-0596dfc0a31b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4159
+ 13671
+ 367
+ 28
+
+ -
+ 4345
+ 13685
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2242822a-0742-4abe-88ec-ae5573f9f205
+ - Variable O
+ - O
+ - true
+ - 11fa45ca-88cf-4812-aee3-063f9be7f594
+ - 1
+
+
+
+
+ -
+ 4161
+ 13673
+ 14
+ 24
+
+ -
+ 4169.5
+ 13685
+
+
+
+
+
+
+
+ - Result of expression
+ - 6fca8128-7167-4c8f-ad06-1de26badc388
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4515
+ 13673
+ 9
+ 24
+
+ -
+ 4521
+ 13685
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cdb54c3a-c1fe-47a5-b525-f5ed5bd3e9f9
+ - Panel
+
+ - false
+ - 0
+ - 6fca8128-7167-4c8f-ad06-1de26badc388
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4256
+ 13636
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4256.381
+ 13636.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+ - 7cf9c2b7-629e-4d4a-8851-b1749f393b38
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 48d28623-467f-490c-b1c3-34bfd421b511
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4265
+ 9834
+ 154
+ 64
+
+ -
+ 4349
+ 9866
+
+
+
+
+
+ - Base geometry
+ - 0341618d-be71-4cf5-b81f-56064952bf5a
+ - Geometry
+ - Geometry
+ - true
+ - 72240493-81f6-452f-95bf-65412ec6da40
+ - 1
+
+
+
+
+ -
+ 4267
+ 9836
+ 67
+ 20
+
+ -
+ 4310
+ 9846
+
+
+
+
+
+
+
+ - Center of scaling
+ - bf4c3dcb-3032-4e05-853b-e3e23790fd78
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4267
+ 9856
+ 67
+ 20
+
+ -
+ 4310
+ 9866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 54b851f7-664e-4475-af90-8069c3611796
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 36451f6a-9e35-4841-85e1-09e88eb0bd66
+ - 1
+
+
+
+
+ -
+ 4267
+ 9876
+ 67
+ 20
+
+ -
+ 4310
+ 9886
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 07a59e7b-d234-41eb-bb47-dce08b3f0802
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ 9836
+ 53
+ 30
+
+ -
+ 4392
+ 9851
+
+
+
+
+
+
+
+ - Transformation data
+ - a62e3829-5bb5-4570-8481-576c63b1a441
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4364
+ 9866
+ 53
+ 30
+
+ -
+ 4392
+ 9881
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - a5db96b2-971c-49df-9a5e-d9d32338d413
+ - Point
+ - Point
+ - false
+ - 07a59e7b-d234-41eb-bb47-dce08b3f0802
+ - 1
+
+
+
+
+ -
+ 4320
+ 9800
+ 50
+ 24
+
+ -
+ 4345.531
+ 9812.843
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 1ccb8a7e-2e79-44bd-955d-63367d09c98f
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 4265
+ 9210
+ 138
+ 44
+
+ -
+ 4333
+ 9232
+
+
+
+
+
+ - Base geometry
+ - 77c5555b-507e-4449-9a3a-242152032ed4
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 4267
+ 9212
+ 51
+ 20
+
+ -
+ 4294
+ 9222
+
+
+
+
+
+
+
+ - Mirror plane
+ - 40d32483-1581-4e0b-a9d3-adda034cecd0
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4267
+ 9232
+ 51
+ 20
+
+ -
+ 4294
+ 9242
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 7aa05c63-0125-4ff7-820a-2b8e111771a9
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 9212
+ 53
+ 20
+
+ -
+ 4376
+ 9222
+
+
+
+
+
+
+
+ - Transformation data
+ - 6507a64d-407f-4e65-8813-51a433f67160
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 9232
+ 53
+ 20
+
+ -
+ 4376
+ 9242
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - fe2bd48c-8bc7-431d-a3d5-89319eee1ab4
+ - true
+ - Curve
+ - Curve
+ - false
+ - 25582ec0-bca6-4d7f-9a87-8d6f84e8b4f5
+ - 1
+
+
+
+
+ -
+ 4314
+ 9108
+ 50
+ 24
+
+ -
+ 4339.781
+ 9120.629
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6ad5409f-9040-4b69-97ef-0d8c927d93a9
+ - Relay
+
+ - false
+ - 9996a7ea-0123-495f-b37b-5c57cfbf28ed
+ - 1
+
+
+
+
+ -
+ 4324
+ 12974
+ 40
+ 16
+
+ -
+ 4344
+ 12982
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1565d029-b52e-4a0d-afc5-5be1ea6b6a9f
+ - Curve
+ - Curve
+ - false
+ - 3255d013-8457-40e7-99eb-8125533f5f6e
+ - 1
+
+
+
+
+ -
+ 3890
+ 13368
+ 50
+ 24
+
+ -
+ 3915.28
+ 13380.31
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9996a7ea-0123-495f-b37b-5c57cfbf28ed
+ - Curve
+ - Curve
+ - false
+ - 483603c3-8060-4ed5-acce-c2b2339bdb65
+ - 1
+
+
+
+
+ -
+ 3889
+ 13078
+ 50
+ 24
+
+ -
+ 3914.377
+ 13090.46
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 07d6a167-2ddb-43da-8619-70a47cb5e9ea
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3834
+ 13113
+ 154
+ 64
+
+ -
+ 3918
+ 13145
+
+
+
+
+
+ - Base geometry
+ - a259df23-3f23-4f78-949f-2fff8f9b3bc5
+ - Geometry
+ - Geometry
+ - true
+ - 1565d029-b52e-4a0d-afc5-5be1ea6b6a9f
+ - 1
+
+
+
+
+ -
+ 3836
+ 13115
+ 67
+ 20
+
+ -
+ 3879
+ 13125
+
+
+
+
+
+
+
+ - Center of scaling
+ - e7ad9a05-f04b-4d3c-9b90-68af484b46e6
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3836
+ 13135
+ 67
+ 20
+
+ -
+ 3879
+ 13145
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a1e86edf-629d-4eb6-89d2-cf4c5144cf52
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 5b5706ff-d5d7-458b-879b-2db4552c3e70
+ - 1
+
+
+
+
+ -
+ 3836
+ 13155
+ 67
+ 20
+
+ -
+ 3879
+ 13165
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 483603c3-8060-4ed5-acce-c2b2339bdb65
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3933
+ 13115
+ 53
+ 30
+
+ -
+ 3961
+ 13130
+
+
+
+
+
+
+
+ - Transformation data
+ - 1cb64977-d885-4672-a422-e4c0c581ca90
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3933
+ 13145
+ 53
+ 30
+
+ -
+ 3961
+ 13160
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1565d029-b52e-4a0d-afc5-5be1ea6b6a9f
+ - 9996a7ea-0123-495f-b37b-5c57cfbf28ed
+ - 07d6a167-2ddb-43da-8619-70a47cb5e9ea
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - a25e13b9-3e81-4a33-9443-7552163b2fbf
+ - 6abb6467-4717-433d-aad9-3f7d0611f1b9
+ - ec403da9-8400-4058-a37d-088c53e519ef
+ - e30a09fd-815f-4c21-9939-bf2e9d98c53d
+ - 5b5706ff-d5d7-458b-879b-2db4552c3e70
+ - bd44744c-be8e-4cf5-ae1e-a647bfc0304f
+ - 4fc4ca98-3632-4ea7-9a66-0d0a0417032f
+ - 11
+ - dcc96cab-ca29-4917-b636-b17bc2f5c9e2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - f6d60644-d11a-4362-89c4-d1805280f077
+ - Move
+ - Move
+
+
+
+
+ -
+ 4265
+ 9146
+ 138
+ 44
+
+ -
+ 4333
+ 9168
+
+
+
+
+
+ - Base geometry
+ - e286f26f-899e-4e20-98e7-356a8a984547
+ - Geometry
+ - Geometry
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 4267
+ 9148
+ 51
+ 20
+
+ -
+ 4294
+ 9158
+
+
+
+
+
+
+
+ - Translation vector
+ - 325e70b7-daa4-4f18-aba8-8dd7c667d65c
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 4267
+ 9168
+ 51
+ 20
+
+ -
+ 4294
+ 9178
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 25582ec0-bca6-4d7f-9a87-8d6f84e8b4f5
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 9148
+ 53
+ 20
+
+ -
+ 4376
+ 9158
+
+
+
+
+
+
+
+ - Transformation data
+ - 64394fd4-0c64-4430-9412-ac0793b792b9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4348
+ 9168
+ 53
+ 20
+
+ -
+ 4376
+ 9178
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - a25e13b9-3e81-4a33-9443-7552163b2fbf
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 3787
+ 13324
+ 250
+ 20
+
+ -
+ 3787.106
+ 13324.69
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6abb6467-4717-433d-aad9-3f7d0611f1b9
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 3846
+ 13203
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3846.843
+ 13203.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ec403da9-8400-4058-a37d-088c53e519ef
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3889
+ 13035
+ 50
+ 24
+
+ -
+ 3914.377
+ 13047.46
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e30a09fd-815f-4c21-9939-bf2e9d98c53d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3890
+ 13502
+ 50
+ 24
+
+ -
+ 3915.96
+ 13514.26
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5faa427f-2fd4-4e43-b824-c38a71b6ccd8
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 4126
+ 13846
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4126.762
+ 13846.78
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - a125a8c3-93b2-4e73-a666-786124237c7c
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4701
+ 9769
+ 96
+ 44
+
+ -
+ 4751
+ 9791
+
+
+
+
+
+ - Curve to evaluate
+ - 9e935fc4-7eb5-4c24-9ab7-2378caf6c357
+ - Curve
+ - Curve
+ - false
+ - 202fba07-ff87-4a76-bf41-2713fd53fbec
+ - 1
+
+
+
+
+ -
+ 4703
+ 9771
+ 33
+ 40
+
+ -
+ 4721
+ 9791
+
+
+
+
+
+
+
+ - Curve start point
+ - 2d775627-190d-4a25-b113-e3c0a680c0b6
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4766
+ 9771
+ 29
+ 20
+
+ -
+ 4782
+ 9781
+
+
+
+
+
+
+
+ - Curve end point
+ - f508eb56-61a1-4b21-947b-2e13561d660a
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4766
+ 9791
+ 29
+ 20
+
+ -
+ 4782
+ 9801
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 5e77352d-a354-4344-a188-f465fcdac189
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4686
+ 9666
+ 126
+ 84
+
+ -
+ 4744
+ 9708
+
+
+
+
+
+ - Rectangle base plane
+ - 0f624145-50c9-43d8-879b-a44142855f2e
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4688
+ 9668
+ 41
+ 20
+
+ -
+ 4710
+ 9678
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - ac329dfe-7e72-4cb1-878e-cf84d12658c4
+ - Point A
+ - Point A
+ - false
+ - 2d775627-190d-4a25-b113-e3c0a680c0b6
+ - 1
+
+
+
+
+ -
+ 4688
+ 9688
+ 41
+ 20
+
+ -
+ 4710
+ 9698
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 12160a02-dbd3-4d66-ba4c-1b7c1785c2e0
+ - Point B
+ - Point B
+ - false
+ - f508eb56-61a1-4b21-947b-2e13561d660a
+ - 1
+
+
+
+
+ -
+ 4688
+ 9708
+ 41
+ 20
+
+ -
+ 4710
+ 9718
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - e84f7103-16b8-453d-a805-15e451ebc650
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4688
+ 9728
+ 41
+ 20
+
+ -
+ 4710
+ 9738
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 194f16f0-1a80-4be7-943c-e4e4e58a1853
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4759
+ 9668
+ 51
+ 40
+
+ -
+ 4786
+ 9688
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 6b4763f7-380c-4eac-b770-acc0f2566a4c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4759
+ 9708
+ 51
+ 40
+
+ -
+ 4786
+ 9728
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - b6259596-7390-4b8c-9676-187b43339133
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 4678
+ 9583
+ 142
+ 64
+
+ -
+ 4746
+ 9615
+
+
+
+
+
+ - Rectangle to deconstruct
+ - f12ac12d-05bf-463c-83b9-81c5656899f8
+ - Rectangle
+ - Rectangle
+ - false
+ - 194f16f0-1a80-4be7-943c-e4e4e58a1853
+ - 1
+
+
+
+
+ -
+ 4680
+ 9585
+ 51
+ 60
+
+ -
+ 4707
+ 9615
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - b6e88d50-e3df-4569-a808-def975ec21c2
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4761
+ 9585
+ 57
+ 20
+
+ -
+ 4791
+ 9595
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 02989086-b55d-4d94-88e6-c3a9b338c2ce
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4761
+ 9605
+ 57
+ 20
+
+ -
+ 4791
+ 9615
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 43f9982e-b04d-4a10-b2cc-397c331b393a
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 4761
+ 9625
+ 57
+ 20
+
+ -
+ 4791
+ 9635
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 90b05c88-d3a5-4ccf-a12e-41ffbfc42c9d
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4697
+ 9456
+ 104
+ 44
+
+ -
+ 4755
+ 9478
+
+
+
+
+
+ - Base domain
+ - 59e5f868-6422-4ea4-9fd1-3b2b749fe1e5
+ - Domain
+ - Domain
+ - false
+ - 43f9982e-b04d-4a10-b2cc-397c331b393a
+ - 1
+
+
+
+
+ -
+ 4699
+ 9458
+ 41
+ 40
+
+ -
+ 4721
+ 9478
+
+
+
+
+
+
+
+ - Start of domain
+ - 8d34297c-5c39-4f71-8b36-bb7dafbb7f50
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4770
+ 9458
+ 29
+ 20
+
+ -
+ 4786
+ 9468
+
+
+
+
+
+
+
+ - End of domain
+ - d599aab5-2608-417f-8420-c6def6989f50
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4770
+ 9478
+ 29
+ 20
+
+ -
+ 4786
+ 9488
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 4aca5976-a4c3-45c6-a32f-15b1adfe6bc3
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 4697
+ 9518
+ 104
+ 44
+
+ -
+ 4755
+ 9540
+
+
+
+
+
+ - Base domain
+ - 93fbd6e5-f9f9-476e-89a7-b7ff22c5bc6b
+ - Domain
+ - Domain
+ - false
+ - 02989086-b55d-4d94-88e6-c3a9b338c2ce
+ - 1
+
+
+
+
+ -
+ 4699
+ 9520
+ 41
+ 40
+
+ -
+ 4721
+ 9540
+
+
+
+
+
+
+
+ - Start of domain
+ - 50a00841-164e-4371-99f2-7c3c3d121b94
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4770
+ 9520
+ 29
+ 20
+
+ -
+ 4786
+ 9530
+
+
+
+
+
+
+
+ - End of domain
+ - d35783d7-1e1a-4450-9ccb-f56deef872a6
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4770
+ 9540
+ 29
+ 20
+
+ -
+ 4786
+ 9550
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - e50a1ab8-7447-4da8-b644-894624e78e37
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 4672
+ 9333
+ 154
+ 104
+
+ -
+ 4756
+ 9385
+
+
+
+
+
+ - Base geometry
+ - ba93d14e-4dc3-4dce-8093-5d293f901530
+ - Geometry
+ - Geometry
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 4674
+ 9335
+ 67
+ 20
+
+ -
+ 4717
+ 9345
+
+
+
+
+
+
+
+ - Base plane
+ - 639bb340-a27d-429d-b4d9-ea65dc3a59bf
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4674
+ 9355
+ 67
+ 20
+
+ -
+ 4717
+ 9365
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 8ef98dd0-dfc4-4f52-9b52-d6bbca8a2232
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - d35783d7-1e1a-4450-9ccb-f56deef872a6
+ - 1
+
+
+
+
+ -
+ 4674
+ 9375
+ 67
+ 20
+
+ -
+ 4717
+ 9385
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 7d061753-b71c-4476-9f80-64b33c9620ad
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - d599aab5-2608-417f-8420-c6def6989f50
+ - 1
+
+
+
+
+ -
+ 4674
+ 9395
+ 67
+ 20
+
+ -
+ 4717
+ 9405
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 8e37cb46-4309-4a3e-9e62-0b22c93efbcc
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 4674
+ 9415
+ 67
+ 20
+
+ -
+ 4717
+ 9425
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - f3779aff-ce7b-42ce-b8aa-09e6d289bab6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4771
+ 9335
+ 53
+ 50
+
+ -
+ 4799
+ 9360
+
+
+
+
+
+
+
+ - Transformation data
+ - c0c72569-381c-4aaa-ab0b-4d4873c2f30d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4771
+ 9385
+ 53
+ 50
+
+ -
+ 4799
+ 9410
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a125a8c3-93b2-4e73-a666-786124237c7c
+ - 5e77352d-a354-4344-a188-f465fcdac189
+ - b6259596-7390-4b8c-9676-187b43339133
+ - 90b05c88-d3a5-4ccf-a12e-41ffbfc42c9d
+ - 4aca5976-a4c3-45c6-a32f-15b1adfe6bc3
+ - e50a1ab8-7447-4da8-b644-894624e78e37
+ - 202fba07-ff87-4a76-bf41-2713fd53fbec
+ - 92872ee8-e7ec-4b2a-b425-fe4d823e6b35
+ - 9d4ab7d7-3769-4680-9ee1-9c41ac1d31b0
+ - 48833b67-abab-4685-b729-16d511f4b9ac
+ - 10
+ - ef991361-6b71-4172-b937-4d10df93fc8d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 202fba07-ff87-4a76-bf41-2713fd53fbec
+ - Curve
+ - Curve
+ - false
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 4727
+ 9842
+ 50
+ 24
+
+ -
+ 4752.093
+ 9854.17
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 92872ee8-e7ec-4b2a-b425-fe4d823e6b35
+ - Curve
+ - Curve
+ - false
+ - f3779aff-ce7b-42ce-b8aa-09e6d289bab6
+ - 1
+
+
+
+
+ -
+ 4721
+ 9287
+ 50
+ 24
+
+ -
+ 4746
+ 9299.039
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 9d4ab7d7-3769-4680-9ee1-9c41ac1d31b0
+ - Move
+ - Move
+
+
+
+
+ -
+ 4675
+ 9225
+ 138
+ 44
+
+ -
+ 4743
+ 9247
+
+
+
+
+
+ - Base geometry
+ - 02062639-ab71-45e0-a630-c94295085a73
+ - Geometry
+ - Geometry
+ - true
+ - 92872ee8-e7ec-4b2a-b425-fe4d823e6b35
+ - 1
+
+
+
+
+ -
+ 4677
+ 9227
+ 51
+ 20
+
+ -
+ 4704
+ 9237
+
+
+
+
+
+
+
+ - Translation vector
+ - 41867e57-a0c4-4f98-a0f6-027fd9d4930d
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 4677
+ 9247
+ 51
+ 20
+
+ -
+ 4704
+ 9257
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2.5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 5bc2468e-1e74-4d08-9d67-0d83edc836a3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4758
+ 9227
+ 53
+ 20
+
+ -
+ 4786
+ 9237
+
+
+
+
+
+
+
+ - Transformation data
+ - b60f4b42-bc2d-410f-bafc-2e317da34e46
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4758
+ 9247
+ 53
+ 20
+
+ -
+ 4786
+ 9257
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 48833b67-abab-4685-b729-16d511f4b9ac
+ - true
+ - Curve
+ - Curve
+ - false
+ - 5bc2468e-1e74-4d08-9d67-0d83edc836a3
+ - 1
+
+
+
+
+ -
+ 4721
+ 9175
+ 50
+ 24
+
+ -
+ 4746.207
+ 9187.815
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 498be186-f17a-4e6e-9e79-a08de2ee73bd
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 4126
+ 14007
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4126.646
+ 14007.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 5c69f1af-3070-438c-9ad8-9923efe4f79f
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 4219
+ 14158
+ 251
+ 20
+
+ -
+ 4219.673
+ 14158.14
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 129bee11-1625-4d81-bee1-6b07aae4fdff
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 4126
+ 14066
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4126.512
+ 14066.78
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - f7481ad9-51e1-4172-944b-f2589d39af07
+ - Expression
+
+
+
+
+
+ -
+ 4310
+ 14256
+ 79
+ 28
+
+ -
+ 4352
+ 14270
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fe38ace9-eefe-4463-b4b9-1dff176e3dbb
+ - Variable X
+ - X
+ - true
+ - b858e84c-e354-43a3-8a52-1a2b2e8195ae
+ - 1
+
+
+
+
+ -
+ 4312
+ 14258
+ 14
+ 24
+
+ -
+ 4320.5
+ 14270
+
+
+
+
+
+
+
+ - Result of expression
+ - 5abd580c-23ca-4d9b-bf80-26481e23e448
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 4378
+ 14258
+ 9
+ 24
+
+ -
+ 4384
+ 14270
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 3a59296e-6667-438e-b40a-411acf304b4b
+ - Move
+ - Move
+
+
+
+
+ -
+ 2847
+ 9050
+ 138
+ 44
+
+ -
+ 2915
+ 9072
+
+
+
+
+
+ - Base geometry
+ - b1806dbf-39e8-4d04-85f6-7043fe3d40f0
+ - Geometry
+ - Geometry
+ - true
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+
+
+
+
+ -
+ 2849
+ 9052
+ 51
+ 20
+
+ -
+ 2876
+ 9062
+
+
+
+
+
+
+
+ - Translation vector
+ - 22b1bc7a-04d0-4e7c-84f9-55bcbebede49
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 2849
+ 9072
+ 51
+ 20
+
+ -
+ 2876
+ 9082
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 8bc6df17-36bd-4640-8779-bb118a25d296
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2930
+ 9052
+ 53
+ 20
+
+ -
+ 2958
+ 9062
+
+
+
+
+
+
+
+ - Transformation data
+ - 7a6fcfc3-efb4-4d80-a4c6-da752415e14d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2930
+ 9072
+ 53
+ 20
+
+ -
+ 2958
+ 9082
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8fae6707-35c9-49ef-96bf-d5708e512f8c
+ - true
+ - Curve
+ - Curve
+ - false
+ - 8bc6df17-36bd-4640-8779-bb118a25d296
+ - 1
+
+
+
+
+ -
+ 2879
+ 8983
+ 50
+ 24
+
+ -
+ 2904
+ 8995.313
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 589075b9-2b51-480f-92d4-4420a7b92fd9
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000052430
+
+
+
+
+ -
+ 2773
+ 12818
+ 250
+ 20
+
+ -
+ 2773.903
+ 12818.38
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 515aa4ed-7d0b-41c2-8a15-e458b1f9659f
+ - Point
+ - Point
+ - false
+ - 1735ea28-d9c2-460e-8036-e182399799eb
+ - 1
+
+
+
+
+ -
+ 4342
+ 11782
+ 50
+ 24
+
+ -
+ 4367.489
+ 11794.87
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1735ea28-d9c2-460e-8036-e182399799eb
+ - Relay
+
+ - false
+ - 31c6e3ed-8058-4483-b952-0f2d075ed585
+ - 1
+
+
+
+
+ -
+ 4346
+ 11830
+ 40
+ 16
+
+ -
+ 4366
+ 11838
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 72240493-81f6-452f-95bf-65412ec6da40
+ - Relay
+
+ - false
+ - 47dfc268-6b03-4a23-9ab3-327e751d3724
+ - 1
+
+
+
+
+ -
+ 4346
+ 11607
+ 40
+ 16
+
+ -
+ 4366
+ 11615
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - abd2599c-b66f-4796-b135-505f6671f818
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4289
+ 11643
+ 154
+ 64
+
+ -
+ 4373
+ 11675
+
+
+
+
+
+ - Base geometry
+ - dc50de48-50fe-4a42-b3f8-09da1c91c287
+ - Geometry
+ - Geometry
+ - true
+ - 515aa4ed-7d0b-41c2-8a15-e458b1f9659f
+ - 1
+
+
+
+
+ -
+ 4291
+ 11645
+ 67
+ 20
+
+ -
+ 4334
+ 11655
+
+
+
+
+
+
+
+ - Center of scaling
+ - 9886a441-11b7-42d7-8fc4-df228260f2fe
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4291
+ 11665
+ 67
+ 20
+
+ -
+ 4334
+ 11675
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 51a1bf12-bca0-4396-809b-974ff5cfec5c
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 7b9d6ded-0c99-487c-9351-2a3cca1c2110
+ - 1
+
+
+
+
+ -
+ 4291
+ 11685
+ 67
+ 20
+
+ -
+ 4334
+ 11695
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 47dfc268-6b03-4a23-9ab3-327e751d3724
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4388
+ 11645
+ 53
+ 30
+
+ -
+ 4416
+ 11660
+
+
+
+
+
+
+
+ - Transformation data
+ - b3926032-ce53-464f-9e28-039386001659
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4388
+ 11675
+ 53
+ 30
+
+ -
+ 4416
+ 11690
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 7b9d6ded-0c99-487c-9351-2a3cca1c2110
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 4247
+ 11727
+ 250
+ 20
+
+ -
+ 4247.267
+ 11727.23
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 515aa4ed-7d0b-41c2-8a15-e458b1f9659f
+ - 1
+ - c2e639ee-1c56-4725-9c22-3c83610edc53
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 59bf3a99-70d7-46ed-90ec-a0f0d4c1ddda
+ - Move
+ - Move
+
+
+
+
+ -
+ 3221
+ 9050
+ 138
+ 44
+
+ -
+ 3289
+ 9072
+
+
+
+
+
+ - Base geometry
+ - 2bda810b-ccb4-4da8-a1cc-8b5184af3aeb
+ - Geometry
+ - Geometry
+ - true
+ - f32e469d-5411-4757-a641-2639d4f5739a
+ - 1
+
+
+
+
+ -
+ 3223
+ 9052
+ 51
+ 20
+
+ -
+ 3250
+ 9062
+
+
+
+
+
+
+
+ - Translation vector
+ - a0c8da96-a314-418a-bbeb-e2e4ec05ecb1
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 3223
+ 9072
+ 51
+ 20
+
+ -
+ 3250
+ 9082
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 4ee18c1c-e3d4-49cb-853e-7477b9ccbb87
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3304
+ 9052
+ 53
+ 20
+
+ -
+ 3332
+ 9062
+
+
+
+
+
+
+
+ - Transformation data
+ - e05bfe81-7da9-4146-8ccc-e809df7e43d9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3304
+ 9072
+ 53
+ 20
+
+ -
+ 3332
+ 9082
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c86da1e9-be3c-4594-b203-2c288256aeb0
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4ee18c1c-e3d4-49cb-853e-7477b9ccbb87
+ - 1
+
+
+
+
+ -
+ 3252
+ 8984
+ 50
+ 24
+
+ -
+ 3277.087
+ 8996.554
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dedfe789-29c6-4593-af82-02f033f7153d
+ - 0ad98407-14cf-4326-a90c-2a3a2ff3f69e
+ - 8e51e896-77f9-4f8e-9163-e0c326cb830d
+ - b6c87281-0865-4ce1-ab93-3245995234b2
+ - 9a0f8949-a570-4642-ba43-d12a64260252
+ - 57321ef9-d766-4c26-936f-87297eda8e4c
+ - 6
+ - 6a7a5db4-213c-430f-b86e-fcec296555f1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cd50d13b-bd2f-4374-a5fd-fa1ea9f0c503
+ - a8d06f76-0302-432a-914c-6139b2c2c5ba
+ - bdce7620-c15a-4dd1-a721-833ed73f8f7d
+ - d996f368-b4fa-4fbc-afdb-32db2874c6b5
+ - 13bfe745-6bcc-44d5-ac92-2ecc8329c5a0
+ - d75820f0-bb37-4abb-9225-e553339db5b1
+ - 7a2fd703-3c5a-45f9-b1e7-2a75693de004
+ - d5a730cb-5d92-4d83-a8b1-36842705e0c7
+ - 77316fc6-532b-4419-b124-19d6857ef25c
+ - 513f6f70-4cb0-44c5-aa09-e20b7bdbbfcd
+ - 3b7f5578-dc96-4e80-a3c9-b7ecb20f0995
+ - a22ee24a-c97b-496e-85f3-170833a2c20a
+ - 6751dded-61f5-4116-ae7d-70e3e62bb4f4
+ - a5ed6cd7-9bd8-454d-9b30-ceccb9b87e37
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 5b72b61e-c707-41cc-8321-4cdcde7b1603
+ - 0e63da62-fc21-4853-b665-f1b6a097aa62
+ - 51505618-00ee-42c6-91db-d51a4518e63a
+ - 91a9907e-16e2-42d5-adce-80f08547a326
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 43f42d91-5176-4c4f-afee-8dec17e3fefd
+ - 00e0fa87-e939-458a-a5c2-a7c1881b324b
+ - a5be8183-8052-4c18-b9c3-b5ad4806e481
+ - 44966b1b-3ea0-483a-82d9-f4f1fa578005
+ - 8806d21d-7702-4c51-9c8e-c26672cb86bd
+ - 4361eca2-7e72-479b-90f9-ca08f68314cd
+ - d3dd375f-6e48-40ff-9657-314f71dccd8e
+ - c32c4687-949b-4b62-adfc-13c978459a44
+ - 9982f79e-ff56-4209-b777-92feecfebf0b
+ - f7b46e5c-262a-4b4a-b27f-f3b6fcdf6cb7
+ - 0d3eda3f-4923-44f8-90a9-89dfecb28754
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - 9b12e5ff-888d-4bcd-b58f-b1e25865e413
+ - d7e26251-a338-4524-be58-83a550471308
+ - b7daf0c1-c870-43f1-8069-937188ea2098
+ - 9c6499e6-36ac-4453-a5a2-0b08a670e6b3
+ - 0e8fb521-dae4-4b07-9818-8bad01802859
+ - 705c4605-737a-4483-bb5d-30d2abe2372d
+ - 0c5d082d-5e4e-4261-ab49-9e89b25bdd8b
+ - acd7f663-1e08-4750-9935-f932723f55c2
+ - 7781dbe1-0868-4c91-9085-d86a30252cd1
+ - c95810a3-7ba4-4cf5-9c11-4bb71d47121e
+ - e2890801-a224-4d61-ad7e-72a44d574e47
+ - e1d4d571-b98d-45a4-84a5-722727a300a1
+ - 043653af-cbde-4517-b422-be6e5f87936f
+ - 07841301-4cf3-4a66-85b1-e5ec916a2e39
+ - 71bafbfa-bbd2-4731-b092-360d68dd1f89
+ - 1b6c1ac1-b906-47e5-b05f-0d9dffd28de2
+ - cc6f43b8-5f43-4c3a-bcd8-21d40ab07b22
+ - ae074b5b-3e33-4c75-b243-1040c562808e
+ - 169030d8-0ef3-4395-bcc3-cbe9bf9fe74c
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - a7b120dd-93ab-4c05-b07c-8cca78678511
+ - b6942b45-28f1-415e-b716-c145bc9151f8
+ - 4756b165-e13c-4efa-a9f4-49cfee960c09
+ - 2cd8d8bc-a40f-437b-b31c-558faba36c20
+ - ae8f0f43-e96e-487a-8de1-2180383d09ef
+ - e80ad1f6-d186-46ea-b4ca-5a18de688c31
+ - 7f41b441-96a4-4dd8-8529-ef17e9883be8
+ - c446016e-395b-49f7-93f2-d70abc692b11
+ - 7282fb8c-f882-4173-951c-c2dc9d0cfe9b
+ - 12a17ae0-1bea-4760-a22a-9107fe49a5bf
+ - 2d7356db-3b2b-4dda-a323-e9139f48c65b
+ - e15b337c-36b0-48cf-8b9d-8ab3c5ba06f2
+ - e28a1f4c-0160-400f-816a-427e4b6eb69c
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - 8bce7019-294e-4431-acae-9cf3b83d6cbf
+ - 15acfcdb-0966-49ce-b323-67a6586ecc0b
+ - ba3d57c5-1de1-431f-9ca1-0ec66e14ac98
+ - a20beb6d-88ec-44e4-900b-86e895f1d955
+ - ef6b993d-c95e-4377-b3fd-234b7474bff7
+ - 13009076-acb9-4d71-becc-81d2f2ce38a6
+ - ad3f6d83-6e8c-431f-a4e3-21baf669d1cd
+ - 909a2370-4806-4bd1-9748-07f578e0d30d
+ - b8fb7f0e-c7dc-4787-b511-ebfbf7a4c32a
+ - 805743f8-f4b5-4be8-b97c-3562acfda600
+ - ac135457-d344-4adb-8f93-f9cd86c093ea
+ - 8b42ee2f-db97-4077-aad7-aa4be617f8d2
+ - b6d93c84-f99c-40cf-aa70-8172f4e56afe
+ - 0cae36b2-f309-4924-933e-5864c8f0ef06
+ - 25d5288d-d4fd-4bd2-b9ae-3af995eb6d32
+ - d8bb3905-0d1b-4e9c-b51b-34c6c1b8f824
+ - a0f9dc65-f5a3-4883-aeed-a4ec58d91bb1
+ - 357048ec-5c88-4cb9-8f5c-81a5f5abfff8
+ - 7cc5932e-b5d0-4767-b86c-09db982220c7
+ - 85
+ - b8005e83-d913-4fcd-bd6a-0edf26b287b7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a8d06f76-0302-432a-914c-6139b2c2c5ba
+ - bdce7620-c15a-4dd1-a721-833ed73f8f7d
+ - d996f368-b4fa-4fbc-afdb-32db2874c6b5
+ - 13bfe745-6bcc-44d5-ac92-2ecc8329c5a0
+ - d75820f0-bb37-4abb-9225-e553339db5b1
+ - 7a2fd703-3c5a-45f9-b1e7-2a75693de004
+ - d5a730cb-5d92-4d83-a8b1-36842705e0c7
+ - 77316fc6-532b-4419-b124-19d6857ef25c
+ - 513f6f70-4cb0-44c5-aa09-e20b7bdbbfcd
+ - 3b7f5578-dc96-4e80-a3c9-b7ecb20f0995
+ - a22ee24a-c97b-496e-85f3-170833a2c20a
+ - 6751dded-61f5-4116-ae7d-70e3e62bb4f4
+ - a5ed6cd7-9bd8-454d-9b30-ceccb9b87e37
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 5b72b61e-c707-41cc-8321-4cdcde7b1603
+ - 0e63da62-fc21-4853-b665-f1b6a097aa62
+ - 51505618-00ee-42c6-91db-d51a4518e63a
+ - 91a9907e-16e2-42d5-adce-80f08547a326
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 43f42d91-5176-4c4f-afee-8dec17e3fefd
+ - 00e0fa87-e939-458a-a5c2-a7c1881b324b
+ - a5be8183-8052-4c18-b9c3-b5ad4806e481
+ - 44966b1b-3ea0-483a-82d9-f4f1fa578005
+ - 8806d21d-7702-4c51-9c8e-c26672cb86bd
+ - 4361eca2-7e72-479b-90f9-ca08f68314cd
+ - d3dd375f-6e48-40ff-9657-314f71dccd8e
+ - c32c4687-949b-4b62-adfc-13c978459a44
+ - 9982f79e-ff56-4209-b777-92feecfebf0b
+ - f7b46e5c-262a-4b4a-b27f-f3b6fcdf6cb7
+ - 0d3eda3f-4923-44f8-90a9-89dfecb28754
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - 9b12e5ff-888d-4bcd-b58f-b1e25865e413
+ - d7e26251-a338-4524-be58-83a550471308
+ - b7daf0c1-c870-43f1-8069-937188ea2098
+ - 9c6499e6-36ac-4453-a5a2-0b08a670e6b3
+ - 0e8fb521-dae4-4b07-9818-8bad01802859
+ - 705c4605-737a-4483-bb5d-30d2abe2372d
+ - 0c5d082d-5e4e-4261-ab49-9e89b25bdd8b
+ - acd7f663-1e08-4750-9935-f932723f55c2
+ - 7781dbe1-0868-4c91-9085-d86a30252cd1
+ - c95810a3-7ba4-4cf5-9c11-4bb71d47121e
+ - e2890801-a224-4d61-ad7e-72a44d574e47
+ - e1d4d571-b98d-45a4-84a5-722727a300a1
+ - 043653af-cbde-4517-b422-be6e5f87936f
+ - 07841301-4cf3-4a66-85b1-e5ec916a2e39
+ - 71bafbfa-bbd2-4731-b092-360d68dd1f89
+ - 1b6c1ac1-b906-47e5-b05f-0d9dffd28de2
+ - cc6f43b8-5f43-4c3a-bcd8-21d40ab07b22
+ - ae074b5b-3e33-4c75-b243-1040c562808e
+ - 169030d8-0ef3-4395-bcc3-cbe9bf9fe74c
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - a7b120dd-93ab-4c05-b07c-8cca78678511
+ - b6942b45-28f1-415e-b716-c145bc9151f8
+ - 4756b165-e13c-4efa-a9f4-49cfee960c09
+ - 2cd8d8bc-a40f-437b-b31c-558faba36c20
+ - ae8f0f43-e96e-487a-8de1-2180383d09ef
+ - e80ad1f6-d186-46ea-b4ca-5a18de688c31
+ - 7f41b441-96a4-4dd8-8529-ef17e9883be8
+ - c446016e-395b-49f7-93f2-d70abc692b11
+ - 7282fb8c-f882-4173-951c-c2dc9d0cfe9b
+ - 12a17ae0-1bea-4760-a22a-9107fe49a5bf
+ - 2d7356db-3b2b-4dda-a323-e9139f48c65b
+ - e15b337c-36b0-48cf-8b9d-8ab3c5ba06f2
+ - e28a1f4c-0160-400f-816a-427e4b6eb69c
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - 8bce7019-294e-4431-acae-9cf3b83d6cbf
+ - 15acfcdb-0966-49ce-b323-67a6586ecc0b
+ - ba3d57c5-1de1-431f-9ca1-0ec66e14ac98
+ - a20beb6d-88ec-44e4-900b-86e895f1d955
+ - ef6b993d-c95e-4377-b3fd-234b7474bff7
+ - 13009076-acb9-4d71-becc-81d2f2ce38a6
+ - ad3f6d83-6e8c-431f-a4e3-21baf669d1cd
+ - 909a2370-4806-4bd1-9748-07f578e0d30d
+ - b8fb7f0e-c7dc-4787-b511-ebfbf7a4c32a
+ - 805743f8-f4b5-4be8-b97c-3562acfda600
+ - ac135457-d344-4adb-8f93-f9cd86c093ea
+ - 8b42ee2f-db97-4077-aad7-aa4be617f8d2
+ - b6d93c84-f99c-40cf-aa70-8172f4e56afe
+ - 0cae36b2-f309-4924-933e-5864c8f0ef06
+ - 79
+ - cd50d13b-bd2f-4374-a5fd-fa1ea9f0c503
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8b42ee2f-db97-4077-aad7-aa4be617f8d2
+ - 1
+ - a8d06f76-0302-432a-914c-6139b2c2c5ba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d996f368-b4fa-4fbc-afdb-32db2874c6b5
+ - 1
+ - bdce7620-c15a-4dd1-a721-833ed73f8f7d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 13bfe745-6bcc-44d5-ac92-2ecc8329c5a0
+ - 1
+ - d996f368-b4fa-4fbc-afdb-32db2874c6b5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d75820f0-bb37-4abb-9225-e553339db5b1
+ - 1
+ - 13bfe745-6bcc-44d5-ac92-2ecc8329c5a0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7a2fd703-3c5a-45f9-b1e7-2a75693de004
+ - 1
+ - d75820f0-bb37-4abb-9225-e553339db5b1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d5a730cb-5d92-4d83-a8b1-36842705e0c7
+ - 1
+ - 7a2fd703-3c5a-45f9-b1e7-2a75693de004
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 513f6f70-4cb0-44c5-aa09-e20b7bdbbfcd
+ - 1
+ - d5a730cb-5d92-4d83-a8b1-36842705e0c7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 77316fc6-532b-4419-b124-19d6857ef25c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 19868
+ 13094
+ 50
+ 24
+
+ -
+ 19893.94
+ 13106.56
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 77316fc6-532b-4419-b124-19d6857ef25c
+ - 1
+ - 513f6f70-4cb0-44c5-aa09-e20b7bdbbfcd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f7b46e5c-262a-4b4a-b27f-f3b6fcdf6cb7
+ - 1
+ - 3b7f5578-dc96-4e80-a3c9-b7ecb20f0995
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6751dded-61f5-4116-ae7d-70e3e62bb4f4
+ - a5ed6cd7-9bd8-454d-9b30-ceccb9b87e37
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 5b72b61e-c707-41cc-8321-4cdcde7b1603
+ - 0e63da62-fc21-4853-b665-f1b6a097aa62
+ - 51505618-00ee-42c6-91db-d51a4518e63a
+ - 91a9907e-16e2-42d5-adce-80f08547a326
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 00e0fa87-e939-458a-a5c2-a7c1881b324b
+ - 43f42d91-5176-4c4f-afee-8dec17e3fefd
+ - 3b7f5578-dc96-4e80-a3c9-b7ecb20f0995
+ - 513f6f70-4cb0-44c5-aa09-e20b7bdbbfcd
+ - 8bce7019-294e-4431-acae-9cf3b83d6cbf
+ - 15acfcdb-0966-49ce-b323-67a6586ecc0b
+ - ba3d57c5-1de1-431f-9ca1-0ec66e14ac98
+ - a20beb6d-88ec-44e4-900b-86e895f1d955
+ - ef6b993d-c95e-4377-b3fd-234b7474bff7
+ - 13009076-acb9-4d71-becc-81d2f2ce38a6
+ - e15b337c-36b0-48cf-8b9d-8ab3c5ba06f2
+ - e28a1f4c-0160-400f-816a-427e4b6eb69c
+ - 20
+ - a22ee24a-c97b-496e-85f3-170833a2c20a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 6751dded-61f5-4116-ae7d-70e3e62bb4f4
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 19843
+ 14259
+ 104
+ 64
+
+ -
+ 19902
+ 14291
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 44bb5dbe-ab05-4f9c-954d-882f14fdacce
+ - Data
+ - Data
+ - false
+ - 6e66f57e-38ab-4ebe-ba95-af421b37b6af
+ - 1
+
+
+
+
+ -
+ 19845
+ 14261
+ 42
+ 20
+
+ -
+ 19867.5
+ 14271
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 1c6133c6-4138-4c35-a5fb-9ced5c1236d1
+ - Number
+ - Number
+ - false
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - 1
+
+
+
+
+ -
+ 19845
+ 14281
+ 42
+ 20
+
+ -
+ 19867.5
+ 14291
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - bbc9c5c3-8a48-489a-8815-b189d5578d16
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 19845
+ 14301
+ 42
+ 20
+
+ -
+ 19867.5
+ 14311
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - fb451eba-0ecb-4301-9982-52fd2e4ca758
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 19917
+ 14261
+ 28
+ 60
+
+ -
+ 19932.5
+ 14291
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - a5ed6cd7-9bd8-454d-9b30-ceccb9b87e37
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 19829
+ 12331
+ 116
+ 44
+
+ -
+ 19890
+ 12353
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 1a5579d4-65cb-4d2d-9962-d6edc8dd2e0e
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - fb451eba-0ecb-4301-9982-52fd2e4ca758
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 19831
+ 12333
+ 44
+ 20
+
+ -
+ 19854.5
+ 12343
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 9038a9df-59d3-4df9-9351-47fd30202540
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 23210470-a829-432f-9104-72180222a72d
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 19831
+ 12353
+ 44
+ 20
+
+ -
+ 19854.5
+ 12363
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - dcca8280-f52a-4d3b-a9ac-709dbdd3d573
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 19905
+ 12333
+ 38
+ 20
+
+ -
+ 19925.5
+ 12343
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 4d442fde-c9e8-4f99-b4ac-7861aec8dcdf
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 19905
+ 12353
+ 38
+ 20
+
+ -
+ 19925.5
+ 12363
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 5b72b61e-c707-41cc-8321-4cdcde7b1603
+ - Series
+ - Series
+
+
+
+
+ -
+ 19840
+ 13588
+ 101
+ 64
+
+ -
+ 19890
+ 13620
+
+
+
+
+
+ - First number in the series
+ - 8117e42f-3ae5-4096-b6db-e2701e32273e
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 19842
+ 13590
+ 33
+ 20
+
+ -
+ 19860
+ 13600
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 900bb15d-fcaa-4ed2-914d-dc65d964cc20
+ - Step
+ - Step
+ - false
+ - ac135457-d344-4adb-8f93-f9cd86c093ea
+ - 1
+
+
+
+
+ -
+ 19842
+ 13610
+ 33
+ 20
+
+ -
+ 19860
+ 13620
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 2ff2b0d7-0ede-4509-bdb1-fcd22b116940
+ - Count
+ - Count
+ - false
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - 1
+
+
+
+
+ -
+ 19842
+ 13630
+ 33
+ 20
+
+ -
+ 19860
+ 13640
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - a67158d0-bd57-4cc1-9d6c-2761dbb52beb
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 19905
+ 13590
+ 34
+ 60
+
+ -
+ 19923.5
+ 13620
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0e63da62-fc21-4853-b665-f1b6a097aa62
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19826
+ 14438
+ 150
+ 20
+
+ -
+ 19826.62
+ 14438.41
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 51505618-00ee-42c6-91db-d51a4518e63a
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 19790
+ 13830
+ 120
+ 28
+
+ -
+ 19851
+ 13844
+
+
+
+
+
+ - Angle in degrees
+ - ea8af976-f4f0-45ea-bbb3-229de48bc776
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 19792
+ 13832
+ 44
+ 24
+
+ -
+ 19815.5
+ 13844
+
+
+
+
+
+
+
+ - Angle in radians
+ - 7f960f63-5001-4e99-bded-b99fdd564f68
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 19866
+ 13832
+ 42
+ 24
+
+ -
+ 19888.5
+ 13844
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 91a9907e-16e2-42d5-adce-80f08547a326
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 19766
+ 14193
+ 251
+ 20
+
+ -
+ 19766.83
+ 14193.4
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 43f42d91-5176-4c4f-afee-8dec17e3fefd
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 19815
+ 11566
+ 144
+ 84
+
+ -
+ 19901
+ 11608
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - fc261672-d767-4e35-9f3a-ccfb8a27fe3e
+ - Vertices
+ - Vertices
+ - false
+ - 8e51e896-77f9-4f8e-9163-e0c326cb830d
+ - 1
+
+
+
+
+ -
+ 19817
+ 11568
+ 69
+ 20
+
+ -
+ 19853
+ 11578
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - b1ddbecf-3cbe-40d8-969a-c2531ba366e1
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11588
+ 69
+ 20
+
+ -
+ 19853
+ 11598
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 1e2dda87-d283-45f9-9b7e-aa27fdb123f8
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11608
+ 69
+ 20
+
+ -
+ 19853
+ 11618
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c7628616-f96f-455c-8b2c-c2b7c2d14380
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11628
+ 69
+ 20
+
+ -
+ 19853
+ 11638
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 2891ddf4-5bcd-457d-87fb-d6ace3bdec93
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 19916
+ 11568
+ 41
+ 26
+
+ -
+ 19938
+ 11581.33
+
+
+
+
+
+
+
+ - Curve length
+ - da4534ba-b204-4946-9581-1d487542bf08
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19916
+ 11594
+ 41
+ 27
+
+ -
+ 19938
+ 11608
+
+
+
+
+
+
+
+ - Curve domain
+ - dbe3ee94-b575-4c7e-8e52-f30b4240bca1
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 19916
+ 11621
+ 41
+ 27
+
+ -
+ 19938
+ 11634.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6751dded-61f5-4116-ae7d-70e3e62bb4f4
+ - a5ed6cd7-9bd8-454d-9b30-ceccb9b87e37
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 5b72b61e-c707-41cc-8321-4cdcde7b1603
+ - 0e63da62-fc21-4853-b665-f1b6a097aa62
+ - 51505618-00ee-42c6-91db-d51a4518e63a
+ - 91a9907e-16e2-42d5-adce-80f08547a326
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 909a2370-4806-4bd1-9748-07f578e0d30d
+ - d7e26251-a338-4524-be58-83a550471308
+ - 2d7356db-3b2b-4dda-a323-e9139f48c65b
+ - ad3f6d83-6e8c-431f-a4e3-21baf669d1cd
+ - b8fb7f0e-c7dc-4787-b511-ebfbf7a4c32a
+ - 32499351-f670-4091-8e63-39ea27a7ab45
+ - 14
+ - 00e0fa87-e939-458a-a5c2-a7c1881b324b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a5be8183-8052-4c18-b9c3-b5ad4806e481
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 19815
+ 11398
+ 144
+ 64
+
+ -
+ 19889
+ 11430
+
+
+
+
+
+ - Curve to evaluate
+ - 4bbe1110-a807-4c12-8147-c1d86f3d9c00
+ - Curve
+ - Curve
+ - false
+ - 2891ddf4-5bcd-457d-87fb-d6ace3bdec93
+ - 1
+
+
+
+
+ -
+ 19817
+ 11400
+ 57
+ 20
+
+ -
+ 19847
+ 11410
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 910a4ec4-2fa1-40c8-8007-689f7ea1c51c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11420
+ 57
+ 20
+
+ -
+ 19847
+ 11430
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 73968315-c692-44c6-900d-0ee2a3cffbd4
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11440
+ 57
+ 20
+
+ -
+ 19847
+ 11450
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c0642d5a-3d4b-4dc5-82cd-cccf47a36b28
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11400
+ 53
+ 20
+
+ -
+ 19932
+ 11410
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - eda4539a-29d4-440d-94bc-4d594360cf45
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11420
+ 53
+ 20
+
+ -
+ 19932
+ 11430
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8653f75a-4dd3-4e7c-9de5-2f8007af2ead
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11440
+ 53
+ 20
+
+ -
+ 19932
+ 11450
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 44966b1b-3ea0-483a-82d9-f4f1fa578005
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 19818
+ 11336
+ 138
+ 44
+
+ -
+ 19886
+ 11358
+
+
+
+
+
+ - Base geometry
+ - 6efe9667-e6dd-42cd-a4fb-88cdec45b92f
+ - Geometry
+ - Geometry
+ - true
+ - 2891ddf4-5bcd-457d-87fb-d6ace3bdec93
+ - 1
+
+
+
+
+ -
+ 19820
+ 11338
+ 51
+ 20
+
+ -
+ 19847
+ 11348
+
+
+
+
+
+
+
+ - Mirror plane
+ - 68e7741c-f9d7-4f97-8d28-c38c8af7c7e4
+ - Plane
+ - Plane
+ - false
+ - fc45468d-f5ea-4b46-a2b3-fe3c1afb8068
+ - 1
+
+
+
+
+ -
+ 19820
+ 11358
+ 51
+ 20
+
+ -
+ 19847
+ 11368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - c793c331-4fbd-49ce-a1cf-4037e3705174
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19901
+ 11338
+ 53
+ 20
+
+ -
+ 19929
+ 11348
+
+
+
+
+
+
+
+ - Transformation data
+ - 5cef374b-a716-4946-a2e9-d407bd0da8cf
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19901
+ 11358
+ 53
+ 20
+
+ -
+ 19929
+ 11368
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 8806d21d-7702-4c51-9c8e-c26672cb86bd
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 19834
+ 11482
+ 106
+ 64
+
+ -
+ 19898
+ 11514
+
+
+
+
+
+ - Line start point
+ - 4763e0fc-d01f-4ab9-be99-2ce80cee9d4a
+ - Start
+ - Start
+ - false
+ - c0642d5a-3d4b-4dc5-82cd-cccf47a36b28
+ - 1
+
+
+
+
+ -
+ 19836
+ 11484
+ 47
+ 20
+
+ -
+ 19861
+ 11494
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - f3a74835-ec4e-482d-9fff-b79b78383670
+ - Direction
+ - Direction
+ - false
+ - eda4539a-29d4-440d-94bc-4d594360cf45
+ - 1
+
+
+
+
+ -
+ 19836
+ 11504
+ 47
+ 20
+
+ -
+ 19861
+ 11514
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - f9f0f373-f7a3-407d-a7dc-a3642c8ced7e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19836
+ 11524
+ 47
+ 20
+
+ -
+ 19861
+ 11534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - fc45468d-f5ea-4b46-a2b3-fe3c1afb8068
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 19913
+ 11484
+ 25
+ 60
+
+ -
+ 19927
+ 11514
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 4361eca2-7e72-479b-90f9-ca08f68314cd
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 19828
+ 11274
+ 118
+ 44
+
+ -
+ 19891
+ 11296
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c9db13de-3310-4b52-b3ea-97394158fc10
+ - Curves
+ - Curves
+ - false
+ - 2891ddf4-5bcd-457d-87fb-d6ace3bdec93
+ - c793c331-4fbd-49ce-a1cf-4037e3705174
+ - 2
+
+
+
+
+ -
+ 19830
+ 11276
+ 46
+ 20
+
+ -
+ 19854.5
+ 11286
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f7b69204-bf9a-4975-9adc-f03b2efbdf66
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 19830
+ 11296
+ 46
+ 20
+
+ -
+ 19854.5
+ 11306
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 0de341f6-8378-48af-8922-967aa818ba3c
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 19906
+ 11276
+ 38
+ 40
+
+ -
+ 19926.5
+ 11296
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d3dd375f-6e48-40ff-9657-314f71dccd8e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 19815
+ 11190
+ 144
+ 64
+
+ -
+ 19889
+ 11222
+
+
+
+
+
+ - Curve to evaluate
+ - 47a3462d-eef3-490e-a864-db335ce0e375
+ - Curve
+ - Curve
+ - false
+ - 0de341f6-8378-48af-8922-967aa818ba3c
+ - 1
+
+
+
+
+ -
+ 19817
+ 11192
+ 57
+ 20
+
+ -
+ 19847
+ 11202
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - e9137704-c647-4ead-8bf0-076d70120b4b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11212
+ 57
+ 20
+
+ -
+ 19847
+ 11222
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ce7ae3e8-5b38-4ec9-b347-94f60584bb46
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 11232
+ 57
+ 20
+
+ -
+ 19847
+ 11242
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 1687bfac-5d38-45b1-a7ea-2b25ecb16e72
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11192
+ 53
+ 20
+
+ -
+ 19932
+ 11202
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ce0994de-2117-458c-9516-4d3055806371
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11212
+ 53
+ 20
+
+ -
+ 19932
+ 11222
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 73ca1991-c283-4c19-87f7-69bc774a7109
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 11232
+ 53
+ 20
+
+ -
+ 19932
+ 11242
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - c32c4687-949b-4b62-adfc-13c978459a44
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 19818
+ 11107
+ 138
+ 64
+
+ -
+ 19886
+ 11139
+
+
+
+
+
+ - Base geometry
+ - b6aea7bf-5e0e-458d-beed-1c2c8e02f701
+ - Geometry
+ - Geometry
+ - true
+ - 0de341f6-8378-48af-8922-967aa818ba3c
+ - 1
+
+
+
+
+ -
+ 19820
+ 11109
+ 51
+ 20
+
+ -
+ 19847
+ 11119
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 10cbdf1c-0a92-4297-a870-5b33a3485187
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 19820
+ 11129
+ 51
+ 20
+
+ -
+ 19847
+ 11139
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 3ccf34f9-35c3-4302-ab22-1cb44e0033c3
+ - Plane
+ - Plane
+ - false
+ - 1687bfac-5d38-45b1-a7ea-2b25ecb16e72
+ - 1
+
+
+
+
+ -
+ 19820
+ 11149
+ 51
+ 20
+
+ -
+ 19847
+ 11159
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - d61c1b3a-0ecc-40d8-abdb-975a5a459e86
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19901
+ 11109
+ 53
+ 30
+
+ -
+ 19929
+ 11124
+
+
+
+
+
+
+
+ - Transformation data
+ - 210f36ea-502b-4b73-8c3e-808ae1fdaeda
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19901
+ 11139
+ 53
+ 30
+
+ -
+ 19929
+ 11154
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 9982f79e-ff56-4209-b777-92feecfebf0b
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 19828
+ 11044
+ 118
+ 44
+
+ -
+ 19891
+ 11066
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 3b3b7847-16c7-4873-bb6d-40473182dfea
+ - Curves
+ - Curves
+ - false
+ - 0de341f6-8378-48af-8922-967aa818ba3c
+ - d61c1b3a-0ecc-40d8-abdb-975a5a459e86
+ - 2
+
+
+
+
+ -
+ 19830
+ 11046
+ 46
+ 20
+
+ -
+ 19854.5
+ 11056
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 9e46f1b4-1d68-4007-bc19-b698b6ba0f4f
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 19830
+ 11066
+ 46
+ 20
+
+ -
+ 19854.5
+ 11076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 29ddbb5f-5cfd-4023-959a-1c3ce3f11ffd
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 19906
+ 11046
+ 38
+ 40
+
+ -
+ 19926.5
+ 11066
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 43f42d91-5176-4c4f-afee-8dec17e3fefd
+ - a5be8183-8052-4c18-b9c3-b5ad4806e481
+ - 44966b1b-3ea0-483a-82d9-f4f1fa578005
+ - 8806d21d-7702-4c51-9c8e-c26672cb86bd
+ - 4361eca2-7e72-479b-90f9-ca08f68314cd
+ - d3dd375f-6e48-40ff-9657-314f71dccd8e
+ - c32c4687-949b-4b62-adfc-13c978459a44
+ - 9982f79e-ff56-4209-b777-92feecfebf0b
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - dedfe789-29c6-4593-af82-02f033f7153d
+ - 0ad98407-14cf-4326-a90c-2a3a2ff3f69e
+ - 8e51e896-77f9-4f8e-9163-e0c326cb830d
+ - b6c87281-0865-4ce1-ab93-3245995234b2
+ - 57321ef9-d766-4c26-936f-87297eda8e4c
+ - 9a0f8949-a570-4642-ba43-d12a64260252
+ - 15
+ - f7b46e5c-262a-4b4a-b27f-f3b6fcdf6cb7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0d3eda3f-4923-44f8-90a9-89dfecb28754
+ - Panel
+
+ - false
+ - 0
+ - e1d4d571-b98d-45a4-84a5-722727a300a1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19820
+ 13679
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19820.36
+ 13679.91
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - Curve
+ - Curve
+ - false
+ - 29ddbb5f-5cfd-4023-959a-1c3ce3f11ffd
+ - 1
+
+
+
+
+ -
+ 19868
+ 11007
+ 50
+ 24
+
+ -
+ 19893.94
+ 11019.47
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - 1
+ - 9b12e5ff-888d-4bcd-b58f-b1e25865e413
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d7e26251-a338-4524-be58-83a550471308
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 19674
+ 13916
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19674.92
+ 13916.59
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - b7daf0c1-c870-43f1-8069-937188ea2098
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 19815
+ 10918
+ 144
+ 64
+
+ -
+ 19889
+ 10950
+
+
+
+
+
+ - Curve to evaluate
+ - b68b8748-763c-4876-ae5a-9eac2d636206
+ - Curve
+ - Curve
+ - false
+ - 29ddbb5f-5cfd-4023-959a-1c3ce3f11ffd
+ - 1
+
+
+
+
+ -
+ 19817
+ 10920
+ 57
+ 20
+
+ -
+ 19847
+ 10930
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - ebc65293-34cc-4b16-9a27-ff8641c3cdc9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 10940
+ 57
+ 20
+
+ -
+ 19847
+ 10950
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - d91211f0-1519-4b19-a7a6-0a568dc137a0
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 10960
+ 57
+ 20
+
+ -
+ 19847
+ 10970
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8b095251-e0a5-424f-b9f7-c19cb3b6b9d4
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 10920
+ 53
+ 20
+
+ -
+ 19932
+ 10930
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 203c85bc-47d8-4fb2-86a0-e11a685461b0
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 10940
+ 53
+ 20
+
+ -
+ 19932
+ 10950
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 362d6e02-8150-448e-b113-f8e4fb29e367
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 10960
+ 53
+ 20
+
+ -
+ 19932
+ 10970
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9c6499e6-36ac-4453-a5a2-0b08a670e6b3
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10696
+ 194
+ 28
+
+ -
+ 19890
+ 10710
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5e08d9d9-c759-474c-8ee4-48501e8d3071
+ - Variable O
+ - O
+ - true
+ - 6bc3c88a-382e-429b-b739-b3c637ec9167
+ - 1
+
+
+
+
+ -
+ 19792
+ 10698
+ 14
+ 24
+
+ -
+ 19800.5
+ 10710
+
+
+
+
+
+
+
+ - Result of expression
+ - 0c5bfe8e-d000-45dd-9075-fdd13ce53ed1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10698
+ 9
+ 24
+
+ -
+ 19979
+ 10710
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 0e8fb521-dae4-4b07-9818-8bad01802859
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 19821
+ 10830
+ 132
+ 64
+
+ -
+ 19868
+ 10862
+
+
+
+
+
+ - Input point
+ - ee11b5e7-2c89-40a3-98c8-e8daa69f139b
+ - Point
+ - Point
+ - false
+ - 8b095251-e0a5-424f-b9f7-c19cb3b6b9d4
+ - 1
+
+
+
+
+ -
+ 19823
+ 10832
+ 30
+ 60
+
+ -
+ 19839.5
+ 10862
+
+
+
+
+
+
+
+ - Point {x} component
+ - 6bc3c88a-382e-429b-b739-b3c637ec9167
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 10832
+ 68
+ 20
+
+ -
+ 19918.5
+ 10842
+
+
+
+
+
+
+
+ - Point {y} component
+ - e2d25018-3ecd-477d-9619-b1a2153f60f0
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 10852
+ 68
+ 20
+
+ -
+ 19918.5
+ 10862
+
+
+
+
+
+
+
+ - Point {z} component
+ - 2630adec-27ac-4a51-8556-7c76d3add3fd
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 10872
+ 68
+ 20
+
+ -
+ 19918.5
+ 10882
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 705c4605-737a-4483-bb5d-30d2abe2372d
+ - Panel
+
+ - false
+ - 0
+ - 0c5bfe8e-d000-45dd-9075-fdd13ce53ed1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 10673
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.71
+ 10673.05
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0c5d082d-5e4e-4261-ab49-9e89b25bdd8b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10610
+ 194
+ 28
+
+ -
+ 19890
+ 10624
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 75c79058-7a7a-4d27-92b5-fb94095db47f
+ - Variable O
+ - O
+ - true
+ - e2d25018-3ecd-477d-9619-b1a2153f60f0
+ - 1
+
+
+
+
+ -
+ 19792
+ 10612
+ 14
+ 24
+
+ -
+ 19800.5
+ 10624
+
+
+
+
+
+
+
+ - Result of expression
+ - 9f2e3219-5468-4c96-83e8-c599debfdcee
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10612
+ 9
+ 24
+
+ -
+ 19979
+ 10624
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - acd7f663-1e08-4750-9935-f932723f55c2
+ - Panel
+
+ - false
+ - 0
+ - 9f2e3219-5468-4c96-83e8-c599debfdcee
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 10584
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.71
+ 10584.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7781dbe1-0868-4c91-9085-d86a30252cd1
+ - Division
+ - Division
+
+
+
+
+ -
+ 19846
+ 10508
+ 82
+ 44
+
+ -
+ 19877
+ 10530
+
+
+
+
+
+ - Item to divide (dividend)
+ - 478a782f-96b8-4671-b877-1d43d053547e
+ - A
+ - A
+ - false
+ - 705c4605-737a-4483-bb5d-30d2abe2372d
+ - 1
+
+
+
+
+ -
+ 19848
+ 10510
+ 14
+ 20
+
+ -
+ 19856.5
+ 10520
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 65f3d1ef-d3da-4331-85bf-3dfa295f8bcc
+ - B
+ - B
+ - false
+ - acd7f663-1e08-4750-9935-f932723f55c2
+ - 1
+
+
+
+
+ -
+ 19848
+ 10530
+ 14
+ 20
+
+ -
+ 19856.5
+ 10540
+
+
+
+
+
+
+
+ - The result of the Division
+ - 21a68447-ed9f-4d13-9799-506afe2e1a2d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 19892
+ 10510
+ 34
+ 40
+
+ -
+ 19910.5
+ 10530
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c95810a3-7ba4-4cf5-9c11-4bb71d47121e
+ - Panel
+
+ - false
+ - 0
+ - e1d4d571-b98d-45a4-84a5-722727a300a1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 10437
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.95
+ 10437.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e2890801-a224-4d61-ad7e-72a44d574e47
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10461
+ 194
+ 28
+
+ -
+ 19890
+ 10475
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ebb85077-a718-4a4a-97ea-1a308d5f8e79
+ - Variable O
+ - O
+ - true
+ - 21a68447-ed9f-4d13-9799-506afe2e1a2d
+ - 1
+
+
+
+
+ -
+ 19792
+ 10463
+ 14
+ 24
+
+ -
+ 19800.5
+ 10475
+
+
+
+
+
+
+
+ - Result of expression
+ - a10c0c1c-af82-4342-a075-8185ce5afc24
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10463
+ 9
+ 24
+
+ -
+ 19979
+ 10475
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e1d4d571-b98d-45a4-84a5-722727a300a1
+ - Relay
+
+ - false
+ - a10c0c1c-af82-4342-a075-8185ce5afc24
+ - 1
+
+
+
+
+ -
+ 19867
+ 10386
+ 40
+ 16
+
+ -
+ 19887
+ 10394
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 043653af-cbde-4517-b422-be6e5f87936f
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 19846
+ 10323
+ 82
+ 44
+
+ -
+ 19877
+ 10345
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 7cf03f57-d314-45d9-90d1-c86be18fde5e
+ - A
+ - A
+ - true
+ - acd7f663-1e08-4750-9935-f932723f55c2
+ - 1
+
+
+
+
+ -
+ 19848
+ 10325
+ 14
+ 20
+
+ -
+ 19856.5
+ 10335
+
+
+
+
+
+
+
+ - Second item for addition
+ - a1e6dfc9-cf55-48b3-84ea-b8d56f29cc20
+ - B
+ - B
+ - true
+ - 705c4605-737a-4483-bb5d-30d2abe2372d
+ - 1
+
+
+
+
+ -
+ 19848
+ 10345
+ 14
+ 20
+
+ -
+ 19856.5
+ 10355
+
+
+
+
+
+
+
+ - Result of addition
+ - 68fdc599-1953-48d7-bc8c-5932473a4523
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 19892
+ 10325
+ 34
+ 40
+
+ -
+ 19910.5
+ 10345
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 07841301-4cf3-4a66-85b1-e5ec916a2e39
+ - Division
+ - Division
+
+
+
+
+ -
+ 19846
+ 10173
+ 82
+ 44
+
+ -
+ 19877
+ 10195
+
+
+
+
+
+ - Item to divide (dividend)
+ - 90209013-ae0b-4b1b-ac60-9411fccdd32f
+ - A
+ - A
+ - false
+ - cc6f43b8-5f43-4c3a-bcd8-21d40ab07b22
+ - 1
+
+
+
+
+ -
+ 19848
+ 10175
+ 14
+ 20
+
+ -
+ 19856.5
+ 10185
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 8eb40d02-4d54-42ba-a5fb-6debbc6ab088
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 19848
+ 10195
+ 14
+ 20
+
+ -
+ 19856.5
+ 10205
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - cfa73b73-53d3-4030-9b9d-ad94a95fff13
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 19892
+ 10175
+ 34
+ 40
+
+ -
+ 19910.5
+ 10195
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 71bafbfa-bbd2-4731-b092-360d68dd1f89
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10125
+ 194
+ 28
+
+ -
+ 19890
+ 10139
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4bfddfe4-4374-4950-8e2c-fc6709025beb
+ - Variable O
+ - O
+ - true
+ - cfa73b73-53d3-4030-9b9d-ad94a95fff13
+ - 1
+
+
+
+
+ -
+ 19792
+ 10127
+ 14
+ 24
+
+ -
+ 19800.5
+ 10139
+
+
+
+
+
+
+
+ - Result of expression
+ - 41723857-11c9-41ca-92dc-4ff4746be3f6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10127
+ 9
+ 24
+
+ -
+ 19979
+ 10139
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1b6c1ac1-b906-47e5-b05f-0d9dffd28de2
+ - Panel
+
+ - false
+ - 0
+ - 41723857-11c9-41ca-92dc-4ff4746be3f6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 10100
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.71
+ 10100.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cc6f43b8-5f43-4c3a-bcd8-21d40ab07b22
+ - Panel
+
+ - false
+ - 0
+ - 8bba3f69-b244-4947-9321-f43d0b8f2a3c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 10252
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.71
+ 10252.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ae074b5b-3e33-4c75-b243-1040c562808e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10276
+ 194
+ 28
+
+ -
+ 19890
+ 10290
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7397c8cb-0a77-4a1d-bb6b-c5455604716a
+ - Variable O
+ - O
+ - true
+ - 68fdc599-1953-48d7-bc8c-5932473a4523
+ - 1
+
+
+
+
+ -
+ 19792
+ 10278
+ 14
+ 24
+
+ -
+ 19800.5
+ 10290
+
+
+
+
+
+
+
+ - Result of expression
+ - 8bba3f69-b244-4947-9321-f43d0b8f2a3c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10278
+ 9
+ 24
+
+ -
+ 19979
+ 10290
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 169030d8-0ef3-4395-bcc3-cbe9bf9fe74c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 19810
+ 10002
+ 154
+ 64
+
+ -
+ 19894
+ 10034
+
+
+
+
+
+ - Base geometry
+ - 8b0adac0-e9d1-4a8f-8fa2-f07ff2683050
+ - Geometry
+ - Geometry
+ - true
+ - 3d3e34c6-181a-467b-8cad-0184b338d3ab
+ - 1
+
+
+
+
+ -
+ 19812
+ 10004
+ 67
+ 20
+
+ -
+ 19855
+ 10014
+
+
+
+
+
+
+
+ - Center of scaling
+ - a021bfdd-7da4-47bd-bcd6-65c83fb05f78
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 19812
+ 10024
+ 67
+ 20
+
+ -
+ 19855
+ 10034
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 94c66d7e-f808-4875-a368-7d8361e1a13d
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 1b6c1ac1-b906-47e5-b05f-0d9dffd28de2
+ - 1
+
+
+
+
+ -
+ 19812
+ 10044
+ 67
+ 20
+
+ -
+ 19855
+ 10054
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 9f710a5a-3a74-4dc5-9baf-423298a69c56
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19909
+ 10004
+ 53
+ 30
+
+ -
+ 19937
+ 10019
+
+
+
+
+
+
+
+ - Transformation data
+ - f2c6e0f5-5131-4f3d-811f-258ecf2e2405
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19909
+ 10034
+ 53
+ 30
+
+ -
+ 19937
+ 10049
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - Curve
+ - Curve
+ - false
+ - 9f710a5a-3a74-4dc5-9baf-423298a69c56
+ - 1
+
+
+
+
+ -
+ 19866
+ 9406
+ 50
+ 24
+
+ -
+ 19891.69
+ 9418.472
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a7b120dd-93ab-4c05-b07c-8cca78678511
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 10783
+ 194
+ 28
+
+ -
+ 19890
+ 10797
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 31008d0d-9293-4681-86bf-350fd3330340
+ - Variable O
+ - O
+ - true
+ - 2630adec-27ac-4a51-8556-7c76d3add3fd
+ - 1
+
+
+
+
+ -
+ 19792
+ 10785
+ 14
+ 24
+
+ -
+ 19800.5
+ 10797
+
+
+
+
+
+
+
+ - Result of expression
+ - 3be034f8-43ed-414b-a7b9-e70eeea623a6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 10785
+ 9
+ 24
+
+ -
+ 19979
+ 10797
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b6942b45-28f1-415e-b716-c145bc9151f8
+ - Panel
+
+ - false
+ - 0
+ - 3be034f8-43ed-414b-a7b9-e70eeea623a6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19813
+ 10758
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19813.58
+ 10758.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4756b165-e13c-4efa-a9f4-49cfee960c09
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 19815
+ 9792
+ 144
+ 64
+
+ -
+ 19889
+ 9824
+
+
+
+
+
+ - Curve to evaluate
+ - 0b3e09e1-68d2-4d94-9693-5fb495c6e390
+ - Curve
+ - Curve
+ - false
+ - 9f710a5a-3a74-4dc5-9baf-423298a69c56
+ - 1
+
+
+
+
+ -
+ 19817
+ 9794
+ 57
+ 20
+
+ -
+ 19847
+ 9804
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - afb1de04-420f-4a0b-b529-002058a9db53
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 9814
+ 57
+ 20
+
+ -
+ 19847
+ 9824
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 3fca856c-76cf-44d5-bb6e-206b321629b6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 9834
+ 57
+ 20
+
+ -
+ 19847
+ 9844
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - af80d21b-1f5e-4947-a03c-640b82a69b21
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 9794
+ 53
+ 20
+
+ -
+ 19932
+ 9804
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - dbd983bb-b7e3-4169-8147-49e1ce657bbe
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 9814
+ 53
+ 20
+
+ -
+ 19932
+ 9824
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 78a3975b-e78d-4378-abd7-ff78a6dfdb56
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 9834
+ 53
+ 20
+
+ -
+ 19932
+ 9844
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2cd8d8bc-a40f-437b-b31c-558faba36c20
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 9575
+ 194
+ 28
+
+ -
+ 19890
+ 9589
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 11b870fb-d218-4095-91f2-09e78cdb9954
+ - Variable O
+ - O
+ - true
+ - 7cdda9cf-2811-4c39-a7c2-777cb23f9fe7
+ - 1
+
+
+
+
+ -
+ 19792
+ 9577
+ 14
+ 24
+
+ -
+ 19800.5
+ 9589
+
+
+
+
+
+
+
+ - Result of expression
+ - 5337a317-0417-4e03-afbc-b7b1caad644b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 9577
+ 9
+ 24
+
+ -
+ 19979
+ 9589
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - ae8f0f43-e96e-487a-8de1-2180383d09ef
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 19821
+ 9709
+ 132
+ 64
+
+ -
+ 19868
+ 9741
+
+
+
+
+
+ - Input point
+ - edb86a78-de29-4615-8f52-a210df08d8b2
+ - Point
+ - Point
+ - false
+ - af80d21b-1f5e-4947-a03c-640b82a69b21
+ - 1
+
+
+
+
+ -
+ 19823
+ 9711
+ 30
+ 60
+
+ -
+ 19839.5
+ 9741
+
+
+
+
+
+
+
+ - Point {x} component
+ - 7cdda9cf-2811-4c39-a7c2-777cb23f9fe7
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 9711
+ 68
+ 20
+
+ -
+ 19918.5
+ 9721
+
+
+
+
+
+
+
+ - Point {y} component
+ - 77ca28f7-4d10-4073-911f-30e97af05443
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 9731
+ 68
+ 20
+
+ -
+ 19918.5
+ 9741
+
+
+
+
+
+
+
+ - Point {z} component
+ - 907dd24c-5c4d-4b24-8432-418c3f3d5536
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 19883
+ 9751
+ 68
+ 20
+
+ -
+ 19918.5
+ 9761
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e80ad1f6-d186-46ea-b4ca-5a18de688c31
+ - Panel
+
+ - false
+ - 0
+ - 5337a317-0417-4e03-afbc-b7b1caad644b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 9546
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.96
+ 9546.394
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7f41b441-96a4-4dd8-8529-ef17e9883be8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 9489
+ 194
+ 28
+
+ -
+ 19890
+ 9503
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 568ff6f3-6344-4e1a-b0cd-ebf47b687d26
+ - Variable O
+ - O
+ - true
+ - 77ca28f7-4d10-4073-911f-30e97af05443
+ - 1
+
+
+
+
+ -
+ 19792
+ 9491
+ 14
+ 24
+
+ -
+ 19800.5
+ 9503
+
+
+
+
+
+
+
+ - Result of expression
+ - 867d25c4-5ac7-4997-a84d-84f960d07280
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 9491
+ 9
+ 24
+
+ -
+ 19979
+ 9503
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c446016e-395b-49f7-93f2-d70abc692b11
+ - Panel
+
+ - false
+ - 0
+ - 867d25c4-5ac7-4997-a84d-84f960d07280
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 9460
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.97
+ 9460.763
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7282fb8c-f882-4173-951c-c2dc9d0cfe9b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 9661
+ 194
+ 28
+
+ -
+ 19890
+ 9675
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 03ea6371-22b8-4d0a-9aaf-e77b334ba30e
+ - Variable O
+ - O
+ - true
+ - 907dd24c-5c4d-4b24-8432-418c3f3d5536
+ - 1
+
+
+
+
+ -
+ 19792
+ 9663
+ 14
+ 24
+
+ -
+ 19800.5
+ 9675
+
+
+
+
+
+
+
+ - Result of expression
+ - 76060779-0821-4cba-b13a-cb37cf674375
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 9663
+ 9
+ 24
+
+ -
+ 19979
+ 9675
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 12a17ae0-1bea-4760-a22a-9107fe49a5bf
+ - Panel
+
+ - false
+ - 0
+ - 76060779-0821-4cba-b13a-cb37cf674375
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19812
+ 9632
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19812.71
+ 9632.603
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2d7356db-3b2b-4dda-a323-e9139f48c65b
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 19704
+ 13987
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 19704.37
+ 13987.06
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e15b337c-36b0-48cf-8b9d-8ab3c5ba06f2
+ - Panel
+
+ - false
+ - 0
+ - 17b689dc-6c83-495b-8f68-9b390a532d95
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19724
+ 11996
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 19724.9
+ 11996.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e28a1f4c-0160-400f-816a-427e4b6eb69c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 12283
+ 194
+ 28
+
+ -
+ 19890
+ 12297
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3a314534-26be-4daa-ad56-b7c3a1342c6a
+ - Variable O
+ - O
+ - true
+ - 4d442fde-c9e8-4f99-b4ac-7861aec8dcdf
+ - 1
+
+
+
+
+ -
+ 19792
+ 12285
+ 14
+ 24
+
+ -
+ 19800.5
+ 12297
+
+
+
+
+
+
+
+ - Result of expression
+ - 17b689dc-6c83-495b-8f68-9b390a532d95
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 12285
+ 9
+ 24
+
+ -
+ 19979
+ 12297
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 19876
+ 14396
+ 50
+ 24
+
+ -
+ 19901.67
+ 14408.7
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 8bce7019-294e-4431-acae-9cf3b83d6cbf
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 19718
+ 12565
+ 160
+ 224
+
+ -
+ 19786
+ 12677
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - b7a08287-7813-4e05-bf96-b6b19345bee7
+ - true
+ - Curves
+ - Curves
+ - false
+ - 8bb21724-b5ab-4c5d-8522-0036b0c2d655
+ - 1
+
+
+
+
+ -
+ 19720
+ 12567
+ 51
+ 27
+
+ -
+ 19747
+ 12580.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 84e25cf9-5676-4166-836b-a086d216eac7
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 1c705af6-bcc8-4ed6-93a5-75a5492152e1
+ - 1
+
+
+
+
+ -
+ 19720
+ 12594
+ 51
+ 28
+
+ -
+ 19747
+ 12608.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - b1a5a1ac-77d7-49f2-9a43-243c7b67c04d
+ - true
+ - Values
+ - Values
+ - false
+ - a67158d0-bd57-4cc1-9d6c-2761dbb52beb
+ - 1
+
+
+
+
+ -
+ 19720
+ 12622
+ 51
+ 27
+
+ -
+ 19747
+ 12635.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 9dc7d6c5-a323-44d4-8794-725b585a413d
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 19720
+ 12649
+ 51
+ 28
+
+ -
+ 19747
+ 12663.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 35d5048b-24fa-4e18-8c3b-f9892e533dd3
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 19720
+ 12677
+ 51
+ 27
+
+ -
+ 19747
+ 12690.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 80a31cc6-65c1-40b0-be68-9713793b5de4
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 19720
+ 12704
+ 51
+ 28
+
+ -
+ 19747
+ 12718.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - b6abd887-c29a-43af-849c-69ed07ac411d
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 19720
+ 12732
+ 51
+ 27
+
+ -
+ 19747
+ 12745.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - ceda0ea7-4653-42fc-8d4f-3be37d9d2ce2
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 19720
+ 12759
+ 51
+ 28
+
+ -
+ 19747
+ 12773.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 7920c98f-597b-483b-b53d-edfc17a6e253
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12567
+ 75
+ 20
+
+ -
+ 19840
+ 12577
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - e2f66310-349c-4e5f-862f-d0fb899f5a6c
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12587
+ 75
+ 20
+
+ -
+ 19840
+ 12597
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 0992d820-e43d-43f2-addf-07cf4ad26709
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12607
+ 75
+ 20
+
+ -
+ 19840
+ 12617
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 1be30150-9798-428e-90a6-e4bb1c9ccde6
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12627
+ 75
+ 20
+
+ -
+ 19840
+ 12637
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - a360cee3-40a4-4260-a485-e8949905719d
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12647
+ 75
+ 20
+
+ -
+ 19840
+ 12657
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 7c7e84a7-7ea2-43bb-8c87-39f735231cd7
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12667
+ 75
+ 20
+
+ -
+ 19840
+ 12677
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 56c0f5d3-7009-4a72-8a21-c9159f5cea1c
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12687
+ 75
+ 20
+
+ -
+ 19840
+ 12697
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 9ad25265-a5cc-4408-b5ad-dc46e1b59a6e
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12707
+ 75
+ 20
+
+ -
+ 19840
+ 12717
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - aa38638f-6796-4bbf-bcdd-71709e47adf3
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12727
+ 75
+ 20
+
+ -
+ 19840
+ 12737
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - dfac6aea-f4f7-4062-81a0-512a24a735e6
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12747
+ 75
+ 20
+
+ -
+ 19840
+ 12757
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 0e958900-5727-4bbf-b41f-6e50bb26cb38
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 19801
+ 12767
+ 75
+ 20
+
+ -
+ 19840
+ 12777
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 15acfcdb-0966-49ce-b323-67a6586ecc0b
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 19839
+ 12990
+ 96
+ 44
+
+ -
+ 19889
+ 13012
+
+
+
+
+
+ - Curve to evaluate
+ - fa64da3b-3349-4c6d-a224-c6c87c463945
+ - Curve
+ - Curve
+ - false
+ - 8bb21724-b5ab-4c5d-8522-0036b0c2d655
+ - 1
+
+
+
+
+ -
+ 19841
+ 12992
+ 33
+ 40
+
+ -
+ 19859
+ 13012
+
+
+
+
+
+
+
+ - Curve start point
+ - 3d2978fc-62c6-4cb1-ab23-81bcac3d72e9
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 12992
+ 29
+ 20
+
+ -
+ 19920
+ 13002
+
+
+
+
+
+
+
+ - Curve end point
+ - 8cc68191-5c2c-41f9-bcf4-a7bb613c6b82
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 19904
+ 13012
+ 29
+ 20
+
+ -
+ 19920
+ 13022
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - ba3d57c5-1de1-431f-9ca1-0ec66e14ac98
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 19829
+ 12862
+ 126
+ 84
+
+ -
+ 19887
+ 12904
+
+
+
+
+
+ - Rectangle base plane
+ - 96b2d8cf-83f9-4e22-9561-aa5f589a6f93
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 19831
+ 12864
+ 41
+ 20
+
+ -
+ 19853
+ 12874
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 05c67ed8-c822-4ea6-ac23-05adc26d9a7a
+ - Point A
+ - Point A
+ - false
+ - 3d2978fc-62c6-4cb1-ab23-81bcac3d72e9
+ - 1
+
+
+
+
+ -
+ 19831
+ 12884
+ 41
+ 20
+
+ -
+ 19853
+ 12894
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 9533f4ce-b8de-4e01-98c8-b441414bf3ef
+ - Point B
+ - Point B
+ - false
+ - 8cc68191-5c2c-41f9-bcf4-a7bb613c6b82
+ - 1
+
+
+
+
+ -
+ 19831
+ 12904
+ 41
+ 20
+
+ -
+ 19853
+ 12914
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 653f9f30-14d7-41a1-b39b-ab695d480b29
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 19831
+ 12924
+ 41
+ 20
+
+ -
+ 19853
+ 12934
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 1c705af6-bcc8-4ed6-93a5-75a5492152e1
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 19902
+ 12864
+ 51
+ 40
+
+ -
+ 19929
+ 12884
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - ab014019-a051-46b4-b49e-1c2df62f3397
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19902
+ 12904
+ 51
+ 40
+
+ -
+ 19929
+ 12924
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - a20beb6d-88ec-44e4-900b-86e895f1d955
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 19878
+ 12685
+ 126
+ 104
+
+ -
+ 19945
+ 12737
+
+
+
+
+
+ - External curve as a graph
+ - c6e83ccd-f124-4631-b292-e3858aa3d02f
+ - Curve
+ - Curve
+ - false
+ - 8bb21724-b5ab-4c5d-8522-0036b0c2d655
+ - 1
+
+
+
+
+ -
+ 19880
+ 12687
+ 50
+ 20
+
+ -
+ 19906.5
+ 12697
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - e73bd5e2-2790-45a7-9e95-e37f8072c062
+ - Boundary
+ - Boundary
+ - true
+ - 1c705af6-bcc8-4ed6-93a5-75a5492152e1
+ - 1
+
+
+
+
+ -
+ 19880
+ 12707
+ 50
+ 20
+
+ -
+ 19906.5
+ 12717
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - a9d25aa0-24f9-478e-8bd8-3652a4b9f1d2
+ - Numbers
+ - Numbers
+ - false
+ - a67158d0-bd57-4cc1-9d6c-2761dbb52beb
+ - 1
+
+
+
+
+ -
+ 19880
+ 12727
+ 50
+ 20
+
+ -
+ 19906.5
+ 12737
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 360d81d5-088a-4aaf-b4ed-2ccefd9b6778
+ - Input
+ - Input
+ - true
+ - e651efcf-8925-44d5-8b61-3d494105bf2a
+ - 1
+
+
+
+
+ -
+ 19880
+ 12747
+ 50
+ 20
+
+ -
+ 19906.5
+ 12757
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 20a7efc6-c912-4adf-931d-52677237e590
+ - Output
+ - Output
+ - true
+ - e651efcf-8925-44d5-8b61-3d494105bf2a
+ - 1
+
+
+
+
+ -
+ 19880
+ 12767
+ 50
+ 20
+
+ -
+ 19906.5
+ 12777
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 13abfc56-e59b-4434-bfcd-a516552839fd
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 19960
+ 12687
+ 42
+ 100
+
+ -
+ 19982.5
+ 12737
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - ef6b993d-c95e-4377-b3fd-234b7474bff7
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 19853
+ 12482
+ 89
+ 64
+
+ -
+ 19898
+ 12514
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - cdff3e8e-8916-4277-abbf-35ceba4acafd
+ - Gate
+ - Gate
+ - false
+ - 57c04315-8443-4211-b8a3-ffe22027dbed
+ - 1
+
+
+
+
+ -
+ 19855
+ 12484
+ 28
+ 20
+
+ -
+ 19870.5
+ 12494
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 036370a1-cb24-4d22-af3a-e984cad4c83a
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 7920c98f-597b-483b-b53d-edfc17a6e253
+ - 1
+
+
+
+
+ -
+ 19855
+ 12504
+ 28
+ 20
+
+ -
+ 19870.5
+ 12514
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 9e0eccb7-cce6-41a2-ad5f-a12d6d5a37a8
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 13abfc56-e59b-4434-bfcd-a516552839fd
+ - 1
+
+
+
+
+ -
+ 19855
+ 12524
+ 28
+ 20
+
+ -
+ 19870.5
+ 12534
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 23210470-a829-432f-9104-72180222a72d
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 19913
+ 12484
+ 27
+ 60
+
+ -
+ 19928
+ 12514
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 13009076-acb9-4d71-becc-81d2f2ce38a6
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19829
+ 12400
+ 150
+ 20
+
+ -
+ 19829.33
+ 12400.99
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ad3f6d83-6e8c-431f-a4e3-21baf669d1cd
+ - Panel
+
+ - false
+ - 1
+ - c3a66e4f-0d28-4db9-9fa7-91dd4ec50f2c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19803
+ 13183
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 19803.4
+ 13183.26
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 909a2370-4806-4bd1-9748-07f578e0d30d
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 19828
+ 13129
+ 122
+ 28
+
+ -
+ 19892
+ 13143
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2a9bc31e-ee89-4e39-9f1a-1374f89c8e68
+ - Numbers
+ - Numbers
+ - false
+ - a67158d0-bd57-4cc1-9d6c-2761dbb52beb
+ - 1
+
+
+
+
+ -
+ 19830
+ 13131
+ 47
+ 24
+
+ -
+ 19855
+ 13143
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - e651efcf-8925-44d5-8b61-3d494105bf2a
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 19907
+ 13131
+ 41
+ 24
+
+ -
+ 19929
+ 13143
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b8fb7f0e-c7dc-4787-b511-ebfbf7a4c32a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19790
+ 13543
+ 194
+ 28
+
+ -
+ 19890
+ 13557
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8ec6fe13-9c92-4aeb-a98b-8b6360f2d0b9
+ - true
+ - Variable O
+ - O
+ - true
+ - a67158d0-bd57-4cc1-9d6c-2761dbb52beb
+ - 1
+
+
+
+
+ -
+ 19792
+ 13545
+ 14
+ 24
+
+ -
+ 19800.5
+ 13557
+
+
+
+
+
+
+
+ - Result of expression
+ - c3a66e4f-0d28-4db9-9fa7-91dd4ec50f2c
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 19973
+ 13545
+ 9
+ 24
+
+ -
+ 19979
+ 13557
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 805743f8-f4b5-4be8-b97c-3562acfda600
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 19704
+ 13775
+ 367
+ 28
+
+ -
+ 19890
+ 13789
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e22862dd-0996-4650-a7a0-53ae92c767b5
+ - Variable O
+ - O
+ - true
+ - 7f960f63-5001-4e99-bded-b99fdd564f68
+ - 1
+
+
+
+
+ -
+ 19706
+ 13777
+ 14
+ 24
+
+ -
+ 19714.5
+ 13789
+
+
+
+
+
+
+
+ - Result of expression
+ - f20dbaaa-dfa1-4745-a19a-793227df0baf
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 20060
+ 13777
+ 9
+ 24
+
+ -
+ 20066
+ 13789
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ac135457-d344-4adb-8f93-f9cd86c093ea
+ - Panel
+
+ - false
+ - 0
+ - f20dbaaa-dfa1-4745-a19a-793227df0baf
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 19803
+ 13720
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19803.54
+ 13720.13
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - 1
+ - 8b42ee2f-db97-4077-aad7-aa4be617f8d2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - b6d93c84-f99c-40cf-aa70-8172f4e56afe
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 19810
+ 9917
+ 154
+ 64
+
+ -
+ 19894
+ 9949
+
+
+
+
+
+ - Base geometry
+ - 476358a0-4e67-428f-b666-abaecdc9f1b4
+ - Geometry
+ - Geometry
+ - true
+ - 8e51e896-77f9-4f8e-9163-e0c326cb830d
+ - 1
+
+
+
+
+ -
+ 19812
+ 9919
+ 67
+ 20
+
+ -
+ 19855
+ 9929
+
+
+
+
+
+
+
+ - Center of scaling
+ - bb2464d6-de45-4325-9006-a1d33f4b1a9d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 19812
+ 9939
+ 67
+ 20
+
+ -
+ 19855
+ 9949
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 7c654ea2-8860-4639-9bc3-ef41eca29490
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 1b6c1ac1-b906-47e5-b05f-0d9dffd28de2
+ - 1
+
+
+
+
+ -
+ 19812
+ 9959
+ 67
+ 20
+
+ -
+ 19855
+ 9969
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 73aea5a2-f7ba-4417-825f-d5c4faa98321
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19909
+ 9919
+ 53
+ 30
+
+ -
+ 19937
+ 9934
+
+
+
+
+
+
+
+ - Transformation data
+ - 2a4f9156-02b4-4d58-a11d-7562c70b805c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19909
+ 9949
+ 53
+ 30
+
+ -
+ 19937
+ 9964
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 0cae36b2-f309-4924-933e-5864c8f0ef06
+ - Point
+ - Point
+ - false
+ - 73aea5a2-f7ba-4417-825f-d5c4faa98321
+ - 1
+
+
+
+
+ -
+ 19867
+ 9884
+ 50
+ 24
+
+ -
+ 19892.69
+ 9896.644
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 25d5288d-d4fd-4bd2-b9ae-3af995eb6d32
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 19815
+ 9117
+ 138
+ 44
+
+ -
+ 19883
+ 9139
+
+
+
+
+
+ - Base geometry
+ - a2a02010-5b5e-4c3e-b7bb-c9a15edfffab
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - 1
+
+
+
+
+ -
+ 19817
+ 9119
+ 51
+ 20
+
+ -
+ 19844
+ 9129
+
+
+
+
+
+
+
+ - Mirror plane
+ - 3b1595b4-b7db-41ad-ae73-0c9b1578fa21
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 19817
+ 9139
+ 51
+ 20
+
+ -
+ 19844
+ 9149
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 184f8eaf-b09a-4512-883f-29c2ae607212
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19898
+ 9119
+ 53
+ 20
+
+ -
+ 19926
+ 9129
+
+
+
+
+
+
+
+ - Transformation data
+ - fb3a03ed-8f67-4796-88a0-d34f8f67f516
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19898
+ 9139
+ 53
+ 20
+
+ -
+ 19926
+ 9149
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d8bb3905-0d1b-4e9c-b51b-34c6c1b8f824
+ - Curve
+ - Curve
+ - false
+ - 35901fda-4e60-460e-81fd-58f4d375b889
+ - 1
+
+
+
+
+ -
+ 19866
+ 9015
+ 50
+ 24
+
+ -
+ 19891.94
+ 9027.651
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8bb21724-b5ab-4c5d-8522-0036b0c2d655
+ - Relay
+
+ - false
+ - 12c3ff7f-c7a5-4977-87fd-4c6ce7172c00
+ - 1
+
+
+
+
+ -
+ 19867
+ 13061
+ 40
+ 16
+
+ -
+ 19887
+ 13069
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e8e405e1-9fd7-4b2f-8492-42e4914a5add
+ - Curve
+ - Curve
+ - false
+ - 791bd61f-9221-4811-b56f-f55006c9145e
+ - 1
+
+
+
+
+ -
+ 19313
+ 13412
+ 50
+ 24
+
+ -
+ 19338.95
+ 13424.66
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 12c3ff7f-c7a5-4977-87fd-4c6ce7172c00
+ - Curve
+ - Curve
+ - false
+ - 0805e3ea-ca81-476f-8f09-75ffea26f153
+ - 1
+
+
+
+
+ -
+ 19314
+ 13130
+ 50
+ 24
+
+ -
+ 19339.05
+ 13142.99
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 6eb39311-76bc-4b52-b379-59dce48dc975
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 19257
+ 13165
+ 154
+ 64
+
+ -
+ 19341
+ 13197
+
+
+
+
+
+ - Base geometry
+ - 375cd25b-32ec-450e-a646-f6eb2204862e
+ - Geometry
+ - Geometry
+ - true
+ - e8e405e1-9fd7-4b2f-8492-42e4914a5add
+ - 1
+
+
+
+
+ -
+ 19259
+ 13167
+ 67
+ 20
+
+ -
+ 19302
+ 13177
+
+
+
+
+
+
+
+ - Center of scaling
+ - 98a041a7-1e39-4f11-81fd-e8e598e2a0e4
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 19259
+ 13187
+ 67
+ 20
+
+ -
+ 19302
+ 13197
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 0ed445b8-2db3-43b5-8d9b-694a2750f7bb
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 19259
+ 13207
+ 67
+ 20
+
+ -
+ 19302
+ 13217
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 0805e3ea-ca81-476f-8f09-75ffea26f153
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19356
+ 13167
+ 53
+ 30
+
+ -
+ 19384
+ 13182
+
+
+
+
+
+
+
+ - Transformation data
+ - a7cb9079-9f92-409e-90e5-115f25528339
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19356
+ 13197
+ 53
+ 30
+
+ -
+ 19384
+ 13212
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e8e405e1-9fd7-4b2f-8492-42e4914a5add
+ - 12c3ff7f-c7a5-4977-87fd-4c6ce7172c00
+ - 6eb39311-76bc-4b52-b379-59dce48dc975
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 13a250a1-c6e1-4763-b3f9-f7ea33215370
+ - 9bd939f5-067b-4f26-9c7e-60f0adb96003
+ - b922c8e6-1417-4a8c-b2b0-2708e9c7705e
+ - 2f3d75ed-fdc1-4bb4-8695-51c60c7bbe54
+ - 2838bbe3-f818-4f76-ae8b-6a38a11cfbd8
+ - 9
+ - 4a06d9c0-671b-49ff-ba68-a5f5191b1b9e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - a0f9dc65-f5a3-4883-aeed-a4ec58d91bb1
+ - Move
+ - Move
+
+
+
+
+ -
+ 19815
+ 9053
+ 138
+ 44
+
+ -
+ 19883
+ 9075
+
+
+
+
+
+ - Base geometry
+ - 4ca0a048-328b-4807-936c-3f6aeacd3454
+ - Geometry
+ - Geometry
+ - true
+ - d34026ca-4b70-4411-82cf-8d3ed999249a
+ - 1
+
+
+
+
+ -
+ 19817
+ 9055
+ 51
+ 20
+
+ -
+ 19844
+ 9065
+
+
+
+
+
+
+
+ - Translation vector
+ - ae7956ac-24cd-4cea-95ce-cf0cfba344b0
+ - Motion
+ - Motion
+ - false
+ - e24f66c2-f6ca-429a-95a4-deeccf7adc0a
+ - 1
+
+
+
+
+ -
+ 19817
+ 9075
+ 51
+ 20
+
+ -
+ 19844
+ 9085
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 35901fda-4e60-460e-81fd-58f4d375b889
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19898
+ 9055
+ 53
+ 20
+
+ -
+ 19926
+ 9065
+
+
+
+
+
+
+
+ - Transformation data
+ - fc1c27c4-9b3d-44ee-b46a-bc851e08693e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19898
+ 9075
+ 53
+ 20
+
+ -
+ 19926
+ 9085
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 13a250a1-c6e1-4763-b3f9-f7ea33215370
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 19214
+ 13356
+ 250
+ 20
+
+ -
+ 19214.35
+ 13356.08
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9bd939f5-067b-4f26-9c7e-60f0adb96003
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 19271
+ 13255
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19271.51
+ 13255.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b922c8e6-1417-4a8c-b2b0-2708e9c7705e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 19314
+ 13087
+ 50
+ 24
+
+ -
+ 19339.05
+ 13099.99
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2f3d75ed-fdc1-4bb4-8695-51c60c7bbe54
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 19316
+ 13544
+ 50
+ 24
+
+ -
+ 19341
+ 13556.83
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fa30b30f-6f7c-4ed6-acde-9dbbcaf70ed6
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 19673
+ 13967
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19673.92
+ 13967.59
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2d143ea8-addf-4975-91d4-146b73c06ec6
+ - Panel
+
+ - false
+ - 0
+ - 99f0c403-5c3c-4e81-b678-a8b4ee8435d6
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 19674
+ 14091
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 19674.23
+ 14091.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - a460b115-0803-4eaa-b18c-957c088fe725
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 19766
+ 14232
+ 251
+ 20
+
+ -
+ 19766.83
+ 14232.95
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f310dda7-219b-4afc-b63d-f450feb7284e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 19674
+ 14213
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 19674.67
+ 14213.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 32499351-f670-4091-8e63-39ea27a7ab45
+ - Expression
+
+
+
+
+
+ -
+ 19855
+ 14339
+ 79
+ 28
+
+ -
+ 19897
+ 14353
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bcea45f1-482c-42ce-937e-213db9a291f6
+ - Variable X
+ - X
+ - true
+ - bce92ca7-1d60-4e27-af26-79f0474f4ef5
+ - 1
+
+
+
+
+ -
+ 19857
+ 14341
+ 14
+ 24
+
+ -
+ 19865.5
+ 14353
+
+
+
+
+
+
+
+ - Result of expression
+ - 6e66f57e-38ab-4ebe-ba95-af421b37b6af
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 19923
+ 14341
+ 9
+ 24
+
+ -
+ 19929
+ 14353
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - dedfe789-29c6-4593-af82-02f033f7153d
+ - Point
+ - Point
+ - false
+ - 0ad98407-14cf-4326-a90c-2a3a2ff3f69e
+ - 1
+
+
+
+
+ -
+ 19889
+ 11866
+ 50
+ 24
+
+ -
+ 19914.65
+ 11878.67
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0ad98407-14cf-4326-a90c-2a3a2ff3f69e
+ - Relay
+
+ - false
+ - 4d442fde-c9e8-4f99-b4ac-7861aec8dcdf
+ - 1
+
+
+
+
+ -
+ 19891
+ 11913
+ 40
+ 16
+
+ -
+ 19911
+ 11921
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8e51e896-77f9-4f8e-9163-e0c326cb830d
+ - Relay
+
+ - false
+ - 2af09f0e-89b8-4f0b-b64e-5be5ab23f10f
+ - 1
+
+
+
+
+ -
+ 19891
+ 11690
+ 40
+ 16
+
+ -
+ 19911
+ 11698
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - b6c87281-0865-4ce1-ab93-3245995234b2
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 19834
+ 11726
+ 154
+ 64
+
+ -
+ 19918
+ 11758
+
+
+
+
+
+ - Base geometry
+ - aa7f6cef-e39c-4542-aa03-435a33b749cc
+ - Geometry
+ - Geometry
+ - true
+ - dedfe789-29c6-4593-af82-02f033f7153d
+ - 1
+
+
+
+
+ -
+ 19836
+ 11728
+ 67
+ 20
+
+ -
+ 19879
+ 11738
+
+
+
+
+
+
+
+ - Center of scaling
+ - deb77880-cb33-468b-af28-623b4a78f45c
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 19836
+ 11748
+ 67
+ 20
+
+ -
+ 19879
+ 11758
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 596dea0b-9622-4ce3-ba03-01e99468fd2b
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9a0f8949-a570-4642-ba43-d12a64260252
+ - 1
+
+
+
+
+ -
+ 19836
+ 11768
+ 67
+ 20
+
+ -
+ 19879
+ 11778
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 2af09f0e-89b8-4f0b-b64e-5be5ab23f10f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 19933
+ 11728
+ 53
+ 30
+
+ -
+ 19961
+ 11743
+
+
+
+
+
+
+
+ - Transformation data
+ - 3da0f8bb-62b8-46de-b928-0c0d34443907
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 19933
+ 11758
+ 53
+ 30
+
+ -
+ 19961
+ 11773
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 9a0f8949-a570-4642-ba43-d12a64260252
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 19794
+ 11811
+ 250
+ 20
+
+ -
+ 19794.43
+ 11811.03
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dedfe789-29c6-4593-af82-02f033f7153d
+ - 1
+ - 57321ef9-d766-4c26-936f-87297eda8e4c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 37c75f14-1e75-4f2c-b59c-513984ea2ab4
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 64.0
+
+
+
+
+ -
+ 2771
+ 13035
+ 250
+ 20
+
+ -
+ 2771.129
+ 13035.72
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4b7e6a70-4ebf-47c4-b022-f9b83dae546f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00000331207
+
+
+
+
+ -
+ 2773
+ 12798
+ 270
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2773.785
+ 12798.53
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8381622f-1691-48ed-8659-5a932a2a725a
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 2877
+ 12759
+ 40
+ 16
+
+ -
+ 2897
+ 12767
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5b5706ff-d5d7-458b-879b-2db4552c3e70
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 3896
+ 13288
+ 40
+ 16
+
+ -
+ 3916
+ 13296
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bd44744c-be8e-4cf5-ae1e-a647bfc0304f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 3844
+ 13254
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3844.099
+ 13254
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 99f0c403-5c3c-4e81-b678-a8b4ee8435d6
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 19766
+ 14133
+ 251
+ 20
+
+ -
+ 19766.33
+ 14133.26
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - fcdd5570-5702-4ca3-99cd-fd19c9172eef
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 4219
+ 14109
+ 251
+ 20
+
+ -
+ 4219.673
+ 14109.89
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 144e85a6-d3ce-47fe-8a1a-7d156a859767
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 19214
+ 13317
+ 250
+ 20
+
+ -
+ 19214.35
+ 13317.08
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - dc0e426b-b9a7-4d94-92f0-d62f8002d975
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 9203
+ 17229
+ 97
+ 124
+
+ -
+ 9249
+ 17291
+
+
+
+
+
+ - 6
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 7c9f5ce2-858c-4de3-924a-a1011dec8c92
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - d8bb3905-0d1b-4e9c-b51b-34c6c1b8f824
+ - 1
+
+
+
+
+ -
+ 9205
+ 17231
+ 29
+ 20
+
+ -
+ 9221
+ 17241
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - c05af972-e99a-45cb-a9e1-a98f916c8813
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - 96935792-1ec1-4cd9-8dd4-9a092de6ad61
+ - 1
+
+
+
+
+ -
+ 9205
+ 17251
+ 29
+ 20
+
+ -
+ 9221
+ 17261
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 1ec87050-1de2-43af-9c03-6f183c5cea90
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - 8ad9374d-afcb-4796-84e7-8728425be2be
+ - 1
+
+
+
+
+ -
+ 9205
+ 17271
+ 29
+ 20
+
+ -
+ 9221
+ 17281
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - c2297492-abbe-4d4e-9bb9-93a085f2e432
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - 992f34c0-9384-4928-b69f-b6f1ae913f03
+ - 1
+
+
+
+
+ -
+ 9205
+ 17291
+ 29
+ 20
+
+ -
+ 9221
+ 17301
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 7f8bed9c-d634-4c4e-84f0-1c68d667b7e0
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - c82a47b4-09f2-4505-bf49-68485889f195
+ - 1
+
+
+
+
+ -
+ 9205
+ 17311
+ 29
+ 20
+
+ -
+ 9221
+ 17321
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - c3da6f2f-ce07-46b3-96ac-e7b975d6ca47
+ - false
+ - Branch {5;x}
+ - {5;x}
+ - true
+ - 9fc3eda7-d22b-4858-9e35-874868e02c53
+ - 1
+
+
+
+
+ -
+ 9205
+ 17331
+ 29
+ 20
+
+ -
+ 9221
+ 17341
+
+
+
+
+
+
+
+ - Entwined result
+ - 2b7f9a30-5371-4790-99c4-557f50f3e7cc
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9264
+ 17231
+ 34
+ 120
+
+ -
+ 9282.5
+ 17291
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - dad23333-58bc-47be-89cf-b9b7b412e5d1
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 3780
+ 7614
+ 97
+ 44
+
+ -
+ 3826
+ 7636
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 2101fbe4-84ca-4472-a576-20046da30653
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - 2b7f9a30-5371-4790-99c4-557f50f3e7cc
+ - 1
+
+
+
+
+ -
+ 3782
+ 7616
+ 29
+ 20
+
+ -
+ 3798
+ 7626
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - f577a057-bff2-43e0-b17c-b257ad5f8cee
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - 6e1fc948-14e7-4b41-97c3-1b4c30c3d4c5
+ - 1
+
+
+
+
+ -
+ 3782
+ 7636
+ 29
+ 20
+
+ -
+ 3798
+ 7646
+
+
+
+
+
+
+
+ - Entwined result
+ - 105dd2da-6e8a-4d38-bd7f-08d0903e13f6
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3841
+ 7616
+ 34
+ 40
+
+ -
+ 3859.5
+ 7636
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - ed33de67-8ff0-4087-b365-b29d723d2319
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 15051
+ 8520
+ 97
+ 184
+
+ -
+ 15097
+ 8612
+
+
+
+
+
+ - 9
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 99b18844-0779-43db-a3bf-d98e2c6b20b9
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - c86da1e9-be3c-4594-b203-2c288256aeb0
+ - 1
+
+
+
+
+ -
+ 15053
+ 8522
+ 29
+ 20
+
+ -
+ 15069
+ 8532
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 80be7797-b883-4cd3-8f34-8500eb61a8f9
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - 48833b67-abab-4685-b729-16d511f4b9ac
+ - 1
+
+
+
+
+ -
+ 15053
+ 8542
+ 29
+ 20
+
+ -
+ 15069
+ 8552
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - b719ae17-9f55-4120-8e96-bf70cce20dbd
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - 99805ebf-f622-48cc-a2b0-15df4edd0fe8
+ - 1
+
+
+
+
+ -
+ 15053
+ 8562
+ 29
+ 20
+
+ -
+ 15069
+ 8572
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 8e61caf1-635b-4509-aded-62ab1ae78e68
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - e9fafb6a-dcd6-496c-a636-30117cb488ef
+ - 1
+
+
+
+
+ -
+ 15053
+ 8582
+ 29
+ 20
+
+ -
+ 15069
+ 8592
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 5ff17efd-a253-43aa-8698-49a3ecb84204
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - d3694f49-88f8-4c69-a50e-2af49ddb9407
+ - 1
+
+
+
+
+ -
+ 15053
+ 8602
+ 29
+ 20
+
+ -
+ 15069
+ 8612
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 5d5e12ff-28e1-4b66-893e-ccadfb6c38f5
+ - false
+ - Branch {5;x}
+ - {5;x}
+ - true
+ - 4072dd5f-488b-48b1-bb99-6a919c99b6ec
+ - 1
+
+
+
+
+ -
+ 15053
+ 8622
+ 29
+ 20
+
+ -
+ 15069
+ 8632
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 7566f03a-26ab-4488-a682-5f05ba24b1b8
+ - false
+ - Branch {6;x}
+ - {6;x}
+ - true
+ - 03630ecd-8960-4a8e-b53c-5a4eb650a12c
+ - 1
+
+
+
+
+ -
+ 15053
+ 8642
+ 29
+ 20
+
+ -
+ 15069
+ 8652
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 916249f1-1a94-4cd0-b3ee-d9cae630af32
+ - false
+ - Branch {7;x}
+ - {7;x}
+ - true
+ - 8c30f270-d17e-4542-bcbc-8ff2320f35a6
+ - 1
+
+
+
+
+ -
+ 15053
+ 8662
+ 29
+ 20
+
+ -
+ 15069
+ 8672
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 21d87065-8a2c-454f-8614-fae127c58cc5
+ - false
+ - Branch {8;x}
+ - {8;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 15053
+ 8682
+ 29
+ 20
+
+ -
+ 15069
+ 8692
+
+
+
+
+
+
+
+ - Entwined result
+ - 8d85ed79-6ed8-4d27-9c33-f89d457338af
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 15112
+ 8522
+ 34
+ 180
+
+ -
+ 15130.5
+ 8612
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - 224d22e6-a7e2-418c-ba07-3eb7e0fb409d
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 14761
+ 8520
+ 97
+ 184
+
+ -
+ 14807
+ 8612
+
+
+
+
+
+ - 9
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 8e932e24-2d87-48ee-adc3-5eecd7d7ef78
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - 8fae6707-35c9-49ef-96bf-d5708e512f8c
+ - 1
+
+
+
+
+ -
+ 14763
+ 8522
+ 29
+ 20
+
+ -
+ 14779
+ 8532
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - b62581e1-76b8-4db0-b7dd-b0d6e4732fb0
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - fe2bd48c-8bc7-431d-a3d5-89319eee1ab4
+ - 1
+
+
+
+
+ -
+ 14763
+ 8542
+ 29
+ 20
+
+ -
+ 14779
+ 8552
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 363ba1ea-ba2a-4254-90cb-2385ee49e332
+ - false
+ - Branch {2;x}
+ - {2;x}
+ - true
+ - 60ea54e2-64fe-495f-8b22-913d5a6247ca
+ - 1
+
+
+
+
+ -
+ 14763
+ 8562
+ 29
+ 20
+
+ -
+ 14779
+ 8572
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 5fe926f2-364f-4181-a304-9ed7cdfe65ce
+ - false
+ - Branch {3;x}
+ - {3;x}
+ - true
+ - 289362ef-c456-475f-a4a5-7610e305e8d9
+ - 1
+
+
+
+
+ -
+ 14763
+ 8582
+ 29
+ 20
+
+ -
+ 14779
+ 8592
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - dbd3d019-9664-4155-89aa-80b6c30966e8
+ - false
+ - Branch {4;x}
+ - {4;x}
+ - true
+ - ac94063c-4ea8-4bd7-a1d9-331c5dae31b4
+ - 1
+
+
+
+
+ -
+ 14763
+ 8602
+ 29
+ 20
+
+ -
+ 14779
+ 8612
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - aece1331-aba8-486b-a8fb-4b00e03518b0
+ - false
+ - Branch {5;x}
+ - {5;x}
+ - true
+ - 1cc4ce65-802a-413c-851c-f786e9032630
+ - 1
+
+
+
+
+ -
+ 14763
+ 8622
+ 29
+ 20
+
+ -
+ 14779
+ 8632
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 96540a03-2e8e-4ca9-a4b0-961b4c27bfb7
+ - false
+ - Branch {6;x}
+ - {6;x}
+ - true
+ - 747334ba-25b6-4ffe-903e-79ffdb0809f9
+ - 1
+
+
+
+
+ -
+ 14763
+ 8642
+ 29
+ 20
+
+ -
+ 14779
+ 8652
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 18a4644a-a025-4e1a-aad3-601157b20bc9
+ - false
+ - Branch {7;x}
+ - {7;x}
+ - true
+ - e464e48a-068a-4ad2-882b-5575331b82f3
+ - 1
+
+
+
+
+ -
+ 14763
+ 8662
+ 29
+ 20
+
+ -
+ 14779
+ 8672
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - 12e00c45-3387-445e-81e6-a006f684f392
+ - false
+ - Branch {8;x}
+ - {8;x}
+ - true
+ - 0
+
+
+
+
+ -
+ 14763
+ 8682
+ 29
+ 20
+
+ -
+ 14779
+ 8692
+
+
+
+
+
+
+
+ - Entwined result
+ - a1e2b471-745e-4023-9189-ac09ee8be598
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14822
+ 8522
+ 34
+ 180
+
+ -
+ 14840.5
+ 8612
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c9785b8e-2f30-4f90-8ee3-cca710f82402
+ - Entwine
+
+
+
+
+ - Flatten and combine a collection of data streams
+ - false
+ - true
+ - a77683b6-1e49-482d-accc-1da4fe9291b0
+ - Entwine
+ - Entwine
+
+
+
+
+ -
+ 14954
+ 8160
+ 97
+ 44
+
+ -
+ 15000
+ 8182
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data to entwine
+ - 5bd840a0-52f9-4322-967d-b8f78a1e69f7
+ - false
+ - Branch {0;x}
+ - {0;x}
+ - true
+ - 8d85ed79-6ed8-4d27-9c33-f89d457338af
+ - 1
+
+
+
+
+ -
+ 14956
+ 8162
+ 29
+ 20
+
+ -
+ 14972
+ 8172
+
+
+
+
+
+
+
+ - 2
+ - Data to entwine
+ - fb5f90e4-5f10-4f97-9726-59f9c35920a9
+ - false
+ - Branch {1;x}
+ - {1;x}
+ - true
+ - a1e2b471-745e-4023-9189-ac09ee8be598
+ - 1
+
+
+
+
+ -
+ 14956
+ 8182
+ 29
+ 20
+
+ -
+ 14972
+ 8192
+
+
+
+
+
+
+
+ - Entwined result
+ - 6e1fc948-14e7-4b41-97c3-1b4c30c3d4c5
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 15015
+ 8162
+ 34
+ 40
+
+ -
+ 15033.5
+ 8182
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 25aa5733-be81-4880-a0cb-342eaf97bb70
+ - 5f265745-6ca0-49fb-a2cc-9640c03fedfc
+ - e654b44d-372f-4d5e-aa76-bc0c6662276d
+ - 15cea472-84f0-43d6-adb5-ebab1513851b
+ - 786183f9-8f91-45b1-ba10-5f602200fca4
+ - a76219c7-98a0-4832-8b36-314f51be2052
+ - 6
+ - c6fd1e77-5126-4b02-a5bb-b84846c26edc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 66c324df-3c77-43b3-a107-dda00b26db20
+ - 6c10f1a4-05bb-4773-87fd-4e5a435f5b7f
+ - 8becd913-3971-42d1-ad8b-6ff1a0182eac
+ - 216ccffb-2e41-411c-a7ae-fe6f549e8f2f
+ - 743fcb17-9a41-404d-ae2b-299a565da566
+ - 7770f331-b70c-42fb-9f5e-bb896d839f64
+ - 80adc276-a1ec-48d2-9dff-3d27dacc1fe5
+ - 0b823ac0-d08a-4b35-8190-2a7814c67d1b
+ - 4aecade4-b590-42ca-8247-560501df1ee2
+ - 64ea358c-3477-4f98-bb7c-5e4e1efd82bf
+ - 06840b0d-0c52-49a7-8586-671841fce316
+ - ba4a1feb-b523-490c-8a3f-4c305c8294b9
+ - 1dd505f9-1f62-462f-bfc9-d4144bc263ff
+ - 7db4ea63-8dfc-43c1-bece-50feb8751fb7
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 394770c8-a55d-44a1-bdfc-7537a0bc9078
+ - 04ca1c72-0081-4151-ba68-441f33f8841a
+ - 1d0ff230-f658-4eea-95c1-9da330d41b9b
+ - b8fe0504-db69-4858-80dd-86315b6b76b4
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 91eae3cb-dae0-470b-94cd-f3e2648c462c
+ - 5ac57098-caea-4564-a89f-ef7c20ef9db8
+ - ba363370-f128-492d-830e-feb1a19aa304
+ - ab754ebe-3054-4d4c-a815-c27c8f61646b
+ - eaf90b89-c250-4879-864d-f0c63882a936
+ - b0a75fb1-6343-41f7-bc90-a0d060f70c69
+ - d1c4e0e8-ccaf-4b85-b9f6-95fce9375b3d
+ - 1b4817d5-9d8a-4718-bd91-db6d602e09e0
+ - 43a88045-2414-49bd-a639-25a54fbc3406
+ - 9dcbefb3-0134-46c7-8863-745f439bb96f
+ - dd1a655d-bc03-44ab-a804-e71acd0a147b
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - a5b2ba25-ba64-438e-9c05-fc5c8987ddf0
+ - 4cc94c30-fc6b-4bd2-a5e4-e5c9c951d2f7
+ - a6b9e29a-03b9-47b8-82a5-1d0124f6e72e
+ - 38f7b830-0b74-4d07-a880-de3308df725b
+ - 67412c77-dace-4fae-82af-cee39c99c806
+ - 477cb8b4-b9fe-4077-afab-c5588b570340
+ - 57dc0514-58a2-4f8b-905d-b0580f8a2a6a
+ - 5f998c1f-bda3-402c-8f46-2f3f0d774770
+ - 5181c4d3-fad3-4b64-a469-2225cbebbf0f
+ - fbeef7d7-c4e7-4e64-b15f-550ed822ceaa
+ - bbf474f2-ec45-461b-bfeb-6dcd3af5bbe2
+ - 2ee04134-7a7d-45ac-8bdc-7f096216c746
+ - 5717f3e7-ea4d-49b6-9633-1dad7656910f
+ - 2635d566-5971-4fd9-8fb1-8c6434054c57
+ - 880dd377-9f15-4147-8cbd-1aef7e6c14cb
+ - d2bb97e6-5e05-41ee-8886-54d3eb49ff8c
+ - 3f6cc10b-e201-4db6-b980-be1efed2e10c
+ - dbcbb931-46fc-45e7-a319-ae473feb5fb6
+ - 595a16aa-a623-4afb-9fa9-0c2a6554fab3
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 0a05fac0-c8d8-43a2-a7e4-98ca2a43fd3e
+ - 4d04e408-b736-49af-ba17-6ef9f5caf118
+ - 746e201b-3cd6-4d10-b224-d960a31ec2a8
+ - 222f140c-0c81-4713-9a94-baade26783d5
+ - a9a50160-2135-485b-ac32-52b8c1b384ee
+ - 62256d2e-c48e-4b7a-a805-dc7290e82c4d
+ - 3e0381b1-812d-42f5-a1a6-397345b410dd
+ - ebb748fc-509d-4020-9ad1-9e68a19ea81a
+ - 7944bb81-2034-4762-8159-672c0a0301da
+ - dbac1d13-b64b-46a7-86d5-a6454cd89990
+ - 29d4cf3b-7477-4cab-a366-51f758a004e0
+ - 7489d841-818d-4101-a8f9-7fd7039ae220
+ - 9c19fb01-0e57-44a6-b876-c214968858f6
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - b9dc4289-1ec3-450b-a17d-340518a6c2f0
+ - 713ed1dd-ba3c-4484-8007-463b630d6092
+ - d0bb098e-b480-4784-a2db-4d6927537b51
+ - 6c254cc7-4033-407f-adf4-b19baf050a44
+ - 881129bc-16dd-40c5-bf7f-c7572fda3282
+ - 3dcdc74d-0754-44f4-8ca2-53e9c12b222d
+ - 98616d02-198c-4e07-8bfb-0db902628d0e
+ - f1b2d74a-41f2-4126-a4b7-21cf28684074
+ - 0b43c670-fa3c-4718-87ba-1a1a10682542
+ - 58f18244-1793-4931-bdd9-44e64541efd5
+ - f1dae086-0eb4-42a5-9d3d-6e0209aa7e07
+ - 31636796-8e84-41de-9662-aaba74134bca
+ - a1530f9c-a537-42de-932e-19c6365e8716
+ - fc6414a0-9bee-48ef-aa06-3637587227ea
+ - d527a055-9671-4265-bd48-d0ac4b70ce06
+ - 60ea54e2-64fe-495f-8b22-913d5a6247ca
+ - f62e3b72-6853-4295-8a24-ca3f671c554d
+ - 83
+ - acdeeee1-f28f-4571-a2eb-16d7beb32aa6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6c10f1a4-05bb-4773-87fd-4e5a435f5b7f
+ - 8becd913-3971-42d1-ad8b-6ff1a0182eac
+ - 216ccffb-2e41-411c-a7ae-fe6f549e8f2f
+ - 743fcb17-9a41-404d-ae2b-299a565da566
+ - 7770f331-b70c-42fb-9f5e-bb896d839f64
+ - 80adc276-a1ec-48d2-9dff-3d27dacc1fe5
+ - 0b823ac0-d08a-4b35-8190-2a7814c67d1b
+ - 4aecade4-b590-42ca-8247-560501df1ee2
+ - 64ea358c-3477-4f98-bb7c-5e4e1efd82bf
+ - 06840b0d-0c52-49a7-8586-671841fce316
+ - ba4a1feb-b523-490c-8a3f-4c305c8294b9
+ - 1dd505f9-1f62-462f-bfc9-d4144bc263ff
+ - 7db4ea63-8dfc-43c1-bece-50feb8751fb7
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 394770c8-a55d-44a1-bdfc-7537a0bc9078
+ - 04ca1c72-0081-4151-ba68-441f33f8841a
+ - 1d0ff230-f658-4eea-95c1-9da330d41b9b
+ - b8fe0504-db69-4858-80dd-86315b6b76b4
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 91eae3cb-dae0-470b-94cd-f3e2648c462c
+ - 5ac57098-caea-4564-a89f-ef7c20ef9db8
+ - ba363370-f128-492d-830e-feb1a19aa304
+ - ab754ebe-3054-4d4c-a815-c27c8f61646b
+ - eaf90b89-c250-4879-864d-f0c63882a936
+ - b0a75fb1-6343-41f7-bc90-a0d060f70c69
+ - d1c4e0e8-ccaf-4b85-b9f6-95fce9375b3d
+ - 1b4817d5-9d8a-4718-bd91-db6d602e09e0
+ - 43a88045-2414-49bd-a639-25a54fbc3406
+ - 9dcbefb3-0134-46c7-8863-745f439bb96f
+ - dd1a655d-bc03-44ab-a804-e71acd0a147b
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - a5b2ba25-ba64-438e-9c05-fc5c8987ddf0
+ - 4cc94c30-fc6b-4bd2-a5e4-e5c9c951d2f7
+ - a6b9e29a-03b9-47b8-82a5-1d0124f6e72e
+ - 38f7b830-0b74-4d07-a880-de3308df725b
+ - 67412c77-dace-4fae-82af-cee39c99c806
+ - 477cb8b4-b9fe-4077-afab-c5588b570340
+ - 57dc0514-58a2-4f8b-905d-b0580f8a2a6a
+ - 5f998c1f-bda3-402c-8f46-2f3f0d774770
+ - 5181c4d3-fad3-4b64-a469-2225cbebbf0f
+ - fbeef7d7-c4e7-4e64-b15f-550ed822ceaa
+ - bbf474f2-ec45-461b-bfeb-6dcd3af5bbe2
+ - 2ee04134-7a7d-45ac-8bdc-7f096216c746
+ - 5717f3e7-ea4d-49b6-9633-1dad7656910f
+ - 2635d566-5971-4fd9-8fb1-8c6434054c57
+ - 880dd377-9f15-4147-8cbd-1aef7e6c14cb
+ - d2bb97e6-5e05-41ee-8886-54d3eb49ff8c
+ - 3f6cc10b-e201-4db6-b980-be1efed2e10c
+ - dbcbb931-46fc-45e7-a319-ae473feb5fb6
+ - 595a16aa-a623-4afb-9fa9-0c2a6554fab3
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 0a05fac0-c8d8-43a2-a7e4-98ca2a43fd3e
+ - 4d04e408-b736-49af-ba17-6ef9f5caf118
+ - 746e201b-3cd6-4d10-b224-d960a31ec2a8
+ - 222f140c-0c81-4713-9a94-baade26783d5
+ - a9a50160-2135-485b-ac32-52b8c1b384ee
+ - 62256d2e-c48e-4b7a-a805-dc7290e82c4d
+ - 3e0381b1-812d-42f5-a1a6-397345b410dd
+ - ebb748fc-509d-4020-9ad1-9e68a19ea81a
+ - 7944bb81-2034-4762-8159-672c0a0301da
+ - dbac1d13-b64b-46a7-86d5-a6454cd89990
+ - 29d4cf3b-7477-4cab-a366-51f758a004e0
+ - 7489d841-818d-4101-a8f9-7fd7039ae220
+ - 9c19fb01-0e57-44a6-b876-c214968858f6
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - b9dc4289-1ec3-450b-a17d-340518a6c2f0
+ - 713ed1dd-ba3c-4484-8007-463b630d6092
+ - d0bb098e-b480-4784-a2db-4d6927537b51
+ - 6c254cc7-4033-407f-adf4-b19baf050a44
+ - 881129bc-16dd-40c5-bf7f-c7572fda3282
+ - 3dcdc74d-0754-44f4-8ca2-53e9c12b222d
+ - 98616d02-198c-4e07-8bfb-0db902628d0e
+ - f1b2d74a-41f2-4126-a4b7-21cf28684074
+ - 0b43c670-fa3c-4718-87ba-1a1a10682542
+ - 58f18244-1793-4931-bdd9-44e64541efd5
+ - f1dae086-0eb4-42a5-9d3d-6e0209aa7e07
+ - 31636796-8e84-41de-9662-aaba74134bca
+ - a1530f9c-a537-42de-932e-19c6365e8716
+ - fc6414a0-9bee-48ef-aa06-3637587227ea
+ - 79
+ - 66c324df-3c77-43b3-a107-dda00b26db20
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 31636796-8e84-41de-9662-aaba74134bca
+ - 1
+ - 6c10f1a4-05bb-4773-87fd-4e5a435f5b7f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 216ccffb-2e41-411c-a7ae-fe6f549e8f2f
+ - 1
+ - 8becd913-3971-42d1-ad8b-6ff1a0182eac
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 743fcb17-9a41-404d-ae2b-299a565da566
+ - 1
+ - 216ccffb-2e41-411c-a7ae-fe6f549e8f2f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7770f331-b70c-42fb-9f5e-bb896d839f64
+ - 1
+ - 743fcb17-9a41-404d-ae2b-299a565da566
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 80adc276-a1ec-48d2-9dff-3d27dacc1fe5
+ - 1
+ - 7770f331-b70c-42fb-9f5e-bb896d839f64
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0b823ac0-d08a-4b35-8190-2a7814c67d1b
+ - 1
+ - 80adc276-a1ec-48d2-9dff-3d27dacc1fe5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 64ea358c-3477-4f98-bb7c-5e4e1efd82bf
+ - 1
+ - 0b823ac0-d08a-4b35-8190-2a7814c67d1b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4aecade4-b590-42ca-8247-560501df1ee2
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5893
+ 13096
+ 50
+ 24
+
+ -
+ 5918.904
+ 13108.12
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4aecade4-b590-42ca-8247-560501df1ee2
+ - 1
+ - 64ea358c-3477-4f98-bb7c-5e4e1efd82bf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9dcbefb3-0134-46c7-8863-745f439bb96f
+ - 1
+ - 06840b0d-0c52-49a7-8586-671841fce316
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1dd505f9-1f62-462f-bfc9-d4144bc263ff
+ - 7db4ea63-8dfc-43c1-bece-50feb8751fb7
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 394770c8-a55d-44a1-bdfc-7537a0bc9078
+ - 04ca1c72-0081-4151-ba68-441f33f8841a
+ - 1d0ff230-f658-4eea-95c1-9da330d41b9b
+ - b8fe0504-db69-4858-80dd-86315b6b76b4
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 5ac57098-caea-4564-a89f-ef7c20ef9db8
+ - 91eae3cb-dae0-470b-94cd-f3e2648c462c
+ - 06840b0d-0c52-49a7-8586-671841fce316
+ - 64ea358c-3477-4f98-bb7c-5e4e1efd82bf
+ - b9dc4289-1ec3-450b-a17d-340518a6c2f0
+ - 713ed1dd-ba3c-4484-8007-463b630d6092
+ - d0bb098e-b480-4784-a2db-4d6927537b51
+ - 6c254cc7-4033-407f-adf4-b19baf050a44
+ - 881129bc-16dd-40c5-bf7f-c7572fda3282
+ - 3dcdc74d-0754-44f4-8ca2-53e9c12b222d
+ - 7489d841-818d-4101-a8f9-7fd7039ae220
+ - 9c19fb01-0e57-44a6-b876-c214968858f6
+ - 20
+ - ba4a1feb-b523-490c-8a3f-4c305c8294b9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 1dd505f9-1f62-462f-bfc9-d4144bc263ff
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 5870
+ 14261
+ 104
+ 64
+
+ -
+ 5929
+ 14293
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - dd844e52-8674-4feb-b4f7-00c98eca681d
+ - Data
+ - Data
+ - false
+ - d4e5bbf9-72bd-4247-8027-f1b352e4af41
+ - 1
+
+
+
+
+ -
+ 5872
+ 14263
+ 42
+ 20
+
+ -
+ 5894.5
+ 14273
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 3d65f6fe-f550-4b44-905b-e3c00e81b6f6
+ - Number
+ - Number
+ - false
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - 1
+
+
+
+
+ -
+ 5872
+ 14283
+ 42
+ 20
+
+ -
+ 5894.5
+ 14293
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 6f9ddcf5-0f5e-4105-866c-069982ca5dcf
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 5872
+ 14303
+ 42
+ 20
+
+ -
+ 5894.5
+ 14313
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 365f49ff-011e-46f6-9912-181349fefd8b
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 5944
+ 14263
+ 28
+ 60
+
+ -
+ 5959.5
+ 14293
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 7db4ea63-8dfc-43c1-bece-50feb8751fb7
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 5856
+ 12333
+ 116
+ 44
+
+ -
+ 5917
+ 12355
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - dc7f8148-52f9-4331-a424-4f03e7c5f0ef
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 365f49ff-011e-46f6-9912-181349fefd8b
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5858
+ 12335
+ 44
+ 20
+
+ -
+ 5881.5
+ 12345
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 33f8ebc1-0de5-4f15-ba21-b44b08040f4a
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 4ebb94c8-ee9c-49e1-9f2b-d25de3e882c2
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5858
+ 12355
+ 44
+ 20
+
+ -
+ 5881.5
+ 12365
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - ec293403-12d3-40cf-86b1-bacb92f634fd
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 5932
+ 12335
+ 38
+ 20
+
+ -
+ 5952.5
+ 12345
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 01bc5e62-d096-4f62-98a1-30ad9e556956
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5932
+ 12355
+ 38
+ 20
+
+ -
+ 5952.5
+ 12365
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 394770c8-a55d-44a1-bdfc-7537a0bc9078
+ - Series
+ - Series
+
+
+
+
+ -
+ 5867
+ 13590
+ 101
+ 64
+
+ -
+ 5917
+ 13622
+
+
+
+
+
+ - First number in the series
+ - 46342110-9a7a-45cd-8b36-72628ca704ea
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5869
+ 13592
+ 33
+ 20
+
+ -
+ 5887
+ 13602
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 8469b369-1189-48b2-8a90-2d0f75eb4261
+ - Step
+ - Step
+ - false
+ - f1dae086-0eb4-42a5-9d3d-6e0209aa7e07
+ - 1
+
+
+
+
+ -
+ 5869
+ 13612
+ 33
+ 20
+
+ -
+ 5887
+ 13622
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - bde4f760-3e2a-4761-80f3-a83bf4530f0d
+ - Count
+ - Count
+ - false
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - 1
+
+
+
+
+ -
+ 5869
+ 13632
+ 33
+ 20
+
+ -
+ 5887
+ 13642
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - b37e1d0b-abaa-4548-a8df-b35440ba7c04
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 5932
+ 13592
+ 34
+ 60
+
+ -
+ 5950.5
+ 13622
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 04ca1c72-0081-4151-ba68-441f33f8841a
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5851
+ 14439
+ 150
+ 20
+
+ -
+ 5851.584
+ 14439.97
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 1d0ff230-f658-4eea-95c1-9da330d41b9b
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 5863
+ 13807
+ 120
+ 28
+
+ -
+ 5924
+ 13821
+
+
+
+
+
+ - Angle in degrees
+ - f4a4b4a4-c3f1-4bac-aae2-a3d3880a5944
+ - Degrees
+ - Degrees
+ - false
+ - 2d9e9ed7-5b0d-4a60-8faf-5f95198768de
+ - 1
+
+
+
+
+ -
+ 5865
+ 13809
+ 44
+ 24
+
+ -
+ 5888.5
+ 13821
+
+
+
+
+
+
+
+ - Angle in radians
+ - 711bca00-e1e4-4e9a-8633-2c096c3a9a2a
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 5939
+ 13809
+ 42
+ 24
+
+ -
+ 5961.5
+ 13821
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b8fe0504-db69-4858-80dd-86315b6b76b4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 5792
+ 14115
+ 251
+ 20
+
+ -
+ 5792.296
+ 14115.24
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 91eae3cb-dae0-470b-94cd-f3e2648c462c
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 5842
+ 11568
+ 144
+ 84
+
+ -
+ 5928
+ 11610
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 14003dce-b190-4278-b58d-1024ebe07d0a
+ - Vertices
+ - Vertices
+ - false
+ - e654b44d-372f-4d5e-aa76-bc0c6662276d
+ - 1
+
+
+
+
+ -
+ 5844
+ 11570
+ 69
+ 20
+
+ -
+ 5880
+ 11580
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 4bd5e2d1-7a7f-44aa-8dcf-b5fdea91980f
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11590
+ 69
+ 20
+
+ -
+ 5880
+ 11600
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 8bfe403d-8507-4952-9320-8c7ed84904ea
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11610
+ 69
+ 20
+
+ -
+ 5880
+ 11620
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - f7890425-fed7-4af4-a13b-4c2623ca405f
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11630
+ 69
+ 20
+
+ -
+ 5880
+ 11640
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6b875d6f-ac8f-453d-8230-d0b85cd0fd0c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5943
+ 11570
+ 41
+ 26
+
+ -
+ 5965
+ 11583.33
+
+
+
+
+
+
+
+ - Curve length
+ - 117e23b0-c0b7-4138-bf09-04ba2c57f466
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5943
+ 11596
+ 41
+ 27
+
+ -
+ 5965
+ 11610
+
+
+
+
+
+
+
+ - Curve domain
+ - c8d55e04-f718-4ea6-b2a9-d50f9dc4b79b
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5943
+ 11623
+ 41
+ 27
+
+ -
+ 5965
+ 11636.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1dd505f9-1f62-462f-bfc9-d4144bc263ff
+ - 7db4ea63-8dfc-43c1-bece-50feb8751fb7
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 394770c8-a55d-44a1-bdfc-7537a0bc9078
+ - 04ca1c72-0081-4151-ba68-441f33f8841a
+ - 1d0ff230-f658-4eea-95c1-9da330d41b9b
+ - b8fe0504-db69-4858-80dd-86315b6b76b4
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - f1b2d74a-41f2-4126-a4b7-21cf28684074
+ - 4cc94c30-fc6b-4bd2-a5e4-e5c9c951d2f7
+ - 29d4cf3b-7477-4cab-a366-51f758a004e0
+ - 98616d02-198c-4e07-8bfb-0db902628d0e
+ - 0b43c670-fa3c-4718-87ba-1a1a10682542
+ - defe06db-53c0-489d-8e74-07f2ca6cbc47
+ - 14
+ - 5ac57098-caea-4564-a89f-ef7c20ef9db8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ba363370-f128-492d-830e-feb1a19aa304
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5842
+ 11400
+ 144
+ 64
+
+ -
+ 5916
+ 11432
+
+
+
+
+
+ - Curve to evaluate
+ - d0e53521-7cfd-4253-abe5-296951c29fea
+ - Curve
+ - Curve
+ - false
+ - 6b875d6f-ac8f-453d-8230-d0b85cd0fd0c
+ - 1
+
+
+
+
+ -
+ 5844
+ 11402
+ 57
+ 20
+
+ -
+ 5874
+ 11412
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5869015e-a801-4980-aec8-46eb834d6079
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11422
+ 57
+ 20
+
+ -
+ 5874
+ 11432
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c593ea0e-dc72-4d8c-8e6d-055fbbf6c6bd
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11442
+ 57
+ 20
+
+ -
+ 5874
+ 11452
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f0b85611-809b-4f5c-aa01-f6b65c3de244
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11402
+ 53
+ 20
+
+ -
+ 5959
+ 11412
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - be7f8dc9-b750-4bed-b063-519ef6eaf63f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11422
+ 53
+ 20
+
+ -
+ 5959
+ 11432
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e433e1d1-80d5-4bec-af5a-8ecd1b825094
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11442
+ 53
+ 20
+
+ -
+ 5959
+ 11452
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - ab754ebe-3054-4d4c-a815-c27c8f61646b
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5845
+ 11338
+ 138
+ 44
+
+ -
+ 5913
+ 11360
+
+
+
+
+
+ - Base geometry
+ - c06378b7-d974-4f19-b2cb-bcf3d14ac0e5
+ - Geometry
+ - Geometry
+ - true
+ - 6b875d6f-ac8f-453d-8230-d0b85cd0fd0c
+ - 1
+
+
+
+
+ -
+ 5847
+ 11340
+ 51
+ 20
+
+ -
+ 5874
+ 11350
+
+
+
+
+
+
+
+ - Mirror plane
+ - f87dc1e6-5157-45a4-aed1-3e06cdebdd25
+ - Plane
+ - Plane
+ - false
+ - 51be0673-1c67-4e26-9963-994496126b95
+ - 1
+
+
+
+
+ -
+ 5847
+ 11360
+ 51
+ 20
+
+ -
+ 5874
+ 11370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 7b8794c1-b46d-47cd-9982-f14638a474ad
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5928
+ 11340
+ 53
+ 20
+
+ -
+ 5956
+ 11350
+
+
+
+
+
+
+
+ - Transformation data
+ - ee607dc7-9bde-4340-9451-56b44b39720e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5928
+ 11360
+ 53
+ 20
+
+ -
+ 5956
+ 11370
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - eaf90b89-c250-4879-864d-f0c63882a936
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 5861
+ 11484
+ 106
+ 64
+
+ -
+ 5925
+ 11516
+
+
+
+
+
+ - Line start point
+ - 256520d1-cec3-42d5-8837-e7250b75dd88
+ - Start
+ - Start
+ - false
+ - f0b85611-809b-4f5c-aa01-f6b65c3de244
+ - 1
+
+
+
+
+ -
+ 5863
+ 11486
+ 47
+ 20
+
+ -
+ 5888
+ 11496
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - fadda13f-1a50-4c39-8357-7da8fd89e7d8
+ - Direction
+ - Direction
+ - false
+ - be7f8dc9-b750-4bed-b063-519ef6eaf63f
+ - 1
+
+
+
+
+ -
+ 5863
+ 11506
+ 47
+ 20
+
+ -
+ 5888
+ 11516
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 02e926a2-f97e-4d3c-bdeb-4cbd346b1377
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5863
+ 11526
+ 47
+ 20
+
+ -
+ 5888
+ 11536
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 51be0673-1c67-4e26-9963-994496126b95
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 5940
+ 11486
+ 25
+ 60
+
+ -
+ 5954
+ 11516
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - b0a75fb1-6343-41f7-bc90-a0d060f70c69
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5855
+ 11276
+ 118
+ 44
+
+ -
+ 5918
+ 11298
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 18f96d0b-0968-468e-ad76-15eec3653fa1
+ - Curves
+ - Curves
+ - false
+ - 6b875d6f-ac8f-453d-8230-d0b85cd0fd0c
+ - 7b8794c1-b46d-47cd-9982-f14638a474ad
+ - 2
+
+
+
+
+ -
+ 5857
+ 11278
+ 46
+ 20
+
+ -
+ 5881.5
+ 11288
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - b3d25528-5b0b-4f9d-89a7-454c05a34433
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5857
+ 11298
+ 46
+ 20
+
+ -
+ 5881.5
+ 11308
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 84b113a4-36ae-4d72-a1f4-38425ac3c351
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5933
+ 11278
+ 38
+ 40
+
+ -
+ 5953.5
+ 11298
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d1c4e0e8-ccaf-4b85-b9f6-95fce9375b3d
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5842
+ 11192
+ 144
+ 64
+
+ -
+ 5916
+ 11224
+
+
+
+
+
+ - Curve to evaluate
+ - f8864a75-12f1-49f9-aaec-674cd04ccec6
+ - Curve
+ - Curve
+ - false
+ - 84b113a4-36ae-4d72-a1f4-38425ac3c351
+ - 1
+
+
+
+
+ -
+ 5844
+ 11194
+ 57
+ 20
+
+ -
+ 5874
+ 11204
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 791650d5-583f-4037-9eff-9de57c7e02ae
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11214
+ 57
+ 20
+
+ -
+ 5874
+ 11224
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2e878f5b-6d4f-4246-8ec1-42abde650614
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 11234
+ 57
+ 20
+
+ -
+ 5874
+ 11244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d42d500d-09a5-42de-85f9-5f46102e5afb
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11194
+ 53
+ 20
+
+ -
+ 5959
+ 11204
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 03523f6b-69f2-47f8-8f4e-941913fd3a50
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11214
+ 53
+ 20
+
+ -
+ 5959
+ 11224
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 8e8fddfa-eec6-477a-8d55-daa01b73a773
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 11234
+ 53
+ 20
+
+ -
+ 5959
+ 11244
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 1b4817d5-9d8a-4718-bd91-db6d602e09e0
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 5845
+ 11109
+ 138
+ 64
+
+ -
+ 5913
+ 11141
+
+
+
+
+
+ - Base geometry
+ - bb159ef4-97b8-4828-b5ef-1f39bf6db0a2
+ - Geometry
+ - Geometry
+ - true
+ - 84b113a4-36ae-4d72-a1f4-38425ac3c351
+ - 1
+
+
+
+
+ -
+ 5847
+ 11111
+ 51
+ 20
+
+ -
+ 5874
+ 11121
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 26baf301-a89e-4c3e-a845-e717cbbef6c5
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 5847
+ 11131
+ 51
+ 20
+
+ -
+ 5874
+ 11141
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - f86fc98a-5729-4f4f-8428-27c853441eab
+ - Plane
+ - Plane
+ - false
+ - d42d500d-09a5-42de-85f9-5f46102e5afb
+ - 1
+
+
+
+
+ -
+ 5847
+ 11151
+ 51
+ 20
+
+ -
+ 5874
+ 11161
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - a9bd0ca2-3899-42d7-8413-d314a63078ea
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5928
+ 11111
+ 53
+ 30
+
+ -
+ 5956
+ 11126
+
+
+
+
+
+
+
+ - Transformation data
+ - b018420a-9fb6-4f5e-96db-b597eea1bc7e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5928
+ 11141
+ 53
+ 30
+
+ -
+ 5956
+ 11156
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 43a88045-2414-49bd-a639-25a54fbc3406
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5855
+ 11046
+ 118
+ 44
+
+ -
+ 5918
+ 11068
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c25f19b2-7d85-4d79-a4be-f9e05a14cf3e
+ - Curves
+ - Curves
+ - false
+ - 84b113a4-36ae-4d72-a1f4-38425ac3c351
+ - a9bd0ca2-3899-42d7-8413-d314a63078ea
+ - 2
+
+
+
+
+ -
+ 5857
+ 11048
+ 46
+ 20
+
+ -
+ 5881.5
+ 11058
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - d0fdd647-5388-48dc-9213-e3f5c2d6e5e1
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5857
+ 11068
+ 46
+ 20
+
+ -
+ 5881.5
+ 11078
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 9812b233-b663-4f90-9a4e-aefbd47045fe
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5933
+ 11048
+ 38
+ 40
+
+ -
+ 5953.5
+ 11068
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 91eae3cb-dae0-470b-94cd-f3e2648c462c
+ - ba363370-f128-492d-830e-feb1a19aa304
+ - ab754ebe-3054-4d4c-a815-c27c8f61646b
+ - eaf90b89-c250-4879-864d-f0c63882a936
+ - b0a75fb1-6343-41f7-bc90-a0d060f70c69
+ - d1c4e0e8-ccaf-4b85-b9f6-95fce9375b3d
+ - 1b4817d5-9d8a-4718-bd91-db6d602e09e0
+ - 43a88045-2414-49bd-a639-25a54fbc3406
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - 25aa5733-be81-4880-a0cb-342eaf97bb70
+ - 5f265745-6ca0-49fb-a2cc-9640c03fedfc
+ - e654b44d-372f-4d5e-aa76-bc0c6662276d
+ - 15cea472-84f0-43d6-adb5-ebab1513851b
+ - a76219c7-98a0-4832-8b36-314f51be2052
+ - 786183f9-8f91-45b1-ba10-5f602200fca4
+ - 15
+ - 9dcbefb3-0134-46c7-8863-745f439bb96f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - dd1a655d-bc03-44ab-a804-e71acd0a147b
+ - Panel
+
+ - false
+ - 0
+ - 2ee04134-7a7d-45ac-8bdc-7f096216c746
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5845
+ 13681
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5845.325
+ 13681.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - Curve
+ - Curve
+ - false
+ - 9812b233-b663-4f90-9a4e-aefbd47045fe
+ - 1
+
+
+
+
+ -
+ 5893
+ 11009
+ 50
+ 24
+
+ -
+ 5918.904
+ 11021.04
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - 1
+ - a5b2ba25-ba64-438e-9c05-fc5c8987ddf0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4cc94c30-fc6b-4bd2-a5e4-e5c9c951d2f7
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 5698
+ 13886
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5698.886
+ 13886.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a6b9e29a-03b9-47b8-82a5-1d0124f6e72e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5842
+ 10920
+ 144
+ 64
+
+ -
+ 5916
+ 10952
+
+
+
+
+
+ - Curve to evaluate
+ - 82da40f5-15f0-4cbf-a6f5-189ce60fce05
+ - Curve
+ - Curve
+ - false
+ - 9812b233-b663-4f90-9a4e-aefbd47045fe
+ - 1
+
+
+
+
+ -
+ 5844
+ 10922
+ 57
+ 20
+
+ -
+ 5874
+ 10932
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - bb3037c5-d8e9-4462-91b0-e00ff4b5a0ce
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 10942
+ 57
+ 20
+
+ -
+ 5874
+ 10952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9ae0edb6-0813-496b-9d21-e79219f06e93
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 10962
+ 57
+ 20
+
+ -
+ 5874
+ 10972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 245e6630-3216-4dd4-b1cd-9293f469556d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 10922
+ 53
+ 20
+
+ -
+ 5959
+ 10932
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 26c5134f-1a93-4191-9048-9cccb80b9208
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 10942
+ 53
+ 20
+
+ -
+ 5959
+ 10952
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f2641e59-05bc-4a6b-a249-613bfae72b76
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 10962
+ 53
+ 20
+
+ -
+ 5959
+ 10972
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 38f7b830-0b74-4d07-a880-de3308df725b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10698
+ 194
+ 28
+
+ -
+ 5917
+ 10712
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 793225a2-6e7d-4418-b11c-40be35acbd4b
+ - Variable O
+ - O
+ - true
+ - 7c45c41e-5a18-424d-8fb3-83818f2b21bc
+ - 1
+
+
+
+
+ -
+ 5819
+ 10700
+ 14
+ 24
+
+ -
+ 5827.5
+ 10712
+
+
+
+
+
+
+
+ - Result of expression
+ - 485c687d-e506-40e3-87ba-5238b204da66
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10700
+ 9
+ 24
+
+ -
+ 6006
+ 10712
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 67412c77-dace-4fae-82af-cee39c99c806
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5848
+ 10832
+ 132
+ 64
+
+ -
+ 5895
+ 10864
+
+
+
+
+
+ - Input point
+ - 6d35a566-4b74-4740-841a-ee179d0f580c
+ - Point
+ - Point
+ - false
+ - 245e6630-3216-4dd4-b1cd-9293f469556d
+ - 1
+
+
+
+
+ -
+ 5850
+ 10834
+ 30
+ 60
+
+ -
+ 5866.5
+ 10864
+
+
+
+
+
+
+
+ - Point {x} component
+ - 7c45c41e-5a18-424d-8fb3-83818f2b21bc
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 10834
+ 68
+ 20
+
+ -
+ 5945.5
+ 10844
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6ed4bd9d-bb91-4452-a9fe-9a2ff0e94f0e
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 10854
+ 68
+ 20
+
+ -
+ 5945.5
+ 10864
+
+
+
+
+
+
+
+ - Point {z} component
+ - 7e2137ea-db72-453e-a5da-70cdffc38919
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 10874
+ 68
+ 20
+
+ -
+ 5945.5
+ 10884
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 477cb8b4-b9fe-4077-afab-c5588b570340
+ - Panel
+
+ - false
+ - 0
+ - 485c687d-e506-40e3-87ba-5238b204da66
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 10674
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.674
+ 10674.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 57dc0514-58a2-4f8b-905d-b0580f8a2a6a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10612
+ 194
+ 28
+
+ -
+ 5917
+ 10626
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 855c1afb-4cb1-4286-8ddf-1e0a5171dfae
+ - Variable O
+ - O
+ - true
+ - 6ed4bd9d-bb91-4452-a9fe-9a2ff0e94f0e
+ - 1
+
+
+
+
+ -
+ 5819
+ 10614
+ 14
+ 24
+
+ -
+ 5827.5
+ 10626
+
+
+
+
+
+
+
+ - Result of expression
+ - 5260cb9b-cb50-4a0b-8403-c1a0271bfa67
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10614
+ 9
+ 24
+
+ -
+ 6006
+ 10626
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5f998c1f-bda3-402c-8f46-2f3f0d774770
+ - Panel
+
+ - false
+ - 0
+ - 5260cb9b-cb50-4a0b-8403-c1a0271bfa67
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 10586
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.674
+ 10586.19
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 5181c4d3-fad3-4b64-a469-2225cbebbf0f
+ - Division
+ - Division
+
+
+
+
+ -
+ 5873
+ 10510
+ 82
+ 44
+
+ -
+ 5904
+ 10532
+
+
+
+
+
+ - Item to divide (dividend)
+ - 37926542-2cc1-4f09-8d11-67527b9ae333
+ - A
+ - A
+ - false
+ - 477cb8b4-b9fe-4077-afab-c5588b570340
+ - 1
+
+
+
+
+ -
+ 5875
+ 10512
+ 14
+ 20
+
+ -
+ 5883.5
+ 10522
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - e91e4877-5211-418d-9e3e-46bbf3a7788f
+ - B
+ - B
+ - false
+ - 5f998c1f-bda3-402c-8f46-2f3f0d774770
+ - 1
+
+
+
+
+ -
+ 5875
+ 10532
+ 14
+ 20
+
+ -
+ 5883.5
+ 10542
+
+
+
+
+
+
+
+ - The result of the Division
+ - 69ed6fd3-5616-40ab-8a6f-525dfdea1e18
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5919
+ 10512
+ 34
+ 40
+
+ -
+ 5937.5
+ 10532
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fbeef7d7-c4e7-4e64-b15f-550ed822ceaa
+ - Panel
+
+ - false
+ - 0
+ - 2ee04134-7a7d-45ac-8bdc-7f096216c746
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 10438
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.914
+ 10438.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bbf474f2-ec45-461b-bfeb-6dcd3af5bbe2
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10463
+ 194
+ 28
+
+ -
+ 5917
+ 10477
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ab64710f-446e-4a45-afcd-5315cbf382ee
+ - Variable O
+ - O
+ - true
+ - 69ed6fd3-5616-40ab-8a6f-525dfdea1e18
+ - 1
+
+
+
+
+ -
+ 5819
+ 10465
+ 14
+ 24
+
+ -
+ 5827.5
+ 10477
+
+
+
+
+
+
+
+ - Result of expression
+ - e4c1d5bf-53c0-46d3-8134-60dff954624d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10465
+ 9
+ 24
+
+ -
+ 6006
+ 10477
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2ee04134-7a7d-45ac-8bdc-7f096216c746
+ - Relay
+
+ - false
+ - e4c1d5bf-53c0-46d3-8134-60dff954624d
+ - 1
+
+
+
+
+ -
+ 5894
+ 10388
+ 40
+ 16
+
+ -
+ 5914
+ 10396
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 5717f3e7-ea4d-49b6-9633-1dad7656910f
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 5873
+ 10325
+ 82
+ 44
+
+ -
+ 5904
+ 10347
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - dee754ee-32c1-4684-a8ab-59d5c4131b0a
+ - A
+ - A
+ - true
+ - 5f998c1f-bda3-402c-8f46-2f3f0d774770
+ - 1
+
+
+
+
+ -
+ 5875
+ 10327
+ 14
+ 20
+
+ -
+ 5883.5
+ 10337
+
+
+
+
+
+
+
+ - Second item for addition
+ - facfa311-a692-4f2f-b2b9-9fd8f0f5f083
+ - B
+ - B
+ - true
+ - 477cb8b4-b9fe-4077-afab-c5588b570340
+ - 1
+
+
+
+
+ -
+ 5875
+ 10347
+ 14
+ 20
+
+ -
+ 5883.5
+ 10357
+
+
+
+
+
+
+
+ - Result of addition
+ - 17d7802c-3231-45db-8bad-4ab3cdc949d3
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5919
+ 10327
+ 34
+ 40
+
+ -
+ 5937.5
+ 10347
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 2635d566-5971-4fd9-8fb1-8c6434054c57
+ - Division
+ - Division
+
+
+
+
+ -
+ 5873
+ 10175
+ 82
+ 44
+
+ -
+ 5904
+ 10197
+
+
+
+
+
+ - Item to divide (dividend)
+ - b50e3108-f1b1-4296-96a2-69de37f73e68
+ - A
+ - A
+ - false
+ - 3f6cc10b-e201-4db6-b980-be1efed2e10c
+ - 1
+
+
+
+
+ -
+ 5875
+ 10177
+ 14
+ 20
+
+ -
+ 5883.5
+ 10187
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - bc18661a-66bb-48df-a404-51d3f880d78c
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 5875
+ 10197
+ 14
+ 20
+
+ -
+ 5883.5
+ 10207
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 5fe6a977-f424-4434-a7d8-c8461640d5be
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5919
+ 10177
+ 34
+ 40
+
+ -
+ 5937.5
+ 10197
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 880dd377-9f15-4147-8cbd-1aef7e6c14cb
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10127
+ 194
+ 28
+
+ -
+ 5917
+ 10141
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 52a9f66f-0f50-4489-ac33-49e4095fce0c
+ - Variable O
+ - O
+ - true
+ - 5fe6a977-f424-4434-a7d8-c8461640d5be
+ - 1
+
+
+
+
+ -
+ 5819
+ 10129
+ 14
+ 24
+
+ -
+ 5827.5
+ 10141
+
+
+
+
+
+
+
+ - Result of expression
+ - 655983b5-5a6c-4df5-acae-eb12f7280409
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10129
+ 9
+ 24
+
+ -
+ 6006
+ 10141
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d2bb97e6-5e05-41ee-8886-54d3eb49ff8c
+ - Panel
+
+ - false
+ - 0
+ - 655983b5-5a6c-4df5-acae-eb12f7280409
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 10102
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.674
+ 10102.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f6cc10b-e201-4db6-b980-be1efed2e10c
+ - Panel
+
+ - false
+ - 0
+ - 39579052-c6b4-4c93-80ce-037b62f23d4b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 10254
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.674
+ 10254.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - dbcbb931-46fc-45e7-a319-ae473feb5fb6
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10278
+ 194
+ 28
+
+ -
+ 5917
+ 10292
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a9b030fa-55b8-43f4-900e-f487442c1fce
+ - Variable O
+ - O
+ - true
+ - 17d7802c-3231-45db-8bad-4ab3cdc949d3
+ - 1
+
+
+
+
+ -
+ 5819
+ 10280
+ 14
+ 24
+
+ -
+ 5827.5
+ 10292
+
+
+
+
+
+
+
+ - Result of expression
+ - 39579052-c6b4-4c93-80ce-037b62f23d4b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10280
+ 9
+ 24
+
+ -
+ 6006
+ 10292
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 595a16aa-a623-4afb-9fa9-0c2a6554fab3
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5837
+ 10004
+ 154
+ 64
+
+ -
+ 5921
+ 10036
+
+
+
+
+
+ - Base geometry
+ - f730c55d-cc18-472d-90e0-fbe683dd46d4
+ - Geometry
+ - Geometry
+ - true
+ - cea169d3-2136-4eb6-9143-f0bebe47c986
+ - 1
+
+
+
+
+ -
+ 5839
+ 10006
+ 67
+ 20
+
+ -
+ 5882
+ 10016
+
+
+
+
+
+
+
+ - Center of scaling
+ - d2d94511-bf63-4eef-b617-f38d21c8cff1
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5839
+ 10026
+ 67
+ 20
+
+ -
+ 5882
+ 10036
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e93b3d91-a1eb-431e-95a6-3452eee944b6
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - d2bb97e6-5e05-41ee-8886-54d3eb49ff8c
+ - 1
+
+
+
+
+ -
+ 5839
+ 10046
+ 67
+ 20
+
+ -
+ 5882
+ 10056
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5c7bc850-4efc-4a25-89d1-a7f544642a5a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 10006
+ 53
+ 30
+
+ -
+ 5964
+ 10021
+
+
+
+
+
+
+
+ - Transformation data
+ - 6c9d6dd4-37b0-44b3-b2c1-2d5e463b712c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 10036
+ 53
+ 30
+
+ -
+ 5964
+ 10051
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - Curve
+ - Curve
+ - false
+ - 5c7bc850-4efc-4a25-89d1-a7f544642a5a
+ - 1
+
+
+
+
+ -
+ 5891
+ 9408
+ 50
+ 24
+
+ -
+ 5916.654
+ 9420.042
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0a05fac0-c8d8-43a2-a7e4-98ca2a43fd3e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 10785
+ 194
+ 28
+
+ -
+ 5917
+ 10799
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 071e3512-484c-405f-a7d5-0b6c3a2699af
+ - Variable O
+ - O
+ - true
+ - 7e2137ea-db72-453e-a5da-70cdffc38919
+ - 1
+
+
+
+
+ -
+ 5819
+ 10787
+ 14
+ 24
+
+ -
+ 5827.5
+ 10799
+
+
+
+
+
+
+
+ - Result of expression
+ - d19e00b6-4210-4d29-904c-9857c2acd768
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 10787
+ 9
+ 24
+
+ -
+ 6006
+ 10799
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4d04e408-b736-49af-ba17-6ef9f5caf118
+ - Panel
+
+ - false
+ - 0
+ - d19e00b6-4210-4d29-904c-9857c2acd768
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5838
+ 10760
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5838.544
+ 10760.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 746e201b-3cd6-4d10-b224-d960a31ec2a8
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5842
+ 9794
+ 144
+ 64
+
+ -
+ 5916
+ 9826
+
+
+
+
+
+ - Curve to evaluate
+ - 0b388908-79e0-422a-acfb-e3716a997e56
+ - Curve
+ - Curve
+ - false
+ - 5c7bc850-4efc-4a25-89d1-a7f544642a5a
+ - 1
+
+
+
+
+ -
+ 5844
+ 9796
+ 57
+ 20
+
+ -
+ 5874
+ 9806
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 63aea307-a4fd-4052-91f2-5ec4c0d27f98
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 9816
+ 57
+ 20
+
+ -
+ 5874
+ 9826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 63d8e104-36e0-487a-9b4f-6d7885afd3cd
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 9836
+ 57
+ 20
+
+ -
+ 5874
+ 9846
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 7afcb608-1a5b-4b10-aa61-b40f3386872d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 9796
+ 53
+ 20
+
+ -
+ 5959
+ 9806
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e9b998a4-de4d-4586-a377-3bb36a701a2f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 9816
+ 53
+ 20
+
+ -
+ 5959
+ 9826
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 01c186a4-f8e6-4f48-b8cd-f80998ca3d91
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 9836
+ 53
+ 20
+
+ -
+ 5959
+ 9846
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 222f140c-0c81-4713-9a94-baade26783d5
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 9577
+ 194
+ 28
+
+ -
+ 5917
+ 9591
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b58c66f8-7aac-469e-a871-f3d3ff6e68d5
+ - Variable O
+ - O
+ - true
+ - ca99489c-2cde-43ca-8485-36d64dc570fd
+ - 1
+
+
+
+
+ -
+ 5819
+ 9579
+ 14
+ 24
+
+ -
+ 5827.5
+ 9591
+
+
+
+
+
+
+
+ - Result of expression
+ - cd848b5e-7988-46d1-8da5-52ba92f70fd4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 9579
+ 9
+ 24
+
+ -
+ 6006
+ 9591
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - a9a50160-2135-485b-ac32-52b8c1b384ee
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5848
+ 9711
+ 132
+ 64
+
+ -
+ 5895
+ 9743
+
+
+
+
+
+ - Input point
+ - fe3578bd-1540-4815-a219-d5affc118fc4
+ - Point
+ - Point
+ - false
+ - 7afcb608-1a5b-4b10-aa61-b40f3386872d
+ - 1
+
+
+
+
+ -
+ 5850
+ 9713
+ 30
+ 60
+
+ -
+ 5866.5
+ 9743
+
+
+
+
+
+
+
+ - Point {x} component
+ - ca99489c-2cde-43ca-8485-36d64dc570fd
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 9713
+ 68
+ 20
+
+ -
+ 5945.5
+ 9723
+
+
+
+
+
+
+
+ - Point {y} component
+ - dbabc110-68d0-4ecc-a91a-4b3f56dbc86e
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 9733
+ 68
+ 20
+
+ -
+ 5945.5
+ 9743
+
+
+
+
+
+
+
+ - Point {z} component
+ - eea51cec-5af8-42fa-ab25-c4e1ee89e0cb
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 9753
+ 68
+ 20
+
+ -
+ 5945.5
+ 9763
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 62256d2e-c48e-4b7a-a805-dc7290e82c4d
+ - Panel
+
+ - false
+ - 0
+ - cd848b5e-7988-46d1-8da5-52ba92f70fd4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 9547
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.924
+ 9547.962
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3e0381b1-812d-42f5-a1a6-397345b410dd
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 9491
+ 194
+ 28
+
+ -
+ 5917
+ 9505
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1d9efd19-b810-4aad-8823-e73fe8fed096
+ - Variable O
+ - O
+ - true
+ - dbabc110-68d0-4ecc-a91a-4b3f56dbc86e
+ - 1
+
+
+
+
+ -
+ 5819
+ 9493
+ 14
+ 24
+
+ -
+ 5827.5
+ 9505
+
+
+
+
+
+
+
+ - Result of expression
+ - f4471e9a-ea1b-4783-9be8-5b29bacd971e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 9493
+ 9
+ 24
+
+ -
+ 6006
+ 9505
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ebb748fc-509d-4020-9ad1-9e68a19ea81a
+ - Panel
+
+ - false
+ - 0
+ - f4471e9a-ea1b-4783-9be8-5b29bacd971e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 9462
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.935
+ 9462.333
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7944bb81-2034-4762-8159-672c0a0301da
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 9663
+ 194
+ 28
+
+ -
+ 5917
+ 9677
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2bc32946-2fa2-4c5e-ad26-3ef542c5b105
+ - Variable O
+ - O
+ - true
+ - eea51cec-5af8-42fa-ab25-c4e1ee89e0cb
+ - 1
+
+
+
+
+ -
+ 5819
+ 9665
+ 14
+ 24
+
+ -
+ 5827.5
+ 9677
+
+
+
+
+
+
+
+ - Result of expression
+ - 55204a19-f2d6-430e-aeb3-db67fb7f53ca
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 9665
+ 9
+ 24
+
+ -
+ 6006
+ 9677
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - dbac1d13-b64b-46a7-86d5-a6454cd89990
+ - Panel
+
+ - false
+ - 0
+ - 55204a19-f2d6-430e-aeb3-db67fb7f53ca
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5837
+ 9634
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5837.674
+ 9634.173
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 29d4cf3b-7477-4cab-a366-51f758a004e0
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 5736
+ 13968
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 5736.33
+ 13968.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7489d841-818d-4101-a8f9-7fd7039ae220
+ - Panel
+
+ - false
+ - 0
+ - b645c4bc-9d9b-4874-8ec9-27fad2893d18
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5749
+ 11997
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 5749.865
+ 11997.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9c19fb01-0e57-44a6-b876-c214968858f6
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 12285
+ 194
+ 28
+
+ -
+ 5917
+ 12299
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1fb86dc7-7ae3-4bb6-b34f-ef5889054291
+ - Variable O
+ - O
+ - true
+ - 01bc5e62-d096-4f62-98a1-30ad9e556956
+ - 1
+
+
+
+
+ -
+ 5819
+ 12287
+ 14
+ 24
+
+ -
+ 5827.5
+ 12299
+
+
+
+
+
+
+
+ - Result of expression
+ - b645c4bc-9d9b-4874-8ec9-27fad2893d18
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 12287
+ 9
+ 24
+
+ -
+ 6006
+ 12299
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 5901
+ 14398
+ 50
+ 24
+
+ -
+ 5926.636
+ 14410.26
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - b9dc4289-1ec3-450b-a17d-340518a6c2f0
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 5745
+ 12567
+ 160
+ 224
+
+ -
+ 5813
+ 12679
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 32d6541c-6408-46b0-a7ef-3bf06d4f6142
+ - true
+ - Curves
+ - Curves
+ - false
+ - a2ddecae-b510-4bde-a13c-a6778c2b7983
+ - 1
+
+
+
+
+ -
+ 5747
+ 12569
+ 51
+ 27
+
+ -
+ 5774
+ 12582.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - f9baf45b-88b0-455d-93c3-b3926ac5a47e
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - fbce522b-808a-4e01-b628-2d36e3a39178
+ - 1
+
+
+
+
+ -
+ 5747
+ 12596
+ 51
+ 28
+
+ -
+ 5774
+ 12610.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 606e2f95-e48a-40a2-adf9-89ca6af5981f
+ - true
+ - Values
+ - Values
+ - false
+ - b37e1d0b-abaa-4548-a8df-b35440ba7c04
+ - 1
+
+
+
+
+ -
+ 5747
+ 12624
+ 51
+ 27
+
+ -
+ 5774
+ 12637.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 4792c775-c135-4b3c-b6f9-c3d1de04bc44
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5747
+ 12651
+ 51
+ 28
+
+ -
+ 5774
+ 12665.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - e93b32ff-373a-4fdf-b68c-f3f111b9e178
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5747
+ 12679
+ 51
+ 27
+
+ -
+ 5774
+ 12692.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 4722c34a-c7f1-4f41-93fa-dd5de1ddd522
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 5747
+ 12706
+ 51
+ 28
+
+ -
+ 5774
+ 12720.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 1e76bda1-440a-4b7f-81b2-986994e1f4ac
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 5747
+ 12734
+ 51
+ 27
+
+ -
+ 5774
+ 12747.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 4f5d6bea-fe90-4a82-a30c-c1ff3d880362
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 5747
+ 12761
+ 51
+ 28
+
+ -
+ 5774
+ 12775.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 182e6756-dbe1-445b-b63e-b4e763b846d2
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12569
+ 75
+ 20
+
+ -
+ 5867
+ 12579
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 2f4cf36c-da50-4871-bb23-2cf39032f6d0
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12589
+ 75
+ 20
+
+ -
+ 5867
+ 12599
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 67e243a0-9c79-4cf9-867b-fd7a8223b5bb
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12609
+ 75
+ 20
+
+ -
+ 5867
+ 12619
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 253e7abe-516a-4b5f-964e-7cd9034bf068
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12629
+ 75
+ 20
+
+ -
+ 5867
+ 12639
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - e926acac-330d-4c65-919d-d8c44003cdaf
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12649
+ 75
+ 20
+
+ -
+ 5867
+ 12659
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 0e937535-972d-49f0-ba64-31842e5b9511
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12669
+ 75
+ 20
+
+ -
+ 5867
+ 12679
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 9b998ae6-f2df-4c33-8ee1-323c54087441
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12689
+ 75
+ 20
+
+ -
+ 5867
+ 12699
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - a547d1bc-cea7-4a2f-bdee-a517455cc879
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12709
+ 75
+ 20
+
+ -
+ 5867
+ 12719
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 4563af42-7f5f-49f1-9b58-076ad24c33dc
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12729
+ 75
+ 20
+
+ -
+ 5867
+ 12739
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 88f68fbc-71e3-4f2f-9d8b-955ca7c852a2
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12749
+ 75
+ 20
+
+ -
+ 5867
+ 12759
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 05211d5f-978e-4d62-bda8-e42e2c9d662a
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 5828
+ 12769
+ 75
+ 20
+
+ -
+ 5867
+ 12779
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 713ed1dd-ba3c-4484-8007-463b630d6092
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5866
+ 12992
+ 96
+ 44
+
+ -
+ 5916
+ 13014
+
+
+
+
+
+ - Curve to evaluate
+ - aea9f626-3da0-429c-a2b4-fe51089d24b9
+ - Curve
+ - Curve
+ - false
+ - a2ddecae-b510-4bde-a13c-a6778c2b7983
+ - 1
+
+
+
+
+ -
+ 5868
+ 12994
+ 33
+ 40
+
+ -
+ 5886
+ 13014
+
+
+
+
+
+
+
+ - Curve start point
+ - 65bae426-5e17-4d4a-b597-cd6f3232f590
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 12994
+ 29
+ 20
+
+ -
+ 5947
+ 13004
+
+
+
+
+
+
+
+ - Curve end point
+ - f1cfd79e-7012-45b9-9c67-010726f6ccc2
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5931
+ 13014
+ 29
+ 20
+
+ -
+ 5947
+ 13024
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - d0bb098e-b480-4784-a2db-4d6927537b51
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5851
+ 12890
+ 126
+ 84
+
+ -
+ 5909
+ 12932
+
+
+
+
+
+ - Rectangle base plane
+ - 66726f7e-8dd7-422b-b0a1-d4b1f9efaf56
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5853
+ 12892
+ 41
+ 20
+
+ -
+ 5875
+ 12902
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - fb377aff-64f2-4c63-b144-673fa5fb318b
+ - Point A
+ - Point A
+ - false
+ - 65bae426-5e17-4d4a-b597-cd6f3232f590
+ - 1
+
+
+
+
+ -
+ 5853
+ 12912
+ 41
+ 20
+
+ -
+ 5875
+ 12922
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 3d92733c-76d9-4666-9bf2-7eb4b6479dae
+ - Point B
+ - Point B
+ - false
+ - f1cfd79e-7012-45b9-9c67-010726f6ccc2
+ - 1
+
+
+
+
+ -
+ 5853
+ 12932
+ 41
+ 20
+
+ -
+ 5875
+ 12942
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 1ef35318-2b34-40b0-aac4-39054c03b5a6
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5853
+ 12952
+ 41
+ 20
+
+ -
+ 5875
+ 12962
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - fbce522b-808a-4e01-b628-2d36e3a39178
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5924
+ 12892
+ 51
+ 40
+
+ -
+ 5951
+ 12912
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 936d84ad-70d2-4c7b-9b60-e73067350e28
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5924
+ 12932
+ 51
+ 40
+
+ -
+ 5951
+ 12952
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 6c254cc7-4033-407f-adf4-b19baf050a44
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 5905
+ 12687
+ 126
+ 104
+
+ -
+ 5972
+ 12739
+
+
+
+
+
+ - External curve as a graph
+ - 25c65aed-aba1-4f3e-a1ee-42f2c644a105
+ - Curve
+ - Curve
+ - false
+ - a2ddecae-b510-4bde-a13c-a6778c2b7983
+ - 1
+
+
+
+
+ -
+ 5907
+ 12689
+ 50
+ 20
+
+ -
+ 5933.5
+ 12699
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 76aaa4e5-1b5c-4f8b-93bc-1d8b63359864
+ - Boundary
+ - Boundary
+ - true
+ - fbce522b-808a-4e01-b628-2d36e3a39178
+ - 1
+
+
+
+
+ -
+ 5907
+ 12709
+ 50
+ 20
+
+ -
+ 5933.5
+ 12719
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 61d6b9c5-67fd-4efb-8f53-165917c4d7ac
+ - Numbers
+ - Numbers
+ - false
+ - b37e1d0b-abaa-4548-a8df-b35440ba7c04
+ - 1
+
+
+
+
+ -
+ 5907
+ 12729
+ 50
+ 20
+
+ -
+ 5933.5
+ 12739
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 6efeeb86-181f-46e8-8e04-bf2bc2fbc8d7
+ - Input
+ - Input
+ - true
+ - 7ec45eea-d71b-4e9c-b409-4a968132f79d
+ - 1
+
+
+
+
+ -
+ 5907
+ 12749
+ 50
+ 20
+
+ -
+ 5933.5
+ 12759
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 15e24b2d-524c-4ad7-b733-8a40932d9d18
+ - Output
+ - Output
+ - true
+ - 7ec45eea-d71b-4e9c-b409-4a968132f79d
+ - 1
+
+
+
+
+ -
+ 5907
+ 12769
+ 50
+ 20
+
+ -
+ 5933.5
+ 12779
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 88325158-59bf-4c2c-bc69-0d798de17f6c
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 5987
+ 12689
+ 42
+ 100
+
+ -
+ 6009.5
+ 12739
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 881129bc-16dd-40c5-bf7f-c7572fda3282
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5880
+ 12484
+ 89
+ 64
+
+ -
+ 5925
+ 12516
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 8d3fbb9c-6e24-4a47-ba2f-fba4ff65e024
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 5882
+ 12486
+ 28
+ 20
+
+ -
+ 5897.5
+ 12496
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 01f240ea-0277-49c1-b60f-c84515115e1d
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 182e6756-dbe1-445b-b63e-b4e763b846d2
+ - 1
+
+
+
+
+ -
+ 5882
+ 12506
+ 28
+ 20
+
+ -
+ 5897.5
+ 12516
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 27fdf3b3-d73a-4740-a202-9f3ec68ebde3
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 88325158-59bf-4c2c-bc69-0d798de17f6c
+ - 1
+
+
+
+
+ -
+ 5882
+ 12526
+ 28
+ 20
+
+ -
+ 5897.5
+ 12536
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 4ebb94c8-ee9c-49e1-9f2b-d25de3e882c2
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5940
+ 12486
+ 27
+ 60
+
+ -
+ 5955
+ 12516
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 3dcdc74d-0754-44f4-8ca2-53e9c12b222d
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5851
+ 12406
+ 150
+ 20
+
+ -
+ 5851.294
+ 12406.4
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 98616d02-198c-4e07-8bfb-0db902628d0e
+ - Panel
+
+ - false
+ - 1
+ - 7ccfe85a-600b-425d-a262-6d8b737e0ff1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5828
+ 13184
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 5828.365
+ 13184.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - f1b2d74a-41f2-4126-a4b7-21cf28684074
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 5855
+ 13131
+ 122
+ 28
+
+ -
+ 5919
+ 13145
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 203fd579-7096-43f6-aba0-bf8ae8af0c3c
+ - Numbers
+ - Numbers
+ - false
+ - b37e1d0b-abaa-4548-a8df-b35440ba7c04
+ - 1
+
+
+
+
+ -
+ 5857
+ 13133
+ 47
+ 24
+
+ -
+ 5882
+ 13145
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 7ec45eea-d71b-4e9c-b409-4a968132f79d
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5934
+ 13133
+ 41
+ 24
+
+ -
+ 5956
+ 13145
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0b43c670-fa3c-4718-87ba-1a1a10682542
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5817
+ 13545
+ 194
+ 28
+
+ -
+ 5917
+ 13559
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 92256dbc-c9c5-4f50-a48f-d0c66586992f
+ - true
+ - Variable O
+ - O
+ - true
+ - b37e1d0b-abaa-4548-a8df-b35440ba7c04
+ - 1
+
+
+
+
+ -
+ 5819
+ 13547
+ 14
+ 24
+
+ -
+ 5827.5
+ 13559
+
+
+
+
+
+
+
+ - Result of expression
+ - 7ccfe85a-600b-425d-a262-6d8b737e0ff1
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6000
+ 13547
+ 9
+ 24
+
+ -
+ 6006
+ 13559
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 58f18244-1793-4931-bdd9-44e64541efd5
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5735
+ 13762
+ 367
+ 28
+
+ -
+ 5921
+ 13776
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bac985bc-3c64-4e06-9480-82c8a0523b07
+ - Variable O
+ - O
+ - true
+ - 711bca00-e1e4-4e9a-8633-2c096c3a9a2a
+ - 1
+
+
+
+
+ -
+ 5737
+ 13764
+ 14
+ 24
+
+ -
+ 5745.5
+ 13776
+
+
+
+
+
+
+
+ - Result of expression
+ - 827382bd-5192-4a4f-bf49-71afa26b8ba3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6091
+ 13764
+ 9
+ 24
+
+ -
+ 6097
+ 13776
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f1dae086-0eb4-42a5-9d3d-6e0209aa7e07
+ - Panel
+
+ - false
+ - 0
+ - 827382bd-5192-4a4f-bf49-71afa26b8ba3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5828
+ 13721
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5828.504
+ 13721.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+ - 31636796-8e84-41de-9662-aaba74134bca
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - a1530f9c-a537-42de-932e-19c6365e8716
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5837
+ 9919
+ 154
+ 64
+
+ -
+ 5921
+ 9951
+
+
+
+
+
+ - Base geometry
+ - 9f91d827-4ff8-4d9c-87ed-3299940f8322
+ - Geometry
+ - Geometry
+ - true
+ - e654b44d-372f-4d5e-aa76-bc0c6662276d
+ - 1
+
+
+
+
+ -
+ 5839
+ 9921
+ 67
+ 20
+
+ -
+ 5882
+ 9931
+
+
+
+
+
+
+
+ - Center of scaling
+ - b9efb098-db06-46a9-81ff-b735138bad62
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5839
+ 9941
+ 67
+ 20
+
+ -
+ 5882
+ 9951
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2b2ad2c0-ed7a-4275-9c68-b6506f4ed6b1
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - d2bb97e6-5e05-41ee-8886-54d3eb49ff8c
+ - 1
+
+
+
+
+ -
+ 5839
+ 9961
+ 67
+ 20
+
+ -
+ 5882
+ 9971
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 0f759aa6-ce3f-448b-b4aa-05ccd2e50bc4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 9921
+ 53
+ 30
+
+ -
+ 5964
+ 9936
+
+
+
+
+
+
+
+ - Transformation data
+ - 20c9778a-6e8e-4dc4-bd49-ac798684af92
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 9951
+ 53
+ 30
+
+ -
+ 5964
+ 9966
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - fc6414a0-9bee-48ef-aa06-3637587227ea
+ - Point
+ - Point
+ - false
+ - 0f759aa6-ce3f-448b-b4aa-05ccd2e50bc4
+ - 1
+
+
+
+
+ -
+ 5892
+ 9886
+ 50
+ 24
+
+ -
+ 5917.654
+ 9898.212
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - d527a055-9671-4265-bd48-d0ac4b70ce06
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5842
+ 9306
+ 138
+ 44
+
+ -
+ 5910
+ 9328
+
+
+
+
+
+ - Base geometry
+ - 437cf461-dac3-43ce-a5ee-5321ee330926
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 5844
+ 9308
+ 51
+ 20
+
+ -
+ 5871
+ 9318
+
+
+
+
+
+
+
+ - Mirror plane
+ - 61efaebb-c222-41ae-b6d2-cb5b2f30a1dd
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 9328
+ 51
+ 20
+
+ -
+ 5871
+ 9338
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 820bf723-8b75-476a-99b0-8ae39d7e8184
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5925
+ 9308
+ 53
+ 20
+
+ -
+ 5953
+ 9318
+
+
+
+
+
+
+
+ - Transformation data
+ - 223be809-c43f-4a8a-b19e-f7f9db070157
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5925
+ 9328
+ 53
+ 20
+
+ -
+ 5953
+ 9338
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 60ea54e2-64fe-495f-8b22-913d5a6247ca
+ - true
+ - Curve
+ - Curve
+ - false
+ - d81a4267-c3c4-4a5b-9a89-5db64d2729ec
+ - 1
+
+
+
+
+ -
+ 5891
+ 9205
+ 50
+ 24
+
+ -
+ 5916.904
+ 9217.064
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a2ddecae-b510-4bde-a13c-a6778c2b7983
+ - Relay
+
+ - false
+ - ad9ea562-2b39-4919-a30a-f817d04760a4
+ - 1
+
+
+
+
+ -
+ 5896
+ 13059
+ 40
+ 16
+
+ -
+ 5916
+ 13067
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a47a2904-7d1e-48ac-ac00-fdf57bd3ae44
+ - Curve
+ - Curve
+ - false
+ - 3a2182b2-50af-4963-b72c-d9b7f51dec82
+ - 1
+
+
+
+
+ -
+ 5462
+ 13453
+ 50
+ 24
+
+ -
+ 5487.403
+ 13465.68
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ad9ea562-2b39-4919-a30a-f817d04760a4
+ - Curve
+ - Curve
+ - false
+ - c373d7cb-7d25-4266-bca1-8980cf577a0f
+ - 1
+
+
+
+
+ -
+ 5461
+ 13163
+ 50
+ 24
+
+ -
+ 5486.5
+ 13175.83
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 4ae700a5-4c80-4df1-9b07-1f94cf9b3f4b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5406
+ 13198
+ 154
+ 64
+
+ -
+ 5490
+ 13230
+
+
+
+
+
+ - Base geometry
+ - 1b620b1b-2aef-4823-ae56-fe05c8df1615
+ - Geometry
+ - Geometry
+ - true
+ - a47a2904-7d1e-48ac-ac00-fdf57bd3ae44
+ - 1
+
+
+
+
+ -
+ 5408
+ 13200
+ 67
+ 20
+
+ -
+ 5451
+ 13210
+
+
+
+
+
+
+
+ - Center of scaling
+ - 365ddd13-d235-4daf-9a15-0251e4d3c1c4
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5408
+ 13220
+ 67
+ 20
+
+ -
+ 5451
+ 13230
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - df158a1d-5c5a-457d-902e-0a1d4c23b840
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 215ee42c-ec8c-4de7-86f1-4b5a561eba9e
+ - 1
+
+
+
+
+ -
+ 5408
+ 13240
+ 67
+ 20
+
+ -
+ 5451
+ 13250
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c373d7cb-7d25-4266-bca1-8980cf577a0f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5505
+ 13200
+ 53
+ 30
+
+ -
+ 5533
+ 13215
+
+
+
+
+
+
+
+ - Transformation data
+ - 08d0ebc7-3a87-4507-8d65-c696cbc636a0
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5505
+ 13230
+ 53
+ 30
+
+ -
+ 5533
+ 13245
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a47a2904-7d1e-48ac-ac00-fdf57bd3ae44
+ - ad9ea562-2b39-4919-a30a-f817d04760a4
+ - 4ae700a5-4c80-4df1-9b07-1f94cf9b3f4b
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - f06837a3-5d93-4535-83ac-52d284bde62b
+ - 45290006-f0c0-4f96-813c-690f44b1430c
+ - ff38107b-202f-4453-ae39-9a617f4c1117
+ - 154c95ec-c2f6-42f4-9124-5e47132d09fe
+ - 215ee42c-ec8c-4de7-86f1-4b5a561eba9e
+ - 01b18334-33c4-4ddf-93c5-7139eb31af37
+ - 57d8cf5a-d653-4aa1-b5d2-37aa860a7191
+ - 11
+ - 56d047c6-8c13-4095-a979-5d5173a10ad1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - f62e3b72-6853-4295-8a24-ca3f671c554d
+ - Move
+ - Move
+
+
+
+
+ -
+ 5842
+ 9242
+ 138
+ 44
+
+ -
+ 5910
+ 9264
+
+
+
+
+
+ - Base geometry
+ - ca34b43a-f467-4000-974c-f20e3134ea02
+ - Geometry
+ - Geometry
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 5844
+ 9244
+ 51
+ 20
+
+ -
+ 5871
+ 9254
+
+
+
+
+
+
+
+ - Translation vector
+ - 2f419528-fc75-4b41-8044-9d0b4f897b11
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 5844
+ 9264
+ 51
+ 20
+
+ -
+ 5871
+ 9274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - d81a4267-c3c4-4a5b-9a89-5db64d2729ec
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5925
+ 9244
+ 53
+ 20
+
+ -
+ 5953
+ 9254
+
+
+
+
+
+
+
+ - Transformation data
+ - ba1f896c-a4d0-43e1-9bcc-4fc2ccca950e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5925
+ 9264
+ 53
+ 20
+
+ -
+ 5953
+ 9274
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f06837a3-5d93-4535-83ac-52d284bde62b
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 5359
+ 13410
+ 250
+ 20
+
+ -
+ 5359.229
+ 13410.06
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 45290006-f0c0-4f96-813c-690f44b1430c
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 5418
+ 13288
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5418.967
+ 13288.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ff38107b-202f-4453-ae39-9a617f4c1117
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5461
+ 13120
+ 50
+ 24
+
+ -
+ 5486.5
+ 13132.83
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 154c95ec-c2f6-42f4-9124-5e47132d09fe
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5462
+ 13590
+ 50
+ 24
+
+ -
+ 5487.229
+ 13602
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 08d0fe08-e5a7-4f39-bcd3-c9761f452521
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5698
+ 13932
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5698.886
+ 13932.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - dbb5dc80-4acb-413d-969c-85a2f4200d6f
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 6266
+ 9931
+ 96
+ 44
+
+ -
+ 6316
+ 9953
+
+
+
+
+
+ - Curve to evaluate
+ - be2febf1-ecce-4828-a44c-35a76bc1f1d2
+ - Curve
+ - Curve
+ - false
+ - 5a1746ed-86dd-4d88-bc68-5f807e8d4b3d
+ - 1
+
+
+
+
+ -
+ 6268
+ 9933
+ 33
+ 40
+
+ -
+ 6286
+ 9953
+
+
+
+
+
+
+
+ - Curve start point
+ - 3386e9eb-0667-4d57-bab0-2f9d4587d779
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6331
+ 9933
+ 29
+ 20
+
+ -
+ 6347
+ 9943
+
+
+
+
+
+
+
+ - Curve end point
+ - 7e52aa9b-0275-48d8-b92e-7fe5ca417526
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 6331
+ 9953
+ 29
+ 20
+
+ -
+ 6347
+ 9963
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 61cf9524-f205-4ea3-ac2c-b7a2df71b31d
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 6251
+ 9828
+ 126
+ 84
+
+ -
+ 6309
+ 9870
+
+
+
+
+
+ - Rectangle base plane
+ - 0788cf45-f6d3-42ef-837c-1a65cd708327
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 6253
+ 9830
+ 41
+ 20
+
+ -
+ 6275
+ 9840
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 0688837e-d1b2-473a-afa0-6f066d9ee689
+ - Point A
+ - Point A
+ - false
+ - 3386e9eb-0667-4d57-bab0-2f9d4587d779
+ - 1
+
+
+
+
+ -
+ 6253
+ 9850
+ 41
+ 20
+
+ -
+ 6275
+ 9860
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 08694b21-9f73-4997-9cb3-97a193e0311a
+ - Point B
+ - Point B
+ - false
+ - 7e52aa9b-0275-48d8-b92e-7fe5ca417526
+ - 1
+
+
+
+
+ -
+ 6253
+ 9870
+ 41
+ 20
+
+ -
+ 6275
+ 9880
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 78a51c30-f6b8-4cb8-8016-fc3f08b617f3
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 6253
+ 9890
+ 41
+ 20
+
+ -
+ 6275
+ 9900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - f94e4fec-b86d-49a0-a2e4-6eab56feb15d
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 6324
+ 9830
+ 51
+ 40
+
+ -
+ 6351
+ 9850
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - a86db4cb-ef67-420e-aabc-ea1f320f5700
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6324
+ 9870
+ 51
+ 40
+
+ -
+ 6351
+ 9890
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - bafe90e0-6f7a-4572-bf4c-9530d7ea2237
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 6243
+ 9745
+ 142
+ 64
+
+ -
+ 6311
+ 9777
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 2be5869e-ba23-42a5-8024-4d18b1323b3e
+ - Rectangle
+ - Rectangle
+ - false
+ - f94e4fec-b86d-49a0-a2e4-6eab56feb15d
+ - 1
+
+
+
+
+ -
+ 6245
+ 9747
+ 51
+ 60
+
+ -
+ 6272
+ 9777
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 941fea12-a11f-4a91-bfea-61fcfd528244
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 6326
+ 9747
+ 57
+ 20
+
+ -
+ 6356
+ 9757
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 8d14054b-4c2d-4b5e-809c-829c05c974b2
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 6326
+ 9767
+ 57
+ 20
+
+ -
+ 6356
+ 9777
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - f1c5a0ed-af11-4084-8d0a-3b912daab294
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 6326
+ 9787
+ 57
+ 20
+
+ -
+ 6356
+ 9797
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - c40d8cac-0c78-4496-a6f9-8db45610e33d
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 6262
+ 9618
+ 104
+ 44
+
+ -
+ 6320
+ 9640
+
+
+
+
+
+ - Base domain
+ - 94e268db-3622-4ae6-9332-57718ccc1c55
+ - Domain
+ - Domain
+ - false
+ - f1c5a0ed-af11-4084-8d0a-3b912daab294
+ - 1
+
+
+
+
+ -
+ 6264
+ 9620
+ 41
+ 40
+
+ -
+ 6286
+ 9640
+
+
+
+
+
+
+
+ - Start of domain
+ - d630522c-e63c-4325-ba8c-29d255e2c081
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6335
+ 9620
+ 29
+ 20
+
+ -
+ 6351
+ 9630
+
+
+
+
+
+
+
+ - End of domain
+ - 15601532-333b-4500-b01f-832fceb9988f
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 6335
+ 9640
+ 29
+ 20
+
+ -
+ 6351
+ 9650
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 4d6c12c1-0bbd-4add-92ca-8c84daf9ef53
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 6262
+ 9680
+ 104
+ 44
+
+ -
+ 6320
+ 9702
+
+
+
+
+
+ - Base domain
+ - 45458c32-2eb4-4a43-b69d-b49a72e04e24
+ - Domain
+ - Domain
+ - false
+ - 8d14054b-4c2d-4b5e-809c-829c05c974b2
+ - 1
+
+
+
+
+ -
+ 6264
+ 9682
+ 41
+ 40
+
+ -
+ 6286
+ 9702
+
+
+
+
+
+
+
+ - Start of domain
+ - 3238249f-ed3e-4c48-931d-16fce52cec02
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 6335
+ 9682
+ 29
+ 20
+
+ -
+ 6351
+ 9692
+
+
+
+
+
+
+
+ - End of domain
+ - e8b2cb84-d2c9-477c-9b78-94b94de3b6ca
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 6335
+ 9702
+ 29
+ 20
+
+ -
+ 6351
+ 9712
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 3222923d-ecbc-4e99-87d4-38a37e517350
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 6237
+ 9495
+ 154
+ 104
+
+ -
+ 6321
+ 9547
+
+
+
+
+
+ - Base geometry
+ - 7de7e079-af29-4746-ace8-eb539260ad74
+ - Geometry
+ - Geometry
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 6239
+ 9497
+ 67
+ 20
+
+ -
+ 6282
+ 9507
+
+
+
+
+
+
+
+ - Base plane
+ - fa83f991-b21b-46d9-af25-81cc12394afd
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 6239
+ 9517
+ 67
+ 20
+
+ -
+ 6282
+ 9527
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 672e1115-2634-4cfd-8064-397c9e45ea38
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - e8b2cb84-d2c9-477c-9b78-94b94de3b6ca
+ - 1
+
+
+
+
+ -
+ 6239
+ 9537
+ 67
+ 20
+
+ -
+ 6282
+ 9547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - c78f6626-6051-40bf-ba58-60eeddd4679b
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 15601532-333b-4500-b01f-832fceb9988f
+ - 1
+
+
+
+
+ -
+ 6239
+ 9557
+ 67
+ 20
+
+ -
+ 6282
+ 9567
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 9681d0c6-0bc2-498c-91a6-7133730afe56
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 6239
+ 9577
+ 67
+ 20
+
+ -
+ 6282
+ 9587
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c5b0209d-7eff-466d-9721-a4a98764b2a0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6336
+ 9497
+ 53
+ 50
+
+ -
+ 6364
+ 9522
+
+
+
+
+
+
+
+ - Transformation data
+ - a622865f-128b-4789-aeb9-373a66c3dcad
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6336
+ 9547
+ 53
+ 50
+
+ -
+ 6364
+ 9572
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dbb5dc80-4acb-413d-969c-85a2f4200d6f
+ - 61cf9524-f205-4ea3-ac2c-b7a2df71b31d
+ - bafe90e0-6f7a-4572-bf4c-9530d7ea2237
+ - c40d8cac-0c78-4496-a6f9-8db45610e33d
+ - 4d6c12c1-0bbd-4add-92ca-8c84daf9ef53
+ - 3222923d-ecbc-4e99-87d4-38a37e517350
+ - 5a1746ed-86dd-4d88-bc68-5f807e8d4b3d
+ - ffec4d71-4ff5-4e80-877f-78e4fee070d7
+ - 74296b2d-da88-4dd3-bfe4-425c82270851
+ - 99805ebf-f622-48cc-a2b0-15df4edd0fe8
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - 5476751a-871d-4a7c-9271-5478d5934e96
+ - 12
+ - 47229e8b-a860-4910-8f8b-d92626f9db64
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5a1746ed-86dd-4d88-bc68-5f807e8d4b3d
+ - Curve
+ - Curve
+ - false
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 6293
+ 10005
+ 50
+ 24
+
+ -
+ 6318.132
+ 10017.3
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ffec4d71-4ff5-4e80-877f-78e4fee070d7
+ - Curve
+ - Curve
+ - false
+ - c5b0209d-7eff-466d-9721-a4a98764b2a0
+ - 1
+
+
+
+
+ -
+ 6292
+ 9443
+ 50
+ 24
+
+ -
+ 6317.916
+ 9455.55
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 74296b2d-da88-4dd3-bfe4-425c82270851
+ - Move
+ - Move
+
+
+
+
+ -
+ 6243
+ 9248
+ 138
+ 44
+
+ -
+ 6311
+ 9270
+
+
+
+
+
+ - Base geometry
+ - c99df591-69f6-4afc-94fd-1065fba9e027
+ - Geometry
+ - Geometry
+ - true
+ - ffec4d71-4ff5-4e80-877f-78e4fee070d7
+ - 1
+
+
+
+
+ -
+ 6245
+ 9250
+ 51
+ 20
+
+ -
+ 6272
+ 9260
+
+
+
+
+
+
+
+ - Translation vector
+ - 3f61b4cd-5068-4f43-a37a-ae95257bc7d6
+ - Motion
+ - Motion
+ - false
+ - f419d345-faef-4d1f-a829-4cf7dcadf807
+ - 1
+
+
+
+
+ -
+ 6245
+ 9270
+ 51
+ 20
+
+ -
+ 6272
+ 9280
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - cab46d61-0caa-492f-b691-fad06a903569
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6326
+ 9250
+ 53
+ 20
+
+ -
+ 6354
+ 9260
+
+
+
+
+
+
+
+ - Transformation data
+ - 96d69e72-2a90-4093-9fe6-5f14e2afad85
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6326
+ 9270
+ 53
+ 20
+
+ -
+ 6354
+ 9280
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 99805ebf-f622-48cc-a2b0-15df4edd0fe8
+ - true
+ - Curve
+ - Curve
+ - false
+ - cab46d61-0caa-492f-b691-fad06a903569
+ - 1
+
+
+
+
+ -
+ 6290
+ 9205
+ 50
+ 24
+
+ -
+ 6315.247
+ 9217.51
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 85fd1d43-19b7-4665-a653-b87533a75cbc
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 5699
+ 14093
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 5699.191
+ 14093.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 734b5e8e-2a59-47e7-8504-23c8d228c2ed
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 5791
+ 14243
+ 251
+ 20
+
+ -
+ 5791.796
+ 14243.51
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6bb7f00d-765d-42e7-8b9e-dd152d099485
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 5698
+ 14152
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5698.636
+ 14152.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - defe06db-53c0-489d-8e74-07f2ca6cbc47
+ - Expression
+
+
+
+
+
+ -
+ 5882
+ 14341
+ 79
+ 28
+
+ -
+ 5924
+ 14355
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 43ba991f-8971-403a-a2f7-09c72d0cfb7c
+ - Variable X
+ - X
+ - true
+ - 29995541-45bf-46b5-b7e2-056a09aca62e
+ - 1
+
+
+
+
+ -
+ 5884
+ 14343
+ 14
+ 24
+
+ -
+ 5892.5
+ 14355
+
+
+
+
+
+
+
+ - Result of expression
+ - d4e5bbf9-72bd-4247-8027-f1b352e4af41
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 5950
+ 14343
+ 9
+ 24
+
+ -
+ 5956
+ 14355
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 25aa5733-be81-4880-a0cb-342eaf97bb70
+ - Point
+ - Point
+ - false
+ - 5f265745-6ca0-49fb-a2cc-9640c03fedfc
+ - 1
+
+
+
+
+ -
+ 5914
+ 11868
+ 50
+ 24
+
+ -
+ 5939.612
+ 11880.24
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 5f265745-6ca0-49fb-a2cc-9640c03fedfc
+ - Relay
+
+ - false
+ - 01bc5e62-d096-4f62-98a1-30ad9e556956
+ - 1
+
+
+
+
+ -
+ 5918
+ 11915
+ 40
+ 16
+
+ -
+ 5938
+ 11923
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e654b44d-372f-4d5e-aa76-bc0c6662276d
+ - Relay
+
+ - false
+ - 7d794f9d-fe56-4cda-a107-200aa0753ad5
+ - 1
+
+
+
+
+ -
+ 5918
+ 11692
+ 40
+ 16
+
+ -
+ 5938
+ 11700
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 15cea472-84f0-43d6-adb5-ebab1513851b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5861
+ 11728
+ 154
+ 64
+
+ -
+ 5945
+ 11760
+
+
+
+
+
+ - Base geometry
+ - fd50984f-6c0b-4c57-81ca-570fa633c5cb
+ - Geometry
+ - Geometry
+ - true
+ - 25aa5733-be81-4880-a0cb-342eaf97bb70
+ - 1
+
+
+
+
+ -
+ 5863
+ 11730
+ 67
+ 20
+
+ -
+ 5906
+ 11740
+
+
+
+
+
+
+
+ - Center of scaling
+ - e81993b5-0cab-4939-baa1-16bd08ce23da
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5863
+ 11750
+ 67
+ 20
+
+ -
+ 5906
+ 11760
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - eb16b407-723c-446a-bb39-883cd02b96b9
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 786183f9-8f91-45b1-ba10-5f602200fca4
+ - 1
+
+
+
+
+ -
+ 5863
+ 11770
+ 67
+ 20
+
+ -
+ 5906
+ 11780
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 7d794f9d-fe56-4cda-a107-200aa0753ad5
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5960
+ 11730
+ 53
+ 30
+
+ -
+ 5988
+ 11745
+
+
+
+
+
+
+
+ - Transformation data
+ - b324d934-ff01-4969-9525-d2f3258cfb36
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5960
+ 11760
+ 53
+ 30
+
+ -
+ 5988
+ 11775
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 786183f9-8f91-45b1-ba10-5f602200fca4
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 5819
+ 11812
+ 250
+ 20
+
+ -
+ 5819.391
+ 11812.6
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 25aa5733-be81-4880-a0cb-342eaf97bb70
+ - 1
+ - a76219c7-98a0-4832-8b36-314f51be2052
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 215ee42c-ec8c-4de7-86f1-4b5a561eba9e
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 5468
+ 13373
+ 40
+ 16
+
+ -
+ 5488
+ 13381
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 01b18334-33c4-4ddf-93c5-7139eb31af37
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 5416
+ 13339
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5416.223
+ 13339.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 361f9aa4-30a2-49f7-8574-73abb3c98a5e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 5791
+ 14195
+ 251
+ 20
+
+ -
+ 5791.796
+ 14195.26
+
+
+
+
+
+
+
+
+
+ - a50fcd4a-cf42-4c3f-8616-022761e6cc93
+ - Deconstruct Vector
+
+
+
+
+ - Deconstruct a vector into its component parts.
+ - true
+ - 357048ec-5c88-4cb9-8f5c-81a5f5abfff8
+ - Deconstruct Vector
+ - Deconstruct Vector
+
+
+
+
+ -
+ 19798
+ 9290
+ 138
+ 64
+
+ -
+ 19851
+ 9322
+
+
+
+
+
+ - Input vector
+ - 3296ba5e-a8d8-4a7f-8511-7b8085fd68c5
+ - Vector
+ - Vector
+ - false
+ - bfccd18e-cb91-484e-8a45-84b5da37edcf
+ - 1
+
+
+
+
+ -
+ 19800
+ 9292
+ 36
+ 60
+
+ -
+ 19819.5
+ 9322
+
+
+
+
+
+
+
+ - Vector {x} component
+ - 02a8d5d4-3b27-406d-b433-63b674456bf8
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 19866
+ 9292
+ 68
+ 20
+
+ -
+ 19901.5
+ 9302
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 6480ffbb-0295-4563-807f-ec1cb13433ab
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 19866
+ 9312
+ 68
+ 20
+
+ -
+ 19901.5
+ 9322
+
+
+
+
+
+
+
+ - Vector {z} component
+ - cec671fc-4c4e-486f-aab2-6b1489f96f4c
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 19866
+ 9332
+ 68
+ 20
+
+ -
+ 19901.5
+ 9342
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 7cc5932e-b5d0-4767-b86c-09db982220c7
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 19798
+ 9190
+ 155
+ 64
+
+ -
+ 19899
+ 9222
+
+
+
+
+
+ - Vector {x} component
+ - e53a0d2c-57bc-477e-a4ac-eabad4189717
+ - X component
+ - X component
+ - false
+ - 02a8d5d4-3b27-406d-b433-63b674456bf8
+ - 1
+
+
+
+
+ -
+ 19800
+ 9192
+ 84
+ 20
+
+ -
+ 19851.5
+ 9202
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 68cf04a2-d5aa-49bf-9465-895fba0e2eda
+ - X+2.5
+ - Y component
+ - Y component
+ - false
+ - 6480ffbb-0295-4563-807f-ec1cb13433ab
+ - 1
+
+
+
+
+ -
+ 19800
+ 9212
+ 84
+ 20
+
+ -
+ 19851.5
+ 9222
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 357b6cf5-9279-4ef5-9eec-3caae1c7c68a
+ - Z component
+ - Z component
+ - false
+ - cec671fc-4c4e-486f-aab2-6b1489f96f4c
+ - 1
+
+
+
+
+ -
+ 19800
+ 9232
+ 84
+ 20
+
+ -
+ 19851.5
+ 9242
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - e24f66c2-f6ca-429a-95a4-deeccf7adc0a
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 19914
+ 9192
+ 37
+ 30
+
+ -
+ 19934
+ 9207
+
+
+
+
+
+
+
+ - Vector length
+ - 53750491-b0f5-4cce-8cd7-5e24da19ee8c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 19914
+ 9222
+ 37
+ 30
+
+ -
+ 19934
+ 9237
+
+
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 5476751a-871d-4a7c-9271-5478d5934e96
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 6243
+ 9334
+ 139
+ 64
+
+ -
+ 6328
+ 9366
+
+
+
+
+
+ - Vector {x} component
+ - ec22f95b-fd68-4863-a589-e2293bcdd4eb
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 6245
+ 9336
+ 68
+ 20
+
+ -
+ 6280.5
+ 9346
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - ec1c4557-a37b-450f-a1e8-4bbc030bcba0
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 6245
+ 9356
+ 68
+ 20
+
+ -
+ 6280.5
+ 9366
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 61b3a814-9635-4ed3-8f53-2dd61c7942e8
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 6245
+ 9376
+ 68
+ 20
+
+ -
+ 6280.5
+ 9386
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - f419d345-faef-4d1f-a829-4cf7dcadf807
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 6343
+ 9336
+ 37
+ 30
+
+ -
+ 6363
+ 9351
+
+
+
+
+
+
+
+ - Vector length
+ - b7ae4ab2-2633-46ff-8b74-d6f9dd1a5bb1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 6343
+ 9366
+ 37
+ 30
+
+ -
+ 6363
+ 9381
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - accb7566-1c4f-472e-95ae-bf5b9b0e62fb
+ - fe8fda7a-61a0-4712-ad3e-8e26eaf5a221
+ - 653b9b1f-4388-4601-9964-cb0f37000c42
+ - dfe2545b-c3c0-46a7-addc-20709cae7a4d
+ - 7101556a-3ae8-4013-a010-ecff577fe9b9
+ - 56e8a40e-11a7-4931-84ec-68eda6076c5e
+ - 6
+ - 6b04179c-632b-4a3b-baeb-e136a51b22d7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e7a31dff-afeb-40fa-b036-b653642deef5
+ - a9ee02a4-ee90-4535-afb9-ca755021c649
+ - 8f9ac206-3302-42a9-823b-a1ffca70e8d7
+ - 35a0ec62-d1fc-46f1-8e13-f29c8db088ee
+ - ede7512c-0e4c-496a-9ce9-d90c4d5f79ec
+ - cc894fc0-8bbd-412d-940a-f668520c58e1
+ - 8e3a4850-a313-4154-af71-83211f5ab3d7
+ - b00e752e-39e5-47b6-aefa-c67d9f62d516
+ - ed31987d-e608-464e-ae29-c6ee653c5144
+ - 0a337e19-c2fd-4ed7-a876-d23f94c816ca
+ - e73b58fe-8eba-4f41-be14-bf8baf440316
+ - a4d9840e-68f6-415f-acba-7d808a83ebcd
+ - e5bcf49e-bc3b-406e-8ae7-ee4f982c139a
+ - 6e6d9687-23d8-4aa0-937e-15a27770bdf3
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 13a34976-62c7-405b-9081-13598ea4fef8
+ - 14d86f04-d57c-405e-9934-faa2a0359aae
+ - 74341fee-fd1a-4963-833b-ea12e30114f7
+ - 34768c89-7693-4842-b84d-e4ba975d624c
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 152e67d0-a077-408a-ae94-36f4b0baccba
+ - abb3172f-9fe8-43d9-81ae-6681dc89a32a
+ - e4aec249-cfaf-4604-8644-19109b45a59d
+ - 88da7dd8-48a3-442c-b0fe-a2283162f1a8
+ - 3f8a7473-ad12-405b-8893-ae8b1f21e4a1
+ - a51bfa4f-4375-4769-990a-a88b58714f3a
+ - d73207e8-cffe-4689-9165-3f2f493c2334
+ - 037cd549-441a-4d1d-bda2-c859f4f5de54
+ - d3f62d39-d3b6-4eda-9fda-e54910bad6d8
+ - 6ef3dd47-35c9-4a57-84e7-9e7cdb582fd6
+ - a352dd57-ca14-43a7-bdf0-c74f0212a36c
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - 6147e27d-d278-4100-bd0c-2d9bf58f804b
+ - 19fcc16d-49a9-4381-afd9-07d700c4d873
+ - 4ba9af09-5608-439b-abb2-0972c2c3aac1
+ - f239b077-0be7-44f3-80e9-7c5fec9c1cf4
+ - 78a25c84-d10a-4ec1-9371-11d33679bb8d
+ - 1d9bc771-2e15-4b94-a341-e87b0877df92
+ - b4343695-12cd-4656-b416-0a59bc755dc7
+ - 610dfbfd-76bc-4ae1-b235-8480bf3d07bc
+ - 38bcc71c-4564-474e-b422-b9edfd11ec76
+ - 04684392-c231-4803-96a2-0b45d4eceeff
+ - 04965399-0049-4a69-96f7-cd6e227acae9
+ - 78143443-bf79-4a8c-8ab6-357fb7242d83
+ - 8fe7bbce-0836-4790-b068-eb14beedc8e6
+ - 35dbe435-c549-4a59-a6e6-2791d1611515
+ - 1b7a9e9e-38d9-42ad-974f-a2fe4ede79ac
+ - 6f2328a6-1197-4fad-88b8-fe947c5630c5
+ - 157f3ccd-a904-49ed-ab92-b91ac0a128b3
+ - 2ad9750f-95e1-4da5-8ff7-e3d2fc4b9d28
+ - f2b68385-5c09-4829-a4df-6ad0d978d896
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 211da4c9-6ce1-4ffa-a619-50942fe2ea47
+ - 0837d549-965a-4c9e-9064-4edc1c2772c6
+ - e8c07d05-d369-4254-b811-1f30c9c5ef96
+ - 32e80d34-20c3-4524-aeab-e61fe36a3f90
+ - 5945a555-b422-4b9c-a4a1-5ee679a7de49
+ - ac728063-c096-41a7-9b68-e71ad04383f6
+ - afe3b516-b00d-403d-9a6a-4859e35e5cb0
+ - 1f6fe439-c332-4e07-a762-280f166f72fc
+ - d4ee0d3f-fb2e-4f6d-b04c-9eb8d93f8221
+ - 203013c3-86ac-4a38-a910-e737d2189433
+ - 2f56db63-146f-405e-b3c3-c44caed0f203
+ - 16366958-9805-4b42-a54b-9f5d58291fee
+ - 5ae063e1-5715-4087-b7ea-26de32862c2b
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - bde10973-4f64-4daf-87dd-d7e70ef59615
+ - f1db56f7-3181-47e5-9ebd-1808819c1a93
+ - b2a2f048-d933-4b9a-802e-81a5e9054879
+ - fc350524-ba4b-42e1-b3be-b2e6eb1e659e
+ - c0eece22-6db9-450a-84da-b6446c00f6e7
+ - ebd5302f-d62d-47d8-bd9f-a5c55eb9d9e2
+ - 5e8d1927-3e40-48e5-b130-19494db5d000
+ - a7804f21-ef86-4385-9b58-89ada0927d45
+ - bd253782-5888-4882-b26c-d089e5f118eb
+ - 57eb5ebf-a05f-4bb4-9967-b7b3c1687c8c
+ - 2102b6f6-7762-401d-b96b-e1b63393697b
+ - bdda6eac-8b5e-4083-a014-e412699ab434
+ - 51c29661-5f00-4270-8e5d-51bb166711f7
+ - 92fba1b4-6fcd-49c0-9172-b5cd7ee1712b
+ - ce5697fc-79fa-4cd1-9822-346f09145cf9
+ - 289362ef-c456-475f-a4a5-7610e305e8d9
+ - 34abd1c9-c536-44ad-8046-d4107bdabe6c
+ - 83
+ - 82eee8da-134f-46e3-a068-067290c81692
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a9ee02a4-ee90-4535-afb9-ca755021c649
+ - 8f9ac206-3302-42a9-823b-a1ffca70e8d7
+ - 35a0ec62-d1fc-46f1-8e13-f29c8db088ee
+ - ede7512c-0e4c-496a-9ce9-d90c4d5f79ec
+ - cc894fc0-8bbd-412d-940a-f668520c58e1
+ - 8e3a4850-a313-4154-af71-83211f5ab3d7
+ - b00e752e-39e5-47b6-aefa-c67d9f62d516
+ - ed31987d-e608-464e-ae29-c6ee653c5144
+ - 0a337e19-c2fd-4ed7-a876-d23f94c816ca
+ - e73b58fe-8eba-4f41-be14-bf8baf440316
+ - a4d9840e-68f6-415f-acba-7d808a83ebcd
+ - e5bcf49e-bc3b-406e-8ae7-ee4f982c139a
+ - 6e6d9687-23d8-4aa0-937e-15a27770bdf3
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 13a34976-62c7-405b-9081-13598ea4fef8
+ - 14d86f04-d57c-405e-9934-faa2a0359aae
+ - 74341fee-fd1a-4963-833b-ea12e30114f7
+ - 34768c89-7693-4842-b84d-e4ba975d624c
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 152e67d0-a077-408a-ae94-36f4b0baccba
+ - abb3172f-9fe8-43d9-81ae-6681dc89a32a
+ - e4aec249-cfaf-4604-8644-19109b45a59d
+ - 88da7dd8-48a3-442c-b0fe-a2283162f1a8
+ - 3f8a7473-ad12-405b-8893-ae8b1f21e4a1
+ - a51bfa4f-4375-4769-990a-a88b58714f3a
+ - d73207e8-cffe-4689-9165-3f2f493c2334
+ - 037cd549-441a-4d1d-bda2-c859f4f5de54
+ - d3f62d39-d3b6-4eda-9fda-e54910bad6d8
+ - 6ef3dd47-35c9-4a57-84e7-9e7cdb582fd6
+ - a352dd57-ca14-43a7-bdf0-c74f0212a36c
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - 6147e27d-d278-4100-bd0c-2d9bf58f804b
+ - 19fcc16d-49a9-4381-afd9-07d700c4d873
+ - 4ba9af09-5608-439b-abb2-0972c2c3aac1
+ - f239b077-0be7-44f3-80e9-7c5fec9c1cf4
+ - 78a25c84-d10a-4ec1-9371-11d33679bb8d
+ - 1d9bc771-2e15-4b94-a341-e87b0877df92
+ - b4343695-12cd-4656-b416-0a59bc755dc7
+ - 610dfbfd-76bc-4ae1-b235-8480bf3d07bc
+ - 38bcc71c-4564-474e-b422-b9edfd11ec76
+ - 04684392-c231-4803-96a2-0b45d4eceeff
+ - 04965399-0049-4a69-96f7-cd6e227acae9
+ - 78143443-bf79-4a8c-8ab6-357fb7242d83
+ - 8fe7bbce-0836-4790-b068-eb14beedc8e6
+ - 35dbe435-c549-4a59-a6e6-2791d1611515
+ - 1b7a9e9e-38d9-42ad-974f-a2fe4ede79ac
+ - 6f2328a6-1197-4fad-88b8-fe947c5630c5
+ - 157f3ccd-a904-49ed-ab92-b91ac0a128b3
+ - 2ad9750f-95e1-4da5-8ff7-e3d2fc4b9d28
+ - f2b68385-5c09-4829-a4df-6ad0d978d896
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 211da4c9-6ce1-4ffa-a619-50942fe2ea47
+ - 0837d549-965a-4c9e-9064-4edc1c2772c6
+ - e8c07d05-d369-4254-b811-1f30c9c5ef96
+ - 32e80d34-20c3-4524-aeab-e61fe36a3f90
+ - 5945a555-b422-4b9c-a4a1-5ee679a7de49
+ - ac728063-c096-41a7-9b68-e71ad04383f6
+ - afe3b516-b00d-403d-9a6a-4859e35e5cb0
+ - 1f6fe439-c332-4e07-a762-280f166f72fc
+ - d4ee0d3f-fb2e-4f6d-b04c-9eb8d93f8221
+ - 203013c3-86ac-4a38-a910-e737d2189433
+ - 2f56db63-146f-405e-b3c3-c44caed0f203
+ - 16366958-9805-4b42-a54b-9f5d58291fee
+ - 5ae063e1-5715-4087-b7ea-26de32862c2b
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - bde10973-4f64-4daf-87dd-d7e70ef59615
+ - f1db56f7-3181-47e5-9ebd-1808819c1a93
+ - b2a2f048-d933-4b9a-802e-81a5e9054879
+ - fc350524-ba4b-42e1-b3be-b2e6eb1e659e
+ - c0eece22-6db9-450a-84da-b6446c00f6e7
+ - ebd5302f-d62d-47d8-bd9f-a5c55eb9d9e2
+ - 5e8d1927-3e40-48e5-b130-19494db5d000
+ - a7804f21-ef86-4385-9b58-89ada0927d45
+ - bd253782-5888-4882-b26c-d089e5f118eb
+ - 57eb5ebf-a05f-4bb4-9967-b7b3c1687c8c
+ - 2102b6f6-7762-401d-b96b-e1b63393697b
+ - bdda6eac-8b5e-4083-a014-e412699ab434
+ - 51c29661-5f00-4270-8e5d-51bb166711f7
+ - 92fba1b4-6fcd-49c0-9172-b5cd7ee1712b
+ - 79
+ - e7a31dff-afeb-40fa-b036-b653642deef5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - bdda6eac-8b5e-4083-a014-e412699ab434
+ - 1
+ - a9ee02a4-ee90-4535-afb9-ca755021c649
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 35a0ec62-d1fc-46f1-8e13-f29c8db088ee
+ - 1
+ - 8f9ac206-3302-42a9-823b-a1ffca70e8d7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ede7512c-0e4c-496a-9ce9-d90c4d5f79ec
+ - 1
+ - 35a0ec62-d1fc-46f1-8e13-f29c8db088ee
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cc894fc0-8bbd-412d-940a-f668520c58e1
+ - 1
+ - ede7512c-0e4c-496a-9ce9-d90c4d5f79ec
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8e3a4850-a313-4154-af71-83211f5ab3d7
+ - 1
+ - cc894fc0-8bbd-412d-940a-f668520c58e1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b00e752e-39e5-47b6-aefa-c67d9f62d516
+ - 1
+ - 8e3a4850-a313-4154-af71-83211f5ab3d7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a337e19-c2fd-4ed7-a876-d23f94c816ca
+ - 1
+ - b00e752e-39e5-47b6-aefa-c67d9f62d516
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ed31987d-e608-464e-ae29-c6ee653c5144
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7523
+ 13126
+ 50
+ 24
+
+ -
+ 7548.904
+ 13138.12
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ed31987d-e608-464e-ae29-c6ee653c5144
+ - 1
+ - 0a337e19-c2fd-4ed7-a876-d23f94c816ca
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6ef3dd47-35c9-4a57-84e7-9e7cdb582fd6
+ - 1
+ - e73b58fe-8eba-4f41-be14-bf8baf440316
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5bcf49e-bc3b-406e-8ae7-ee4f982c139a
+ - 6e6d9687-23d8-4aa0-937e-15a27770bdf3
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 13a34976-62c7-405b-9081-13598ea4fef8
+ - 14d86f04-d57c-405e-9934-faa2a0359aae
+ - 74341fee-fd1a-4963-833b-ea12e30114f7
+ - 34768c89-7693-4842-b84d-e4ba975d624c
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - abb3172f-9fe8-43d9-81ae-6681dc89a32a
+ - 152e67d0-a077-408a-ae94-36f4b0baccba
+ - e73b58fe-8eba-4f41-be14-bf8baf440316
+ - 0a337e19-c2fd-4ed7-a876-d23f94c816ca
+ - bde10973-4f64-4daf-87dd-d7e70ef59615
+ - f1db56f7-3181-47e5-9ebd-1808819c1a93
+ - b2a2f048-d933-4b9a-802e-81a5e9054879
+ - fc350524-ba4b-42e1-b3be-b2e6eb1e659e
+ - c0eece22-6db9-450a-84da-b6446c00f6e7
+ - ebd5302f-d62d-47d8-bd9f-a5c55eb9d9e2
+ - 16366958-9805-4b42-a54b-9f5d58291fee
+ - 5ae063e1-5715-4087-b7ea-26de32862c2b
+ - 20
+ - a4d9840e-68f6-415f-acba-7d808a83ebcd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - e5bcf49e-bc3b-406e-8ae7-ee4f982c139a
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 7500
+ 14291
+ 104
+ 64
+
+ -
+ 7559
+ 14323
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - e3a263dd-5db5-469b-ba22-9bf0f44ec284
+ - Data
+ - Data
+ - false
+ - 054d46a2-3712-4bc1-913f-4a2f2ee35b3d
+ - 1
+
+
+
+
+ -
+ 7502
+ 14293
+ 42
+ 20
+
+ -
+ 7524.5
+ 14303
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 2022e79f-2a6d-4de3-9260-7b14b2988cee
+ - Number
+ - Number
+ - false
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - 1
+
+
+
+
+ -
+ 7502
+ 14313
+ 42
+ 20
+
+ -
+ 7524.5
+ 14323
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 45eb365c-8a47-4713-9b6c-9de57def39d3
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 7502
+ 14333
+ 42
+ 20
+
+ -
+ 7524.5
+ 14343
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 04e568bc-2825-44be-8bb2-c80be2325618
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 7574
+ 14293
+ 28
+ 60
+
+ -
+ 7589.5
+ 14323
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 6e6d9687-23d8-4aa0-937e-15a27770bdf3
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 7486
+ 12363
+ 116
+ 44
+
+ -
+ 7547
+ 12385
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 106e3e26-c600-4028-975f-e60c7c14929c
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 04e568bc-2825-44be-8bb2-c80be2325618
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7488
+ 12365
+ 44
+ 20
+
+ -
+ 7511.5
+ 12375
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 3c10fff7-4280-4b4d-8f8a-679cf3eff2fb
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 9fb6c367-789d-4429-b55c-b390791391fd
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7488
+ 12385
+ 44
+ 20
+
+ -
+ 7511.5
+ 12395
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 624bbaad-671f-40ce-912d-5aa674047f10
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 7562
+ 12365
+ 38
+ 20
+
+ -
+ 7582.5
+ 12375
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 1a7f5de6-38f3-4d31-8db7-4a12c24c79d7
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7562
+ 12385
+ 38
+ 20
+
+ -
+ 7582.5
+ 12395
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 13a34976-62c7-405b-9081-13598ea4fef8
+ - Series
+ - Series
+
+
+
+
+ -
+ 7497
+ 13620
+ 101
+ 64
+
+ -
+ 7547
+ 13652
+
+
+
+
+
+ - First number in the series
+ - 8bd6dfff-e116-4ba0-a22d-b49212795f53
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7499
+ 13622
+ 33
+ 20
+
+ -
+ 7517
+ 13632
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 5faf684f-5c2a-4fd9-b082-8eb64393bf0b
+ - Step
+ - Step
+ - false
+ - 2102b6f6-7762-401d-b96b-e1b63393697b
+ - 1
+
+
+
+
+ -
+ 7499
+ 13642
+ 33
+ 20
+
+ -
+ 7517
+ 13652
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 6f1800e8-5094-4255-9e85-d9725a39d41e
+ - Count
+ - Count
+ - false
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - 1
+
+
+
+
+ -
+ 7499
+ 13662
+ 33
+ 20
+
+ -
+ 7517
+ 13672
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 0ad6ebd3-9bff-422b-b1c8-620ae7f18fd1
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 7562
+ 13622
+ 34
+ 60
+
+ -
+ 7580.5
+ 13652
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 14d86f04-d57c-405e-9934-faa2a0359aae
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7481
+ 14469
+ 150
+ 20
+
+ -
+ 7481.584
+ 14469.97
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 74341fee-fd1a-4963-833b-ea12e30114f7
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 7486
+ 13837
+ 120
+ 28
+
+ -
+ 7547
+ 13851
+
+
+
+
+
+ - Angle in degrees
+ - f3bd733b-bd95-4a9e-b809-6984d636270f
+ - Degrees
+ - Degrees
+ - false
+ - 73264b8a-92e1-4ec9-82b0-0fb1b2df3af9
+ - 1
+
+
+
+
+ -
+ 7488
+ 13839
+ 44
+ 24
+
+ -
+ 7511.5
+ 13851
+
+
+
+
+
+
+
+ - Angle in radians
+ - 2e500c78-c54a-4ee9-9dc5-2a16260d83ce
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 7562
+ 13839
+ 42
+ 24
+
+ -
+ 7584.5
+ 13851
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 34768c89-7693-4842-b84d-e4ba975d624c
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 7422
+ 14145
+ 251
+ 20
+
+ -
+ 7422.296
+ 14145.24
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 152e67d0-a077-408a-ae94-36f4b0baccba
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 7472
+ 11598
+ 144
+ 84
+
+ -
+ 7558
+ 11640
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 4591a82d-76a3-465a-ad51-80e3a4b7ba10
+ - Vertices
+ - Vertices
+ - false
+ - 653b9b1f-4388-4601-9964-cb0f37000c42
+ - 1
+
+
+
+
+ -
+ 7474
+ 11600
+ 69
+ 20
+
+ -
+ 7510
+ 11610
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 22986d70-80df-454b-a4b4-f542cdce32ce
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11620
+ 69
+ 20
+
+ -
+ 7510
+ 11630
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 247e312b-0de9-4177-b247-9dbf2e294a90
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11640
+ 69
+ 20
+
+ -
+ 7510
+ 11650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9e62185b-e960-4d19-900b-515104b23602
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11660
+ 69
+ 20
+
+ -
+ 7510
+ 11670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 1c039c5a-d3c7-4c49-a2ec-4c96a3fc43ce
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7573
+ 11600
+ 41
+ 26
+
+ -
+ 7595
+ 11613.33
+
+
+
+
+
+
+
+ - Curve length
+ - 8548a258-2385-49d4-b635-20f3a4a3fd64
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7573
+ 11626
+ 41
+ 27
+
+ -
+ 7595
+ 11640
+
+
+
+
+
+
+
+ - Curve domain
+ - 17bfc63b-8a02-4224-84ae-1d5008aa0990
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7573
+ 11653
+ 41
+ 27
+
+ -
+ 7595
+ 11666.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5bcf49e-bc3b-406e-8ae7-ee4f982c139a
+ - 6e6d9687-23d8-4aa0-937e-15a27770bdf3
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 13a34976-62c7-405b-9081-13598ea4fef8
+ - 14d86f04-d57c-405e-9934-faa2a0359aae
+ - 74341fee-fd1a-4963-833b-ea12e30114f7
+ - 34768c89-7693-4842-b84d-e4ba975d624c
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - a7804f21-ef86-4385-9b58-89ada0927d45
+ - 19fcc16d-49a9-4381-afd9-07d700c4d873
+ - 2f56db63-146f-405e-b3c3-c44caed0f203
+ - 5e8d1927-3e40-48e5-b130-19494db5d000
+ - bd253782-5888-4882-b26c-d089e5f118eb
+ - dbc0f284-69fa-415b-9bb8-94c62d74b2d5
+ - 14
+ - abb3172f-9fe8-43d9-81ae-6681dc89a32a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - e4aec249-cfaf-4604-8644-19109b45a59d
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7472
+ 11430
+ 144
+ 64
+
+ -
+ 7546
+ 11462
+
+
+
+
+
+ - Curve to evaluate
+ - 864892a7-28b1-457e-a96f-58d0b6768c51
+ - Curve
+ - Curve
+ - false
+ - 1c039c5a-d3c7-4c49-a2ec-4c96a3fc43ce
+ - 1
+
+
+
+
+ -
+ 7474
+ 11432
+ 57
+ 20
+
+ -
+ 7504
+ 11442
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - a8f816e9-7173-4858-b62f-2bca011ec39f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11452
+ 57
+ 20
+
+ -
+ 7504
+ 11462
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - eedf45f9-57da-40f3-8633-f863bd02947b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11472
+ 57
+ 20
+
+ -
+ 7504
+ 11482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 19a2408d-1ef1-431f-afe2-3e6fd4d3f492
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11432
+ 53
+ 20
+
+ -
+ 7589
+ 11442
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 98ca8695-b0c5-4236-a503-faf06329e2f1
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11452
+ 53
+ 20
+
+ -
+ 7589
+ 11462
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 85e2222a-f72c-455b-9f7d-ad9174d12ced
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11472
+ 53
+ 20
+
+ -
+ 7589
+ 11482
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 88da7dd8-48a3-442c-b0fe-a2283162f1a8
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7475
+ 11368
+ 138
+ 44
+
+ -
+ 7543
+ 11390
+
+
+
+
+
+ - Base geometry
+ - 7e98a09c-5499-419a-b48e-28b274c49a40
+ - Geometry
+ - Geometry
+ - true
+ - 1c039c5a-d3c7-4c49-a2ec-4c96a3fc43ce
+ - 1
+
+
+
+
+ -
+ 7477
+ 11370
+ 51
+ 20
+
+ -
+ 7504
+ 11380
+
+
+
+
+
+
+
+ - Mirror plane
+ - a5998f59-8108-48ed-b93c-8b823b73f96f
+ - Plane
+ - Plane
+ - false
+ - 56aba84a-d5fd-49e5-bf0b-31f24d888335
+ - 1
+
+
+
+
+ -
+ 7477
+ 11390
+ 51
+ 20
+
+ -
+ 7504
+ 11400
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 279ff27c-0e38-4bd1-ab73-d0f2790603a9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7558
+ 11370
+ 53
+ 20
+
+ -
+ 7586
+ 11380
+
+
+
+
+
+
+
+ - Transformation data
+ - 22d28a0d-510a-4c97-a170-cb359301b85c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7558
+ 11390
+ 53
+ 20
+
+ -
+ 7586
+ 11400
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 3f8a7473-ad12-405b-8893-ae8b1f21e4a1
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7491
+ 11514
+ 106
+ 64
+
+ -
+ 7555
+ 11546
+
+
+
+
+
+ - Line start point
+ - 3d4b817f-c67c-4580-b892-a1486475a39c
+ - Start
+ - Start
+ - false
+ - 19a2408d-1ef1-431f-afe2-3e6fd4d3f492
+ - 1
+
+
+
+
+ -
+ 7493
+ 11516
+ 47
+ 20
+
+ -
+ 7518
+ 11526
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 936a4b72-6ef5-4a8b-8b90-7ac9aa2337e0
+ - Direction
+ - Direction
+ - false
+ - 98ca8695-b0c5-4236-a503-faf06329e2f1
+ - 1
+
+
+
+
+ -
+ 7493
+ 11536
+ 47
+ 20
+
+ -
+ 7518
+ 11546
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 94072402-a3c4-461a-a39a-1163a08ac70b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7493
+ 11556
+ 47
+ 20
+
+ -
+ 7518
+ 11566
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 56aba84a-d5fd-49e5-bf0b-31f24d888335
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 7570
+ 11516
+ 25
+ 60
+
+ -
+ 7584
+ 11546
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - a51bfa4f-4375-4769-990a-a88b58714f3a
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7485
+ 11306
+ 118
+ 44
+
+ -
+ 7548
+ 11328
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 400027b4-9a0d-4bb8-a5e5-721d23960873
+ - Curves
+ - Curves
+ - false
+ - 1c039c5a-d3c7-4c49-a2ec-4c96a3fc43ce
+ - 279ff27c-0e38-4bd1-ab73-d0f2790603a9
+ - 2
+
+
+
+
+ -
+ 7487
+ 11308
+ 46
+ 20
+
+ -
+ 7511.5
+ 11318
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f764d3f3-be14-4355-8960-34f2dde1e276
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7487
+ 11328
+ 46
+ 20
+
+ -
+ 7511.5
+ 11338
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 5f6c3928-ff01-4443-b4b9-a6964a9b5be9
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7563
+ 11308
+ 38
+ 40
+
+ -
+ 7583.5
+ 11328
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - d73207e8-cffe-4689-9165-3f2f493c2334
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7472
+ 11222
+ 144
+ 64
+
+ -
+ 7546
+ 11254
+
+
+
+
+
+ - Curve to evaluate
+ - 19d63261-381e-42f5-9ee8-ec3e0edbd60e
+ - Curve
+ - Curve
+ - false
+ - 5f6c3928-ff01-4443-b4b9-a6964a9b5be9
+ - 1
+
+
+
+
+ -
+ 7474
+ 11224
+ 57
+ 20
+
+ -
+ 7504
+ 11234
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 78f25b48-fe55-4bb4-8676-1db9d6cb7ece
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11244
+ 57
+ 20
+
+ -
+ 7504
+ 11254
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4bd50774-ced2-4190-95e3-e15a7d9865eb
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 11264
+ 57
+ 20
+
+ -
+ 7504
+ 11274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 6c5691fe-b064-4cd5-a1a2-56215bb0e129
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11224
+ 53
+ 20
+
+ -
+ 7589
+ 11234
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - ace258e5-519d-4272-beeb-13d7696b185f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11244
+ 53
+ 20
+
+ -
+ 7589
+ 11254
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b5806fa6-398f-4cf4-88c4-78d36b0e1362
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 11264
+ 53
+ 20
+
+ -
+ 7589
+ 11274
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 037cd549-441a-4d1d-bda2-c859f4f5de54
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 7475
+ 11139
+ 138
+ 64
+
+ -
+ 7543
+ 11171
+
+
+
+
+
+ - Base geometry
+ - 78522879-98b3-432f-aa05-0398091bdea5
+ - Geometry
+ - Geometry
+ - true
+ - 5f6c3928-ff01-4443-b4b9-a6964a9b5be9
+ - 1
+
+
+
+
+ -
+ 7477
+ 11141
+ 51
+ 20
+
+ -
+ 7504
+ 11151
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - ac9a0cd7-2476-40ce-a2b8-27e1cd46363f
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 7477
+ 11161
+ 51
+ 20
+
+ -
+ 7504
+ 11171
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 2b4b9912-63ef-4b46-802c-5a2d388bc9eb
+ - Plane
+ - Plane
+ - false
+ - 6c5691fe-b064-4cd5-a1a2-56215bb0e129
+ - 1
+
+
+
+
+ -
+ 7477
+ 11181
+ 51
+ 20
+
+ -
+ 7504
+ 11191
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - d1c1a2ba-3617-429d-bd4e-427409fd3815
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7558
+ 11141
+ 53
+ 30
+
+ -
+ 7586
+ 11156
+
+
+
+
+
+
+
+ - Transformation data
+ - 034f35ca-41d8-43a0-95d6-b20888c9c10a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7558
+ 11171
+ 53
+ 30
+
+ -
+ 7586
+ 11186
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - d3f62d39-d3b6-4eda-9fda-e54910bad6d8
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7485
+ 11076
+ 118
+ 44
+
+ -
+ 7548
+ 11098
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 344c7316-9b7c-4145-b1f2-0ee64f841c6d
+ - Curves
+ - Curves
+ - false
+ - 5f6c3928-ff01-4443-b4b9-a6964a9b5be9
+ - d1c1a2ba-3617-429d-bd4e-427409fd3815
+ - 2
+
+
+
+
+ -
+ 7487
+ 11078
+ 46
+ 20
+
+ -
+ 7511.5
+ 11088
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - f3859b6b-7f02-4f66-8f5e-595257ce68b6
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7487
+ 11098
+ 46
+ 20
+
+ -
+ 7511.5
+ 11108
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 86449467-1510-4ece-8e14-83b5355ce74e
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7563
+ 11078
+ 38
+ 40
+
+ -
+ 7583.5
+ 11098
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 152e67d0-a077-408a-ae94-36f4b0baccba
+ - e4aec249-cfaf-4604-8644-19109b45a59d
+ - 88da7dd8-48a3-442c-b0fe-a2283162f1a8
+ - 3f8a7473-ad12-405b-8893-ae8b1f21e4a1
+ - a51bfa4f-4375-4769-990a-a88b58714f3a
+ - d73207e8-cffe-4689-9165-3f2f493c2334
+ - 037cd549-441a-4d1d-bda2-c859f4f5de54
+ - d3f62d39-d3b6-4eda-9fda-e54910bad6d8
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - accb7566-1c4f-472e-95ae-bf5b9b0e62fb
+ - fe8fda7a-61a0-4712-ad3e-8e26eaf5a221
+ - 653b9b1f-4388-4601-9964-cb0f37000c42
+ - dfe2545b-c3c0-46a7-addc-20709cae7a4d
+ - 56e8a40e-11a7-4931-84ec-68eda6076c5e
+ - 7101556a-3ae8-4013-a010-ecff577fe9b9
+ - 15
+ - 6ef3dd47-35c9-4a57-84e7-9e7cdb582fd6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a352dd57-ca14-43a7-bdf0-c74f0212a36c
+ - Panel
+
+ - false
+ - 0
+ - 78143443-bf79-4a8c-8ab6-357fb7242d83
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7475
+ 13711
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7475.325
+ 13711.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - Curve
+ - Curve
+ - false
+ - 86449467-1510-4ece-8e14-83b5355ce74e
+ - 1
+
+
+
+
+ -
+ 7523
+ 11039
+ 50
+ 24
+
+ -
+ 7548.904
+ 11051.04
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - 1
+ - 6147e27d-d278-4100-bd0c-2d9bf58f804b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 19fcc16d-49a9-4381-afd9-07d700c4d873
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 7328
+ 13919
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7328.886
+ 13919.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4ba9af09-5608-439b-abb2-0972c2c3aac1
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7472
+ 10950
+ 144
+ 64
+
+ -
+ 7546
+ 10982
+
+
+
+
+
+ - Curve to evaluate
+ - db52062f-afe5-499b-8743-ea16d9dbd725
+ - Curve
+ - Curve
+ - false
+ - 86449467-1510-4ece-8e14-83b5355ce74e
+ - 1
+
+
+
+
+ -
+ 7474
+ 10952
+ 57
+ 20
+
+ -
+ 7504
+ 10962
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 4db536a5-0a95-42f7-bfdf-69bc94e2270a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 10972
+ 57
+ 20
+
+ -
+ 7504
+ 10982
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 7668b981-3ee7-4536-90c6-d1d6fc18eda8
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 10992
+ 57
+ 20
+
+ -
+ 7504
+ 11002
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c45727d9-9652-45f2-b8a3-0f2ff6c71d4f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 10952
+ 53
+ 20
+
+ -
+ 7589
+ 10962
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 29924098-f00e-4497-9d52-82f2d8c9d457
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 10972
+ 53
+ 20
+
+ -
+ 7589
+ 10982
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 7a9f0a25-3d37-4cc1-8860-32f72acd4937
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 10992
+ 53
+ 20
+
+ -
+ 7589
+ 11002
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f239b077-0be7-44f3-80e9-7c5fec9c1cf4
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10728
+ 194
+ 28
+
+ -
+ 7547
+ 10742
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 67f40f1f-3a7f-4d93-824c-045af7db3f3b
+ - Variable O
+ - O
+ - true
+ - 7cf59001-1478-4b32-93da-0b3ec82ce6c9
+ - 1
+
+
+
+
+ -
+ 7449
+ 10730
+ 14
+ 24
+
+ -
+ 7457.5
+ 10742
+
+
+
+
+
+
+
+ - Result of expression
+ - c69a8903-0631-4c09-8993-ece5764d020a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10730
+ 9
+ 24
+
+ -
+ 7636
+ 10742
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 78a25c84-d10a-4ec1-9371-11d33679bb8d
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7478
+ 10862
+ 132
+ 64
+
+ -
+ 7525
+ 10894
+
+
+
+
+
+ - Input point
+ - e9d79ec2-a2b1-43c9-a6ef-e196dff932cc
+ - Point
+ - Point
+ - false
+ - c45727d9-9652-45f2-b8a3-0f2ff6c71d4f
+ - 1
+
+
+
+
+ -
+ 7480
+ 10864
+ 30
+ 60
+
+ -
+ 7496.5
+ 10894
+
+
+
+
+
+
+
+ - Point {x} component
+ - 7cf59001-1478-4b32-93da-0b3ec82ce6c9
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 10864
+ 68
+ 20
+
+ -
+ 7575.5
+ 10874
+
+
+
+
+
+
+
+ - Point {y} component
+ - e2587423-7fc1-4e29-8b3d-d6975ffbfc44
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 10884
+ 68
+ 20
+
+ -
+ 7575.5
+ 10894
+
+
+
+
+
+
+
+ - Point {z} component
+ - ad1e1483-8922-4c0c-8f49-bf1affc11d9b
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 10904
+ 68
+ 20
+
+ -
+ 7575.5
+ 10914
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1d9bc771-2e15-4b94-a341-e87b0877df92
+ - Panel
+
+ - false
+ - 0
+ - c69a8903-0631-4c09-8993-ece5764d020a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 10704
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.674
+ 10704.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b4343695-12cd-4656-b416-0a59bc755dc7
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10642
+ 194
+ 28
+
+ -
+ 7547
+ 10656
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 248ad927-5d01-496a-bf47-5b58cb9883c1
+ - Variable O
+ - O
+ - true
+ - e2587423-7fc1-4e29-8b3d-d6975ffbfc44
+ - 1
+
+
+
+
+ -
+ 7449
+ 10644
+ 14
+ 24
+
+ -
+ 7457.5
+ 10656
+
+
+
+
+
+
+
+ - Result of expression
+ - bb0bcfa5-250a-411a-9caf-ecc8f7b569b4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10644
+ 9
+ 24
+
+ -
+ 7636
+ 10656
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 610dfbfd-76bc-4ae1-b235-8480bf3d07bc
+ - Panel
+
+ - false
+ - 0
+ - bb0bcfa5-250a-411a-9caf-ecc8f7b569b4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 10616
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.674
+ 10616.19
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 38bcc71c-4564-474e-b422-b9edfd11ec76
+ - Division
+ - Division
+
+
+
+
+ -
+ 7503
+ 10540
+ 82
+ 44
+
+ -
+ 7534
+ 10562
+
+
+
+
+
+ - Item to divide (dividend)
+ - 002843b8-1aeb-4c80-983d-7824d5601781
+ - A
+ - A
+ - false
+ - 1d9bc771-2e15-4b94-a341-e87b0877df92
+ - 1
+
+
+
+
+ -
+ 7505
+ 10542
+ 14
+ 20
+
+ -
+ 7513.5
+ 10552
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 4bcf65f3-db93-4356-9e70-85d19dc8e368
+ - B
+ - B
+ - false
+ - 610dfbfd-76bc-4ae1-b235-8480bf3d07bc
+ - 1
+
+
+
+
+ -
+ 7505
+ 10562
+ 14
+ 20
+
+ -
+ 7513.5
+ 10572
+
+
+
+
+
+
+
+ - The result of the Division
+ - b80b96b0-52fb-4029-a310-f7797ea530e1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7549
+ 10542
+ 34
+ 40
+
+ -
+ 7567.5
+ 10562
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 04684392-c231-4803-96a2-0b45d4eceeff
+ - Panel
+
+ - false
+ - 0
+ - 78143443-bf79-4a8c-8ab6-357fb7242d83
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 10468
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.914
+ 10468.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 04965399-0049-4a69-96f7-cd6e227acae9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10493
+ 194
+ 28
+
+ -
+ 7547
+ 10507
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 69ca5661-0ed8-4c13-8737-2947ea5a6fad
+ - Variable O
+ - O
+ - true
+ - b80b96b0-52fb-4029-a310-f7797ea530e1
+ - 1
+
+
+
+
+ -
+ 7449
+ 10495
+ 14
+ 24
+
+ -
+ 7457.5
+ 10507
+
+
+
+
+
+
+
+ - Result of expression
+ - 924b61c6-1db0-46ef-a68e-b5dffce525cb
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10495
+ 9
+ 24
+
+ -
+ 7636
+ 10507
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 78143443-bf79-4a8c-8ab6-357fb7242d83
+ - Relay
+
+ - false
+ - 924b61c6-1db0-46ef-a68e-b5dffce525cb
+ - 1
+
+
+
+
+ -
+ 7524
+ 10418
+ 40
+ 16
+
+ -
+ 7544
+ 10426
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 8fe7bbce-0836-4790-b068-eb14beedc8e6
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 7503
+ 10355
+ 82
+ 44
+
+ -
+ 7534
+ 10377
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 823200d7-0516-438c-9c01-4f3d8a3251e7
+ - A
+ - A
+ - true
+ - 610dfbfd-76bc-4ae1-b235-8480bf3d07bc
+ - 1
+
+
+
+
+ -
+ 7505
+ 10357
+ 14
+ 20
+
+ -
+ 7513.5
+ 10367
+
+
+
+
+
+
+
+ - Second item for addition
+ - 3c4dcf86-3ac0-4a44-bafa-81400fd44800
+ - B
+ - B
+ - true
+ - 1d9bc771-2e15-4b94-a341-e87b0877df92
+ - 1
+
+
+
+
+ -
+ 7505
+ 10377
+ 14
+ 20
+
+ -
+ 7513.5
+ 10387
+
+
+
+
+
+
+
+ - Result of addition
+ - 2703236f-c04a-4075-8124-52cdfec5854e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7549
+ 10357
+ 34
+ 40
+
+ -
+ 7567.5
+ 10377
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 35dbe435-c549-4a59-a6e6-2791d1611515
+ - Division
+ - Division
+
+
+
+
+ -
+ 7503
+ 10205
+ 82
+ 44
+
+ -
+ 7534
+ 10227
+
+
+
+
+
+ - Item to divide (dividend)
+ - 08cd7422-6498-4bc2-a6ee-6c0bb15e4d5a
+ - A
+ - A
+ - false
+ - 157f3ccd-a904-49ed-ab92-b91ac0a128b3
+ - 1
+
+
+
+
+ -
+ 7505
+ 10207
+ 14
+ 20
+
+ -
+ 7513.5
+ 10217
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 4af1bed2-6df8-421f-8a72-4c007a673027
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 10227
+ 14
+ 20
+
+ -
+ 7513.5
+ 10237
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 956cc589-b6f3-4664-855a-0538ee3fabdf
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7549
+ 10207
+ 34
+ 40
+
+ -
+ 7567.5
+ 10227
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1b7a9e9e-38d9-42ad-974f-a2fe4ede79ac
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10157
+ 194
+ 28
+
+ -
+ 7547
+ 10171
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3239cb9b-da3a-4ff0-9524-2af031f2c3d5
+ - Variable O
+ - O
+ - true
+ - 956cc589-b6f3-4664-855a-0538ee3fabdf
+ - 1
+
+
+
+
+ -
+ 7449
+ 10159
+ 14
+ 24
+
+ -
+ 7457.5
+ 10171
+
+
+
+
+
+
+
+ - Result of expression
+ - 6cf1d172-594f-4b44-8332-11d6a47375aa
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10159
+ 9
+ 24
+
+ -
+ 7636
+ 10171
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6f2328a6-1197-4fad-88b8-fe947c5630c5
+ - Panel
+
+ - false
+ - 0
+ - 6cf1d172-594f-4b44-8332-11d6a47375aa
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 10132
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.674
+ 10132.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 157f3ccd-a904-49ed-ab92-b91ac0a128b3
+ - Panel
+
+ - false
+ - 0
+ - 00bbf7ce-5d6e-4aa3-ab60-66750ab27aa1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 10284
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.674
+ 10284.45
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2ad9750f-95e1-4da5-8ff7-e3d2fc4b9d28
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10308
+ 194
+ 28
+
+ -
+ 7547
+ 10322
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ec194f59-87b8-4adb-8203-205f9021d77c
+ - Variable O
+ - O
+ - true
+ - 2703236f-c04a-4075-8124-52cdfec5854e
+ - 1
+
+
+
+
+ -
+ 7449
+ 10310
+ 14
+ 24
+
+ -
+ 7457.5
+ 10322
+
+
+
+
+
+
+
+ - Result of expression
+ - 00bbf7ce-5d6e-4aa3-ab60-66750ab27aa1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10310
+ 9
+ 24
+
+ -
+ 7636
+ 10322
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - f2b68385-5c09-4829-a4df-6ad0d978d896
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7467
+ 10034
+ 154
+ 64
+
+ -
+ 7551
+ 10066
+
+
+
+
+
+ - Base geometry
+ - 7fb32e9e-7e44-4c5d-9d6d-817aa34f2341
+ - Geometry
+ - Geometry
+ - true
+ - 10dfccba-b58f-42f8-a31f-68b35f0b5128
+ - 1
+
+
+
+
+ -
+ 7469
+ 10036
+ 67
+ 20
+
+ -
+ 7512
+ 10046
+
+
+
+
+
+
+
+ - Center of scaling
+ - 48d2d4b3-2014-4a46-afb7-205e6cabfb63
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 10056
+ 67
+ 20
+
+ -
+ 7512
+ 10066
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - ae3ce625-5e79-4a0b-96f4-3c1c370ba334
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 6f2328a6-1197-4fad-88b8-fe947c5630c5
+ - 1
+
+
+
+
+ -
+ 7469
+ 10076
+ 67
+ 20
+
+ -
+ 7512
+ 10086
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - e1002a7b-90bf-4236-84b5-44ee63cc2881
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7566
+ 10036
+ 53
+ 30
+
+ -
+ 7594
+ 10051
+
+
+
+
+
+
+
+ - Transformation data
+ - 06873b5f-aee3-48e4-b8f0-7a5a8123938c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7566
+ 10066
+ 53
+ 30
+
+ -
+ 7594
+ 10081
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - Curve
+ - Curve
+ - false
+ - e1002a7b-90bf-4236-84b5-44ee63cc2881
+ - 1
+
+
+
+
+ -
+ 7521
+ 9438
+ 50
+ 24
+
+ -
+ 7546.654
+ 9450.042
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 211da4c9-6ce1-4ffa-a619-50942fe2ea47
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 10815
+ 194
+ 28
+
+ -
+ 7547
+ 10829
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 283fa460-f5bd-4f52-a61c-da3517f2abae
+ - Variable O
+ - O
+ - true
+ - ad1e1483-8922-4c0c-8f49-bf1affc11d9b
+ - 1
+
+
+
+
+ -
+ 7449
+ 10817
+ 14
+ 24
+
+ -
+ 7457.5
+ 10829
+
+
+
+
+
+
+
+ - Result of expression
+ - 87cecad4-c03d-431d-b2ca-a857bf731f5d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 10817
+ 9
+ 24
+
+ -
+ 7636
+ 10829
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0837d549-965a-4c9e-9064-4edc1c2772c6
+ - Panel
+
+ - false
+ - 0
+ - 87cecad4-c03d-431d-b2ca-a857bf731f5d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7468
+ 10790
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7468.544
+ 10790.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - e8c07d05-d369-4254-b811-1f30c9c5ef96
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7472
+ 9824
+ 144
+ 64
+
+ -
+ 7546
+ 9856
+
+
+
+
+
+ - Curve to evaluate
+ - a67b6611-847a-42e5-9773-7122bbc5a32a
+ - Curve
+ - Curve
+ - false
+ - e1002a7b-90bf-4236-84b5-44ee63cc2881
+ - 1
+
+
+
+
+ -
+ 7474
+ 9826
+ 57
+ 20
+
+ -
+ 7504
+ 9836
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c1ec3f7b-d5ac-44cd-9db5-6d41bc71d6be
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 9846
+ 57
+ 20
+
+ -
+ 7504
+ 9856
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - a31a6e08-17ec-4f4c-9c9b-42ffc0e29aed
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7474
+ 9866
+ 57
+ 20
+
+ -
+ 7504
+ 9876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - be65b05f-37fc-4121-b745-2151f44dfb4f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 9826
+ 53
+ 20
+
+ -
+ 7589
+ 9836
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e40d3e65-1f56-421c-b71e-095aa0bc8130
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 9846
+ 53
+ 20
+
+ -
+ 7589
+ 9856
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5a66186e-5337-461c-8305-a95585464884
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 9866
+ 53
+ 20
+
+ -
+ 7589
+ 9876
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 32e80d34-20c3-4524-aeab-e61fe36a3f90
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 9607
+ 194
+ 28
+
+ -
+ 7547
+ 9621
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2ad359b4-8500-4ef7-8081-b4ba973deb08
+ - Variable O
+ - O
+ - true
+ - 9eba3d88-8a63-4552-aec0-5149ad24f8ea
+ - 1
+
+
+
+
+ -
+ 7449
+ 9609
+ 14
+ 24
+
+ -
+ 7457.5
+ 9621
+
+
+
+
+
+
+
+ - Result of expression
+ - 261632eb-a174-47e1-8130-a97e79b5d3fc
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 9609
+ 9
+ 24
+
+ -
+ 7636
+ 9621
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 5945a555-b422-4b9c-a4a1-5ee679a7de49
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7478
+ 9741
+ 132
+ 64
+
+ -
+ 7525
+ 9773
+
+
+
+
+
+ - Input point
+ - 62f80c5e-6384-4db1-a090-23257662161b
+ - Point
+ - Point
+ - false
+ - be65b05f-37fc-4121-b745-2151f44dfb4f
+ - 1
+
+
+
+
+ -
+ 7480
+ 9743
+ 30
+ 60
+
+ -
+ 7496.5
+ 9773
+
+
+
+
+
+
+
+ - Point {x} component
+ - 9eba3d88-8a63-4552-aec0-5149ad24f8ea
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 9743
+ 68
+ 20
+
+ -
+ 7575.5
+ 9753
+
+
+
+
+
+
+
+ - Point {y} component
+ - e0d9b1ae-3321-4281-b572-8a83b7412e09
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 9763
+ 68
+ 20
+
+ -
+ 7575.5
+ 9773
+
+
+
+
+
+
+
+ - Point {z} component
+ - d85a06fa-27ff-4935-8e84-1338352118e9
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 9783
+ 68
+ 20
+
+ -
+ 7575.5
+ 9793
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ac728063-c096-41a7-9b68-e71ad04383f6
+ - Panel
+
+ - false
+ - 0
+ - 261632eb-a174-47e1-8130-a97e79b5d3fc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 9577
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.924
+ 9577.962
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - afe3b516-b00d-403d-9a6a-4859e35e5cb0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 9521
+ 194
+ 28
+
+ -
+ 7547
+ 9535
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a2aac36d-007e-4f37-9ea3-9df71af43073
+ - Variable O
+ - O
+ - true
+ - e0d9b1ae-3321-4281-b572-8a83b7412e09
+ - 1
+
+
+
+
+ -
+ 7449
+ 9523
+ 14
+ 24
+
+ -
+ 7457.5
+ 9535
+
+
+
+
+
+
+
+ - Result of expression
+ - 67d9f50c-864c-4ff9-87c0-c697b83c89ad
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 9523
+ 9
+ 24
+
+ -
+ 7636
+ 9535
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1f6fe439-c332-4e07-a762-280f166f72fc
+ - Panel
+
+ - false
+ - 0
+ - 67d9f50c-864c-4ff9-87c0-c697b83c89ad
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 9492
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.936
+ 9492.333
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d4ee0d3f-fb2e-4f6d-b04c-9eb8d93f8221
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 9693
+ 194
+ 28
+
+ -
+ 7547
+ 9707
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 50a89f62-c4f4-426c-a88f-2c46b325d60c
+ - Variable O
+ - O
+ - true
+ - d85a06fa-27ff-4935-8e84-1338352118e9
+ - 1
+
+
+
+
+ -
+ 7449
+ 9695
+ 14
+ 24
+
+ -
+ 7457.5
+ 9707
+
+
+
+
+
+
+
+ - Result of expression
+ - 225865a7-8c6f-4066-a8a0-71558bfcf515
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 9695
+ 9
+ 24
+
+ -
+ 7636
+ 9707
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 203013c3-86ac-4a38-a910-e737d2189433
+ - Panel
+
+ - false
+ - 0
+ - 225865a7-8c6f-4066-a8a0-71558bfcf515
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7467
+ 9664
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7467.674
+ 9664.173
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2f56db63-146f-405e-b3c3-c44caed0f203
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 7366
+ 13998
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 7366.33
+ 13998.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 16366958-9805-4b42-a54b-9f5d58291fee
+ - Panel
+
+ - false
+ - 0
+ - 8b325d0a-58f0-42c0-a1b6-7bf3107f6d6b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7379
+ 12027
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 7379.865
+ 12027.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5ae063e1-5715-4087-b7ea-26de32862c2b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 12315
+ 194
+ 28
+
+ -
+ 7547
+ 12329
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6c812f22-cf07-4628-86a0-9fd562b56201
+ - Variable O
+ - O
+ - true
+ - 1a7f5de6-38f3-4d31-8db7-4a12c24c79d7
+ - 1
+
+
+
+
+ -
+ 7449
+ 12317
+ 14
+ 24
+
+ -
+ 7457.5
+ 12329
+
+
+
+
+
+
+
+ - Result of expression
+ - 8b325d0a-58f0-42c0-a1b6-7bf3107f6d6b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 12317
+ 9
+ 24
+
+ -
+ 7636
+ 12329
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 7531
+ 14428
+ 50
+ 24
+
+ -
+ 7556.637
+ 14440.26
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - bde10973-4f64-4daf-87dd-d7e70ef59615
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 7375
+ 12597
+ 160
+ 224
+
+ -
+ 7443
+ 12709
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - b9135103-354b-462a-987e-0b7805936c91
+ - true
+ - Curves
+ - Curves
+ - false
+ - 620f4604-c9b2-4225-ab41-aaf06f6c632a
+ - 1
+
+
+
+
+ -
+ 7377
+ 12599
+ 51
+ 27
+
+ -
+ 7404
+ 12612.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 431efbc9-cf4a-4ca2-a719-b47d0cca7834
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - cd5062c1-61ba-40e7-bc08-0ca8b6df2254
+ - 1
+
+
+
+
+ -
+ 7377
+ 12626
+ 51
+ 28
+
+ -
+ 7404
+ 12640.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 727f04cf-92e4-4ac6-8e5e-68bde4e9f02a
+ - true
+ - Values
+ - Values
+ - false
+ - 0ad6ebd3-9bff-422b-b1c8-620ae7f18fd1
+ - 1
+
+
+
+
+ -
+ 7377
+ 12654
+ 51
+ 27
+
+ -
+ 7404
+ 12667.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - f1f89f04-68a9-4e96-9e77-146d28cbe839
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7377
+ 12681
+ 51
+ 28
+
+ -
+ 7404
+ 12695.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 78d4774e-f302-420f-ba03-07b37356019f
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7377
+ 12709
+ 51
+ 27
+
+ -
+ 7404
+ 12722.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - b31b9dd8-22b0-4844-b067-8bcace4fb10c
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 7377
+ 12736
+ 51
+ 28
+
+ -
+ 7404
+ 12750.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - f7c60b43-f11a-4183-b4e9-18f50a795e75
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 7377
+ 12764
+ 51
+ 27
+
+ -
+ 7404
+ 12777.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - f1b3dfb7-82ab-4f35-b8e9-350ec3a05e0d
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 7377
+ 12791
+ 51
+ 28
+
+ -
+ 7404
+ 12805.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 749b8b54-b38e-490b-86d6-0135fb7658d1
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12599
+ 75
+ 20
+
+ -
+ 7497
+ 12609
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 8dc92799-241a-45de-908a-586408029cc2
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12619
+ 75
+ 20
+
+ -
+ 7497
+ 12629
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 0cb90479-7814-4040-858e-089f941fc548
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12639
+ 75
+ 20
+
+ -
+ 7497
+ 12649
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 9468e129-8994-4b59-b943-f3c4671e9266
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12659
+ 75
+ 20
+
+ -
+ 7497
+ 12669
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - c83182f9-5eb6-418a-9deb-a687a5a6600d
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12679
+ 75
+ 20
+
+ -
+ 7497
+ 12689
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 5865a8c1-b707-4a10-a53b-727facfdbd27
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12699
+ 75
+ 20
+
+ -
+ 7497
+ 12709
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 6cadb3c3-7944-46a8-8aac-56528131a29e
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12719
+ 75
+ 20
+
+ -
+ 7497
+ 12729
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 6ce3ffae-5663-49f5-9e29-70aa40d33d7e
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12739
+ 75
+ 20
+
+ -
+ 7497
+ 12749
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 8b44dc8d-2938-4ad6-916a-5974e712b904
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12759
+ 75
+ 20
+
+ -
+ 7497
+ 12769
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - fd226bed-9da9-41a0-8e58-de7792a107eb
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12779
+ 75
+ 20
+
+ -
+ 7497
+ 12789
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - d5e4a6a9-3e45-49c1-b1e4-84d3903e7e04
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 7458
+ 12799
+ 75
+ 20
+
+ -
+ 7497
+ 12809
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - f1db56f7-3181-47e5-9ebd-1808819c1a93
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7496
+ 13022
+ 96
+ 44
+
+ -
+ 7546
+ 13044
+
+
+
+
+
+ - Curve to evaluate
+ - 6c04a5d0-01f6-4331-9cc4-d14b5cd21a9d
+ - Curve
+ - Curve
+ - false
+ - 620f4604-c9b2-4225-ab41-aaf06f6c632a
+ - 1
+
+
+
+
+ -
+ 7498
+ 13024
+ 33
+ 40
+
+ -
+ 7516
+ 13044
+
+
+
+
+
+
+
+ - Curve start point
+ - 2b5ed4c8-213e-4697-a381-3918ac9dbfbb
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 13024
+ 29
+ 20
+
+ -
+ 7577
+ 13034
+
+
+
+
+
+
+
+ - Curve end point
+ - 90f707ef-2045-4ac5-989e-65bc04910535
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7561
+ 13044
+ 29
+ 20
+
+ -
+ 7577
+ 13054
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - b2a2f048-d933-4b9a-802e-81a5e9054879
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7481
+ 12920
+ 126
+ 84
+
+ -
+ 7539
+ 12962
+
+
+
+
+
+ - Rectangle base plane
+ - 96feecab-6ceb-4211-8e03-3c6f6d7ad1bb
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7483
+ 12922
+ 41
+ 20
+
+ -
+ 7505
+ 12932
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 8884988e-e986-43c7-b6d0-09a307ff3b93
+ - Point A
+ - Point A
+ - false
+ - 2b5ed4c8-213e-4697-a381-3918ac9dbfbb
+ - 1
+
+
+
+
+ -
+ 7483
+ 12942
+ 41
+ 20
+
+ -
+ 7505
+ 12952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 0b20b7af-14e2-4cdd-95ec-59b516ba7deb
+ - Point B
+ - Point B
+ - false
+ - 90f707ef-2045-4ac5-989e-65bc04910535
+ - 1
+
+
+
+
+ -
+ 7483
+ 12962
+ 41
+ 20
+
+ -
+ 7505
+ 12972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 284ad67c-88a6-4977-8d59-fa10fbcc728b
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7483
+ 12982
+ 41
+ 20
+
+ -
+ 7505
+ 12992
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - cd5062c1-61ba-40e7-bc08-0ca8b6df2254
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7554
+ 12922
+ 51
+ 40
+
+ -
+ 7581
+ 12942
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 1704d891-c56a-4edd-a448-c40633072f39
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7554
+ 12962
+ 51
+ 40
+
+ -
+ 7581
+ 12982
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - fc350524-ba4b-42e1-b3be-b2e6eb1e659e
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 7535
+ 12717
+ 126
+ 104
+
+ -
+ 7602
+ 12769
+
+
+
+
+
+ - External curve as a graph
+ - 39a567f2-e6ca-44e3-a4d0-bd4ff9b1af56
+ - Curve
+ - Curve
+ - false
+ - 620f4604-c9b2-4225-ab41-aaf06f6c632a
+ - 1
+
+
+
+
+ -
+ 7537
+ 12719
+ 50
+ 20
+
+ -
+ 7563.5
+ 12729
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - e05f3b49-4b57-44be-8304-d9752afb3129
+ - Boundary
+ - Boundary
+ - true
+ - cd5062c1-61ba-40e7-bc08-0ca8b6df2254
+ - 1
+
+
+
+
+ -
+ 7537
+ 12739
+ 50
+ 20
+
+ -
+ 7563.5
+ 12749
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 231a71f6-2ca9-4149-b62b-d1905f2bb6e2
+ - Numbers
+ - Numbers
+ - false
+ - 0ad6ebd3-9bff-422b-b1c8-620ae7f18fd1
+ - 1
+
+
+
+
+ -
+ 7537
+ 12759
+ 50
+ 20
+
+ -
+ 7563.5
+ 12769
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - b16456ab-4d82-4226-93e1-16cda0318deb
+ - Input
+ - Input
+ - true
+ - e797e490-c7b9-4597-930b-c8696eeb879e
+ - 1
+
+
+
+
+ -
+ 7537
+ 12779
+ 50
+ 20
+
+ -
+ 7563.5
+ 12789
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 335554e0-2b77-4e9a-9da3-6ac7303318f3
+ - Output
+ - Output
+ - true
+ - e797e490-c7b9-4597-930b-c8696eeb879e
+ - 1
+
+
+
+
+ -
+ 7537
+ 12799
+ 50
+ 20
+
+ -
+ 7563.5
+ 12809
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 55233cdb-263e-4f06-8f12-88194a7dc032
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 7617
+ 12719
+ 42
+ 100
+
+ -
+ 7639.5
+ 12769
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - c0eece22-6db9-450a-84da-b6446c00f6e7
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7510
+ 12514
+ 89
+ 64
+
+ -
+ 7555
+ 12546
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - c3900b5d-eedd-4dc1-9dc6-b2ecca19523f
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 7512
+ 12516
+ 28
+ 20
+
+ -
+ 7527.5
+ 12526
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - ff17ea2d-1547-4060-be01-e1f56ce0678b
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 749b8b54-b38e-490b-86d6-0135fb7658d1
+ - 1
+
+
+
+
+ -
+ 7512
+ 12536
+ 28
+ 20
+
+ -
+ 7527.5
+ 12546
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - e321a03c-647a-4cbd-9296-2143d405dba1
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 55233cdb-263e-4f06-8f12-88194a7dc032
+ - 1
+
+
+
+
+ -
+ 7512
+ 12556
+ 28
+ 20
+
+ -
+ 7527.5
+ 12566
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 9fb6c367-789d-4429-b55c-b390791391fd
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7570
+ 12516
+ 27
+ 60
+
+ -
+ 7585
+ 12546
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - ebd5302f-d62d-47d8-bd9f-a5c55eb9d9e2
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7478
+ 12439
+ 150
+ 20
+
+ -
+ 7478.294
+ 12439.56
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5e8d1927-3e40-48e5-b130-19494db5d000
+ - Panel
+
+ - false
+ - 1
+ - 8f364de1-b7e7-4578-aab1-55dfe4fa0dd1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7458
+ 13214
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 7458.365
+ 13214.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - a7804f21-ef86-4385-9b58-89ada0927d45
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 7485
+ 13161
+ 122
+ 28
+
+ -
+ 7549
+ 13175
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 00ec7155-9f58-4f96-bb4a-df1e7b52cb44
+ - Numbers
+ - Numbers
+ - false
+ - 0ad6ebd3-9bff-422b-b1c8-620ae7f18fd1
+ - 1
+
+
+
+
+ -
+ 7487
+ 13163
+ 47
+ 24
+
+ -
+ 7512
+ 13175
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - e797e490-c7b9-4597-930b-c8696eeb879e
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7564
+ 13163
+ 41
+ 24
+
+ -
+ 7586
+ 13175
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - bd253782-5888-4882-b26c-d089e5f118eb
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7447
+ 13575
+ 194
+ 28
+
+ -
+ 7547
+ 13589
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d4f23f43-91dd-4f7f-9a50-a0f5e7cdcc05
+ - true
+ - Variable O
+ - O
+ - true
+ - 0ad6ebd3-9bff-422b-b1c8-620ae7f18fd1
+ - 1
+
+
+
+
+ -
+ 7449
+ 13577
+ 14
+ 24
+
+ -
+ 7457.5
+ 13589
+
+
+
+
+
+
+
+ - Result of expression
+ - 8f364de1-b7e7-4578-aab1-55dfe4fa0dd1
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7630
+ 13577
+ 9
+ 24
+
+ -
+ 7636
+ 13589
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 57eb5ebf-a05f-4bb4-9967-b7b3c1687c8c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7361
+ 13789
+ 367
+ 28
+
+ -
+ 7547
+ 13803
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 72e0a842-1f26-4d8a-9230-90678f4e51e4
+ - Variable O
+ - O
+ - true
+ - 2e500c78-c54a-4ee9-9dc5-2a16260d83ce
+ - 1
+
+
+
+
+ -
+ 7363
+ 13791
+ 14
+ 24
+
+ -
+ 7371.5
+ 13803
+
+
+
+
+
+
+
+ - Result of expression
+ - ce276144-033b-4828-84de-119527b4e8a7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7717
+ 13791
+ 9
+ 24
+
+ -
+ 7723
+ 13803
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2102b6f6-7762-401d-b96b-e1b63393697b
+ - Panel
+
+ - false
+ - 0
+ - ce276144-033b-4828-84de-119527b4e8a7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7458
+ 13751
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7458.504
+ 13751.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+ - bdda6eac-8b5e-4083-a014-e412699ab434
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 51c29661-5f00-4270-8e5d-51bb166711f7
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7467
+ 9949
+ 154
+ 64
+
+ -
+ 7551
+ 9981
+
+
+
+
+
+ - Base geometry
+ - 4954fbcf-ce99-483a-927c-4260a5d275b8
+ - Geometry
+ - Geometry
+ - true
+ - 653b9b1f-4388-4601-9964-cb0f37000c42
+ - 1
+
+
+
+
+ -
+ 7469
+ 9951
+ 67
+ 20
+
+ -
+ 7512
+ 9961
+
+
+
+
+
+
+
+ - Center of scaling
+ - 718f7a66-71a9-4e17-8fb8-90910579c5c7
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 9971
+ 67
+ 20
+
+ -
+ 7512
+ 9981
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 6af61342-b613-4e04-9efa-e5c467207810
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 6f2328a6-1197-4fad-88b8-fe947c5630c5
+ - 1
+
+
+
+
+ -
+ 7469
+ 9991
+ 67
+ 20
+
+ -
+ 7512
+ 10001
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 760de91d-5d97-4083-aa56-7dd74c45bd70
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7566
+ 9951
+ 53
+ 30
+
+ -
+ 7594
+ 9966
+
+
+
+
+
+
+
+ - Transformation data
+ - a2505763-ea80-48aa-9643-dd62f69a75fc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7566
+ 9981
+ 53
+ 30
+
+ -
+ 7594
+ 9996
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 92fba1b4-6fcd-49c0-9172-b5cd7ee1712b
+ - Point
+ - Point
+ - false
+ - 760de91d-5d97-4083-aa56-7dd74c45bd70
+ - 1
+
+
+
+
+ -
+ 7522
+ 9916
+ 50
+ 24
+
+ -
+ 7547.654
+ 9928.212
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - ce5697fc-79fa-4cd1-9822-346f09145cf9
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7489
+ 9309
+ 138
+ 44
+
+ -
+ 7557
+ 9331
+
+
+
+
+
+ - Base geometry
+ - febbf835-e2ea-4900-91ad-5006c61de3b7
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 7491
+ 9311
+ 51
+ 20
+
+ -
+ 7518
+ 9321
+
+
+
+
+
+
+
+ - Mirror plane
+ - 364d9328-2306-438c-bd7d-8b49fd8bf32e
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7491
+ 9331
+ 51
+ 20
+
+ -
+ 7518
+ 9341
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 5c69e156-6394-4c54-82c6-5cde48ae47cc
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7572
+ 9311
+ 53
+ 20
+
+ -
+ 7600
+ 9321
+
+
+
+
+
+
+
+ - Transformation data
+ - c3a2fa55-fe7c-47de-b6bc-f741c45a0b17
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7572
+ 9331
+ 53
+ 20
+
+ -
+ 7600
+ 9341
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 289362ef-c456-475f-a4a5-7610e305e8d9
+ - true
+ - Curve
+ - Curve
+ - false
+ - 3b382b54-9bc9-4959-a883-d04a5002518d
+ - 1
+
+
+
+
+ -
+ 7538
+ 9207
+ 50
+ 24
+
+ -
+ 7563.904
+ 9219.222
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 620f4604-c9b2-4225-ab41-aaf06f6c632a
+ - Relay
+
+ - false
+ - 26d7535a-4156-4451-9c50-40afd7e85fd7
+ - 1
+
+
+
+
+ -
+ 7526
+ 13089
+ 40
+ 16
+
+ -
+ 7546
+ 13097
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 879e5696-96c6-42cb-af24-fa0abdae663d
+ - Curve
+ - Curve
+ - false
+ - 654c0ab1-b14e-4de4-bed5-84f08c62833b
+ - 1
+
+
+
+
+ -
+ 7092
+ 13483
+ 50
+ 24
+
+ -
+ 7117.403
+ 13495.68
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 26d7535a-4156-4451-9c50-40afd7e85fd7
+ - Curve
+ - Curve
+ - false
+ - 13b6e180-4b83-4157-8193-af265fe3ae92
+ - 1
+
+
+
+
+ -
+ 7091
+ 13193
+ 50
+ 24
+
+ -
+ 7116.5
+ 13205.83
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 384b46ce-30e8-4d44-97a1-a03503d802b4
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7036
+ 13228
+ 154
+ 64
+
+ -
+ 7120
+ 13260
+
+
+
+
+
+ - Base geometry
+ - 0694b910-5c39-4000-b6c5-861a755ce964
+ - Geometry
+ - Geometry
+ - true
+ - 879e5696-96c6-42cb-af24-fa0abdae663d
+ - 1
+
+
+
+
+ -
+ 7038
+ 13230
+ 67
+ 20
+
+ -
+ 7081
+ 13240
+
+
+
+
+
+
+
+ - Center of scaling
+ - 376624b9-b0fa-4aec-9866-51a2413dda29
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7038
+ 13250
+ 67
+ 20
+
+ -
+ 7081
+ 13260
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 307cbdab-010d-4c0c-8196-3ab04cd777e0
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 4bbdaea1-5551-4ab2-911a-d23c202e61b0
+ - 1
+
+
+
+
+ -
+ 7038
+ 13270
+ 67
+ 20
+
+ -
+ 7081
+ 13280
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 13b6e180-4b83-4157-8193-af265fe3ae92
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7135
+ 13230
+ 53
+ 30
+
+ -
+ 7163
+ 13245
+
+
+
+
+
+
+
+ - Transformation data
+ - 5c6566e0-3b09-493c-989b-16204b0fdad8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7135
+ 13260
+ 53
+ 30
+
+ -
+ 7163
+ 13275
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 879e5696-96c6-42cb-af24-fa0abdae663d
+ - 26d7535a-4156-4451-9c50-40afd7e85fd7
+ - 384b46ce-30e8-4d44-97a1-a03503d802b4
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 4dc7bcc7-5910-4821-b3a9-9c406ad94215
+ - 7d19420a-9c9b-4759-80ad-6014ae313ab8
+ - 81158720-bb50-43f1-9088-66dce4c36f28
+ - d7b476c4-a7ee-4401-9e6e-7eec391f2b89
+ - 4bbdaea1-5551-4ab2-911a-d23c202e61b0
+ - 797bda74-90d7-46e9-ac0c-d7d7648f6440
+ - 22fd4b81-9e88-42b4-814a-e63ab43f594b
+ - 11
+ - 04ceed38-ed46-46cb-9346-2fa1b74bcf17
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 34abd1c9-c536-44ad-8046-d4107bdabe6c
+ - Move
+ - Move
+
+
+
+
+ -
+ 7489
+ 9245
+ 138
+ 44
+
+ -
+ 7557
+ 9267
+
+
+
+
+
+ - Base geometry
+ - b484cdc5-ec24-4370-a67e-738d9cc791db
+ - Geometry
+ - Geometry
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 7491
+ 9247
+ 51
+ 20
+
+ -
+ 7518
+ 9257
+
+
+
+
+
+
+
+ - Translation vector
+ - 86fa2a3a-b9eb-40af-8ffe-875a2280e76e
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 7491
+ 9267
+ 51
+ 20
+
+ -
+ 7518
+ 9277
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 7.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 3b382b54-9bc9-4959-a883-d04a5002518d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7572
+ 9247
+ 53
+ 20
+
+ -
+ 7600
+ 9257
+
+
+
+
+
+
+
+ - Transformation data
+ - 0bd32124-105b-419a-b729-013f3c3881cc
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7572
+ 9267
+ 53
+ 20
+
+ -
+ 7600
+ 9277
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 4dc7bcc7-5910-4821-b3a9-9c406ad94215
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 6989
+ 13440
+ 250
+ 20
+
+ -
+ 6989.229
+ 13440.06
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7d19420a-9c9b-4759-80ad-6014ae313ab8
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 7048
+ 13318
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7048.967
+ 13318.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 81158720-bb50-43f1-9088-66dce4c36f28
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7091
+ 13150
+ 50
+ 24
+
+ -
+ 7116.5
+ 13162.83
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d7b476c4-a7ee-4401-9e6e-7eec391f2b89
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7095
+ 13620
+ 50
+ 24
+
+ -
+ 7120
+ 13632.78
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fcbee14a-4d93-4cf2-b3db-3ad085292274
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 7328
+ 13962
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7328.886
+ 13962.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 5b0dc039-c379-4b69-b183-c35d14dfb12a
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7914
+ 9940
+ 96
+ 44
+
+ -
+ 7964
+ 9962
+
+
+
+
+
+ - Curve to evaluate
+ - 21c6857a-2bd3-408a-acdc-43fe9720a5c1
+ - Curve
+ - Curve
+ - false
+ - 86b4e4b6-71b5-4a82-8d28-6b0279fe4e92
+ - 1
+
+
+
+
+ -
+ 7916
+ 9942
+ 33
+ 40
+
+ -
+ 7934
+ 9962
+
+
+
+
+
+
+
+ - Curve start point
+ - f36d4b80-4ba9-469a-911d-ecce3fc3735e
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7979
+ 9942
+ 29
+ 20
+
+ -
+ 7995
+ 9952
+
+
+
+
+
+
+
+ - Curve end point
+ - 5a98d27e-8c17-4c11-b77d-5566adc782f6
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7979
+ 9962
+ 29
+ 20
+
+ -
+ 7995
+ 9972
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 6ef4a988-536b-4f39-beb0-56f227c59e41
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7899
+ 9837
+ 126
+ 84
+
+ -
+ 7957
+ 9879
+
+
+
+
+
+ - Rectangle base plane
+ - ffc942fb-fb6d-45a5-894c-025f4a62a69b
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7901
+ 9839
+ 41
+ 20
+
+ -
+ 7923
+ 9849
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - a7ba301c-c27d-46e2-98e5-f5fbc04314d1
+ - Point A
+ - Point A
+ - false
+ - f36d4b80-4ba9-469a-911d-ecce3fc3735e
+ - 1
+
+
+
+
+ -
+ 7901
+ 9859
+ 41
+ 20
+
+ -
+ 7923
+ 9869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - be8ade80-82dc-41d6-a354-14237df4856c
+ - Point B
+ - Point B
+ - false
+ - 5a98d27e-8c17-4c11-b77d-5566adc782f6
+ - 1
+
+
+
+
+ -
+ 7901
+ 9879
+ 41
+ 20
+
+ -
+ 7923
+ 9889
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 16b7f1d7-87cd-4f97-b32d-f4947664234b
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7901
+ 9899
+ 41
+ 20
+
+ -
+ 7923
+ 9909
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 1eceb20d-1e58-45a1-82a8-324db5623b2f
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7972
+ 9839
+ 51
+ 40
+
+ -
+ 7999
+ 9859
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 6894ffb6-08bf-4f64-96bb-54dc822f0167
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7972
+ 9879
+ 51
+ 40
+
+ -
+ 7999
+ 9899
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - 34d1b0b8-7e06-4481-8b88-e5dc3e59deba
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 7891
+ 9754
+ 142
+ 64
+
+ -
+ 7959
+ 9786
+
+
+
+
+
+ - Rectangle to deconstruct
+ - b0596a45-b198-4d45-9a01-aa7e51f8d16e
+ - Rectangle
+ - Rectangle
+ - false
+ - 1eceb20d-1e58-45a1-82a8-324db5623b2f
+ - 1
+
+
+
+
+ -
+ 7893
+ 9756
+ 51
+ 60
+
+ -
+ 7920
+ 9786
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 5b80bcb2-007d-4951-81f5-936b7a4c8ce0
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 9756
+ 57
+ 20
+
+ -
+ 8004
+ 9766
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - d834c604-6ed5-424c-938b-87006d8709ac
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 9776
+ 57
+ 20
+
+ -
+ 8004
+ 9786
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - e3b6c265-94b2-40eb-a5ae-d6ade5062c54
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 9796
+ 57
+ 20
+
+ -
+ 8004
+ 9806
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - b512e8df-c804-43fa-80f5-c035b2e44c88
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 7910
+ 9627
+ 104
+ 44
+
+ -
+ 7968
+ 9649
+
+
+
+
+
+ - Base domain
+ - e12dfecf-5c94-4290-bcf1-e79a8b8d931f
+ - Domain
+ - Domain
+ - false
+ - e3b6c265-94b2-40eb-a5ae-d6ade5062c54
+ - 1
+
+
+
+
+ -
+ 7912
+ 9629
+ 41
+ 40
+
+ -
+ 7934
+ 9649
+
+
+
+
+
+
+
+ - Start of domain
+ - a32712df-acc1-4612-aae2-e8972fbc0c13
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7983
+ 9629
+ 29
+ 20
+
+ -
+ 7999
+ 9639
+
+
+
+
+
+
+
+ - End of domain
+ - 3846c5ef-f7ac-4be0-8f98-7bbd1d85c72d
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7983
+ 9649
+ 29
+ 20
+
+ -
+ 7999
+ 9659
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - ff341083-07d1-4673-b7ef-ea33fa9113c2
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 7910
+ 9689
+ 104
+ 44
+
+ -
+ 7968
+ 9711
+
+
+
+
+
+ - Base domain
+ - 52face86-c092-4a6a-8981-f5746caeb508
+ - Domain
+ - Domain
+ - false
+ - d834c604-6ed5-424c-938b-87006d8709ac
+ - 1
+
+
+
+
+ -
+ 7912
+ 9691
+ 41
+ 40
+
+ -
+ 7934
+ 9711
+
+
+
+
+
+
+
+ - Start of domain
+ - 801fc7ee-0c00-4a12-b6e8-7c424fd809ab
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7983
+ 9691
+ 29
+ 20
+
+ -
+ 7999
+ 9701
+
+
+
+
+
+
+
+ - End of domain
+ - ba151bf0-3b2f-42b7-8bb1-e60c19f6f016
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7983
+ 9711
+ 29
+ 20
+
+ -
+ 7999
+ 9721
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - ec0664dc-e2c7-4226-b0d4-35822abd6b61
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 7885
+ 9504
+ 154
+ 104
+
+ -
+ 7969
+ 9556
+
+
+
+
+
+ - Base geometry
+ - 3b5f720d-e677-4be9-93c8-d7e772a936fa
+ - Geometry
+ - Geometry
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 7887
+ 9506
+ 67
+ 20
+
+ -
+ 7930
+ 9516
+
+
+
+
+
+
+
+ - Base plane
+ - b96a577d-6f3c-440d-a07c-594ffc43b82f
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7887
+ 9526
+ 67
+ 20
+
+ -
+ 7930
+ 9536
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 471f130f-7163-4b0c-a9fd-2cc441bbc2b5
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - ba151bf0-3b2f-42b7-8bb1-e60c19f6f016
+ - 1
+
+
+
+
+ -
+ 7887
+ 9546
+ 67
+ 20
+
+ -
+ 7930
+ 9556
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - f34bfbdc-7c6d-4568-9fae-4875e068c889
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 3846c5ef-f7ac-4be0-8f98-7bbd1d85c72d
+ - 1
+
+
+
+
+ -
+ 7887
+ 9566
+ 67
+ 20
+
+ -
+ 7930
+ 9576
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - a0d7b568-554b-4107-b7fa-24b37aa30afb
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 7887
+ 9586
+ 67
+ 20
+
+ -
+ 7930
+ 9596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - fb90415c-1b41-44c2-84d3-02937171eb06
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7984
+ 9506
+ 53
+ 50
+
+ -
+ 8012
+ 9531
+
+
+
+
+
+
+
+ - Transformation data
+ - 1e389f63-658b-4bde-bb18-246e33882f38
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7984
+ 9556
+ 53
+ 50
+
+ -
+ 8012
+ 9581
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5b0dc039-c379-4b69-b183-c35d14dfb12a
+ - 6ef4a988-536b-4f39-beb0-56f227c59e41
+ - 34d1b0b8-7e06-4481-8b88-e5dc3e59deba
+ - b512e8df-c804-43fa-80f5-c035b2e44c88
+ - ff341083-07d1-4673-b7ef-ea33fa9113c2
+ - ec0664dc-e2c7-4226-b0d4-35822abd6b61
+ - 86b4e4b6-71b5-4a82-8d28-6b0279fe4e92
+ - b09beea0-b303-4bd8-86ed-e165609c0970
+ - 26d0d500-b462-4c99-872b-9726e16594d3
+ - e9fafb6a-dcd6-496c-a636-30117cb488ef
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - 9e8d26b2-7e97-48ec-ae49-67a48ce8ebf7
+ - 12
+ - 5db88eb8-c00e-4933-a6bf-404c9e6b6bf8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 86b4e4b6-71b5-4a82-8d28-6b0279fe4e92
+ - Curve
+ - Curve
+ - false
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 7940
+ 10013
+ 50
+ 24
+
+ -
+ 7965.545
+ 10025.43
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b09beea0-b303-4bd8-86ed-e165609c0970
+ - Curve
+ - Curve
+ - false
+ - fb90415c-1b41-44c2-84d3-02937171eb06
+ - 1
+
+
+
+
+ -
+ 7940
+ 9451
+ 50
+ 24
+
+ -
+ 7965.329
+ 9463.678
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 26d0d500-b462-4c99-872b-9726e16594d3
+ - Move
+ - Move
+
+
+
+
+ -
+ 7891
+ 9251
+ 138
+ 44
+
+ -
+ 7959
+ 9273
+
+
+
+
+
+ - Base geometry
+ - aad31805-b7c4-4dad-b9fd-3613cbb04142
+ - Geometry
+ - Geometry
+ - true
+ - b09beea0-b303-4bd8-86ed-e165609c0970
+ - 1
+
+
+
+
+ -
+ 7893
+ 9253
+ 51
+ 20
+
+ -
+ 7920
+ 9263
+
+
+
+
+
+
+
+ - Translation vector
+ - 1dfdf926-8087-497d-be92-6f601ca931c5
+ - Motion
+ - Motion
+ - false
+ - 184eb17b-e291-4ca3-a3c1-560f57675d83
+ - 1
+
+
+
+
+ -
+ 7893
+ 9273
+ 51
+ 20
+
+ -
+ 7920
+ 9283
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 7b99d806-1719-451d-92aa-49432beecc18
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 9253
+ 53
+ 20
+
+ -
+ 8002
+ 9263
+
+
+
+
+
+
+
+ - Transformation data
+ - 77a44bf2-d8be-423d-8647-1885d329d7f2
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 9273
+ 53
+ 20
+
+ -
+ 8002
+ 9283
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e9fafb6a-dcd6-496c-a636-30117cb488ef
+ - true
+ - Curve
+ - Curve
+ - false
+ - 7b99d806-1719-451d-92aa-49432beecc18
+ - 1
+
+
+
+
+ -
+ 7937
+ 9207
+ 50
+ 24
+
+ -
+ 7962.66
+ 9219.891
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 93165403-b153-4c9f-aa6c-af2b0dfc68a1
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 7329
+ 14123
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 7329.191
+ 14123.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 8f0b6eae-1a0a-427d-bc2e-a6cd6fa9ecf4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 7421
+ 14273
+ 251
+ 20
+
+ -
+ 7421.796
+ 14273.51
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f1d26d4e-614c-44e1-a5e3-4264daf1c7ec
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 7328
+ 14182
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7328.636
+ 14182.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - dbc0f284-69fa-415b-9bb8-94c62d74b2d5
+ - Expression
+
+
+
+
+
+ -
+ 7512
+ 14371
+ 79
+ 28
+
+ -
+ 7554
+ 14385
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 36f8e09e-344f-408a-9ea5-5b83cad73077
+ - Variable X
+ - X
+ - true
+ - 88b8ffb1-067f-4ad4-ae02-6871e4a07719
+ - 1
+
+
+
+
+ -
+ 7514
+ 14373
+ 14
+ 24
+
+ -
+ 7522.5
+ 14385
+
+
+
+
+
+
+
+ - Result of expression
+ - 054d46a2-3712-4bc1-913f-4a2f2ee35b3d
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 7580
+ 14373
+ 9
+ 24
+
+ -
+ 7586
+ 14385
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - accb7566-1c4f-472e-95ae-bf5b9b0e62fb
+ - Point
+ - Point
+ - false
+ - fe8fda7a-61a0-4712-ad3e-8e26eaf5a221
+ - 1
+
+
+
+
+ -
+ 7544
+ 11898
+ 50
+ 24
+
+ -
+ 7569.611
+ 11910.24
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fe8fda7a-61a0-4712-ad3e-8e26eaf5a221
+ - Relay
+
+ - false
+ - 1a7f5de6-38f3-4d31-8db7-4a12c24c79d7
+ - 1
+
+
+
+
+ -
+ 7548
+ 11945
+ 40
+ 16
+
+ -
+ 7568
+ 11953
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 653b9b1f-4388-4601-9964-cb0f37000c42
+ - Relay
+
+ - false
+ - cf3b5cee-2d7d-43f1-bf8d-d5bf6e23c663
+ - 1
+
+
+
+
+ -
+ 7548
+ 11722
+ 40
+ 16
+
+ -
+ 7568
+ 11730
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - dfe2545b-c3c0-46a7-addc-20709cae7a4d
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7491
+ 11758
+ 154
+ 64
+
+ -
+ 7575
+ 11790
+
+
+
+
+
+ - Base geometry
+ - c83d92e1-4911-4bb4-b076-76d374c7a22c
+ - Geometry
+ - Geometry
+ - true
+ - accb7566-1c4f-472e-95ae-bf5b9b0e62fb
+ - 1
+
+
+
+
+ -
+ 7493
+ 11760
+ 67
+ 20
+
+ -
+ 7536
+ 11770
+
+
+
+
+
+
+
+ - Center of scaling
+ - be49679d-77d6-4a82-a2b4-a5912884c691
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7493
+ 11780
+ 67
+ 20
+
+ -
+ 7536
+ 11790
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 1186895b-b730-42f7-aab4-2274fa434fd2
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 7101556a-3ae8-4013-a010-ecff577fe9b9
+ - 1
+
+
+
+
+ -
+ 7493
+ 11800
+ 67
+ 20
+
+ -
+ 7536
+ 11810
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - cf3b5cee-2d7d-43f1-bf8d-d5bf6e23c663
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7590
+ 11760
+ 53
+ 30
+
+ -
+ 7618
+ 11775
+
+
+
+
+
+
+
+ - Transformation data
+ - 2abb8b43-7a59-4444-a311-300dc7b8e056
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7590
+ 11790
+ 53
+ 30
+
+ -
+ 7618
+ 11805
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 7101556a-3ae8-4013-a010-ecff577fe9b9
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 7449
+ 11842
+ 250
+ 20
+
+ -
+ 7449.391
+ 11842.6
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - accb7566-1c4f-472e-95ae-bf5b9b0e62fb
+ - 1
+ - 56e8a40e-11a7-4931-84ec-68eda6076c5e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 4bbdaea1-5551-4ab2-911a-d23c202e61b0
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 7097
+ 13406
+ 40
+ 16
+
+ -
+ 7117
+ 13414
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 797bda74-90d7-46e9-ac0c-d7d7648f6440
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 7046
+ 13369
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7046.223
+ 13369.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 5653c313-d529-43a0-bfca-d8e5d3a366c3
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 7421
+ 14225
+ 251
+ 20
+
+ -
+ 7421.796
+ 14225.26
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 9e8d26b2-7e97-48ec-ae49-67a48ce8ebf7
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 7891
+ 9337
+ 139
+ 64
+
+ -
+ 7976
+ 9369
+
+
+
+
+
+ - Vector {x} component
+ - 81abd812-c99e-4e18-b6d3-42f829e562ef
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7893
+ 9339
+ 68
+ 20
+
+ -
+ 7928.5
+ 9349
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 7.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 9cef1672-929f-4639-9fc5-0b549cc8f135
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7893
+ 9359
+ 68
+ 20
+
+ -
+ 7928.5
+ 9369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - a365c0e0-9e55-4524-a3b4-d67262f224d3
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7893
+ 9379
+ 68
+ 20
+
+ -
+ 7928.5
+ 9389
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 184eb17b-e291-4ca3-a3c1-560f57675d83
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 7991
+ 9339
+ 37
+ 30
+
+ -
+ 8011
+ 9354
+
+
+
+
+
+
+
+ - Vector length
+ - 326befbc-5d30-41fe-a27d-2666691685f0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7991
+ 9369
+ 37
+ 30
+
+ -
+ 8011
+ 9384
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - Number
+ - Number
+ - false
+ - b56666d6-9797-4a5c-90a4-d2e1b18ecfdc
+ - 1
+
+
+
+
+ -
+ 12401
+ 24460
+ 50
+ 24
+
+ -
+ 12426.58
+ 24472.91
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b56666d6-9797-4a5c-90a4-d2e1b18ecfdc
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.00000032430
+
+
+
+
+ -
+ 12301
+ 24507
+ 251
+ 20
+
+ -
+ 12301.9
+ 24507.35
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - b56666d6-9797-4a5c-90a4-d2e1b18ecfdc
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - e48d37a4-31d8-475b-b2b4-409089413c61
+ - ca0b4c8e-f4b8-419c-846a-9f1a9863bf4b
+ - d375b5ca-e8b1-4d1a-8abb-3fd34cb27870
+ - 7b693454-2db5-44a3-9c4a-cc11487e6907
+ - 3a650aef-6a0b-4f56-bc6c-8e2ab6306e69
+ - ffaefc29-5720-4d1d-8f74-3ff88cea009f
+ - 9
+ - 470e5d54-1943-4d5a-a09a-6ad9e37a917e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - bb7c6e56-db88-4b95-97d6-7f9c63deab58
+ - Relay
+
+ - false
+ - 8381622f-1691-48ed-8659-5a932a2a725a
+ - 1
+
+
+
+
+ -
+ 2876
+ 12423
+ 40
+ 16
+
+ -
+ 2896
+ 12431
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - dc3d55d3-969a-4cf8-b13b-b7109ec1f5c7
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 4323
+ 13764
+ 40
+ 16
+
+ -
+ 4343
+ 13772
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2d9e9ed7-5b0d-4a60-8faf-5f95198768de
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 5901
+ 13853
+ 40
+ 16
+
+ -
+ 5921
+ 13861
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 73264b8a-92e1-4ec9-82b0-0fb1b2df3af9
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 7527
+ 13883
+ 40
+ 16
+
+ -
+ 7547
+ 13891
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 4fc4ca98-3632-4ea7-9a66-0d0a0417032f
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 3878
+ 13415
+ 89
+ 64
+
+ -
+ 3923
+ 13447
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 4ad0d972-c083-4e81-b648-501e0555e6fb
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 3880
+ 13417
+ 28
+ 20
+
+ -
+ 3895.5
+ 13427
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 2f6757f9-2115-40dc-a3b8-fed2fb7cb880
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+
+
+
+
+ -
+ 3880
+ 13437
+ 28
+ 20
+
+ -
+ 3895.5
+ 13447
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 45f0b560-e107-4da1-95b8-b8d765e00ee8
+ - false
+ - Stream 1
+ - 1
+ - true
+ - f32e469d-5411-4757-a641-2639d4f5739a
+ - 1
+
+
+
+
+ -
+ 3880
+ 13457
+ 28
+ 20
+
+ -
+ 3895.5
+ 13467
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 3255d013-8457-40e7-99eb-8125533f5f6e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 3938
+ 13417
+ 27
+ 60
+
+ -
+ 3953
+ 13447
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12351
+ 24544
+ 150
+ 20
+
+ -
+ 12351.76
+ 24544.54
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 57d8cf5a-d653-4aa1-b5d2-37aa860a7191
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5450
+ 13499
+ 89
+ 64
+
+ -
+ 5495
+ 13531
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - e921a3c1-c298-43af-af1d-60450de43d88
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 5452
+ 13501
+ 28
+ 20
+
+ -
+ 5467.5
+ 13511
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 8a5bfd21-afc6-4e24-a4be-8a04e9965fbf
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 5452
+ 13521
+ 28
+ 20
+
+ -
+ 5467.5
+ 13531
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 95a27953-e6af-4547-973a-9ad61e9e3e29
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 92872ee8-e7ec-4b2a-b425-fe4d823e6b35
+ - 1
+
+
+
+
+ -
+ 5452
+ 13541
+ 28
+ 20
+
+ -
+ 5467.5
+ 13551
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 3a2182b2-50af-4963-b72c-d9b7f51dec82
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5510
+ 13501
+ 27
+ 60
+
+ -
+ 5525
+ 13531
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 22fd4b81-9e88-42b4-814a-e63ab43f594b
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7075
+ 13535
+ 89
+ 64
+
+ -
+ 7120
+ 13567
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - eb98b8c6-65c3-4943-887f-73279d875c6d
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 7077
+ 13537
+ 28
+ 20
+
+ -
+ 7092.5
+ 13547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - f372417e-2c16-4eb2-b311-5330f544cc87
+ - false
+ - Stream 0
+ - 0
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 7077
+ 13557
+ 28
+ 20
+
+ -
+ 7092.5
+ 13567
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - b1165c29-73a3-4e82-93cd-6078ceabf33c
+ - false
+ - Stream 1
+ - 1
+ - true
+ - ffec4d71-4ff5-4e80-877f-78e4fee070d7
+ - 1
+
+
+
+
+ -
+ 7077
+ 13577
+ 28
+ 20
+
+ -
+ 7092.5
+ 13587
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 654c0ab1-b14e-4de4-bed5-84f08c62833b
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7135
+ 13537
+ 27
+ 60
+
+ -
+ 7150
+ 13567
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 2838bbe3-f818-4f76-ae8b-6a38a11cfbd8
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 19296
+ 13458
+ 89
+ 64
+
+ -
+ 19341
+ 13490
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 1d67c641-6b48-4b4c-9635-5e588d776d87
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 19298
+ 13460
+ 28
+ 20
+
+ -
+ 19313.5
+ 13470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 6242a1ca-eab8-40ba-b1d5-645bbee476b3
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+
+
+
+
+ -
+ 19298
+ 13480
+ 28
+ 20
+
+ -
+ 19313.5
+ 13490
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 742cf4a0-966c-4f7f-8069-3310cff9d408
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 9cdccbe3-88c1-4358-b357-52199f288269
+ - 1
+
+
+
+
+ -
+ 19298
+ 13500
+ 28
+ 20
+
+ -
+ 19313.5
+ 13510
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 791bd61f-9221-4811-b56f-f55006c9145e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 19356
+ 13460
+ 27
+ 60
+
+ -
+ 19371
+ 13490
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c8993beb-b45b-4c31-9990-7eb86ffdc60d
+ - 1208fa26-35cd-449c-8bab-d5024ce56926
+ - e9fa65ea-db30-4e31-abf4-2dd776fcae3e
+ - 9acdadaa-96e4-4e3f-b354-95632380b4b1
+ - 993a4bbf-a82f-4209-b544-cec1a75b5c95
+ - 30884d74-7a79-4131-9e30-3d6188286538
+ - 6
+ - 5e2e255b-9ddc-4e75-b99f-a774482a0931
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d1981487-8ad8-40de-95d2-2dfd11bb02ca
+ - 6ad47e04-c775-4a57-a73e-2ed7b095038c
+ - f954a659-5062-447e-9158-d5051bfbdea3
+ - b53d1f77-608a-4c61-9559-4eb316076796
+ - ba14223b-9856-48cc-a64a-ea001a07bc7b
+ - 4c4f6f4e-770b-4771-818a-433699bdebfa
+ - a643dd61-7fdb-409d-903c-79805a46b9a4
+ - d37d7f72-8b27-495f-b2d9-2ad63b616116
+ - e4dc0d57-9ce6-4836-938f-9116521f833c
+ - e050872a-8764-467a-a1e9-bb04d939de45
+ - 30b2c23f-8683-4fef-996c-03f6aa1e9afe
+ - 219c0fa8-912a-49ba-8b85-0f746c3c66f9
+ - e7b831aa-68e9-44d9-8efc-496946509db9
+ - 6927ab14-0ec8-425e-a84f-02340f79d740
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 24c12657-9231-42d5-962e-3459238abf6b
+ - 3aeaa679-c8fa-47a2-b9c3-1868572b291c
+ - c227a8ff-262c-4247-b446-6a6a409dbb5b
+ - 4230986a-8ed3-4a92-9e8a-4b00cb3dd536
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9dd91ab6-75a6-48ce-93cd-2b30e34153fb
+ - 2355ed38-5d29-469d-a4c3-14ee6ab32283
+ - 84ce8d06-633a-4b85-9d58-99f099ae4242
+ - 80d375d4-8b07-4dee-8779-6702412242e0
+ - 44d495d1-0282-469c-bae8-1b7b114e82aa
+ - 141df525-4941-4245-9dbb-7aa96ad0ef17
+ - 82650166-1a70-400b-ba95-f48c82cf522a
+ - a04706b6-5974-46f2-8142-af0e5eb2e404
+ - 13ca4a8a-17a9-474d-8d12-e869ded133d6
+ - d64cd4a9-d31e-4b3c-906c-9e3339a4665b
+ - 8313ef34-90a3-4468-9c25-12254136998b
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - 307c6d55-e3a7-42a1-b0db-9f791b11eff0
+ - 4935389c-f07e-4524-8242-4a47ef4fb7f9
+ - 4613d0c7-efad-43cd-941c-5cf519f01adc
+ - 803d6eef-8fc3-4891-b72a-0d1509b172b5
+ - ace18051-a13a-43c1-b49d-1eb9257a0199
+ - 83bcd048-d0fa-430f-8b3b-500b492ac590
+ - d7b860ab-9124-433b-ae6c-b3d14e797346
+ - f8da6e13-27a9-441f-82bb-751c752b32bf
+ - c118a0fa-1192-4a02-bd3c-43ff79e6d313
+ - 720b6578-cc9c-48d0-9307-02714aaef24b
+ - 9180f22d-6524-4aae-91d0-10a92e93f8c1
+ - 3c01166c-f0a6-4a88-93ac-c5c19c376a87
+ - 213a0814-ab74-42a4-9fdb-216c876eec66
+ - b226b6d8-5cd2-4cef-86d7-b36c65b97de6
+ - f67d9f4c-56da-41d5-8c82-7441814e2c85
+ - c611f570-ad63-4756-a6fb-1677ee1128e3
+ - 0a8930ac-b09d-4f87-b49c-2f40967ade30
+ - caced6a5-77f5-4a1f-87e5-7a507a1ae158
+ - 50f612ca-6a0a-47b4-8fc9-bad763a08dc9
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 6b93d7d0-45fb-45a0-bea0-8005836d7e60
+ - 1d906e19-2e90-4b08-a90d-ac1b5243f4af
+ - 9f1bed51-60ef-42bf-8096-04570ace019e
+ - b7772b7e-c7ba-400e-91c0-2338ccd91e6b
+ - d1624b40-e462-4048-8f8d-3f14c45083a9
+ - 90499343-ea4d-48db-8ecd-c73332b983b6
+ - 73fd317c-8b54-429b-91b1-65298c28a8ba
+ - b45428d6-2c80-4814-993d-02f4893b26a6
+ - b6b196ef-2842-4803-b7c1-49fe08c11203
+ - cd0aa9c7-f698-4083-8c48-93e774e27f13
+ - 5d39145e-2afd-40c3-9f19-3be03cd8e940
+ - d92ee07f-096c-44bd-9f99-31909c8fc35b
+ - 1f9c820d-c6a5-4943-b20d-bc4eaa2943a8
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - da61e8d2-e7e5-424f-aba4-e696dcf5d685
+ - 44b8b5fa-fa61-4ad1-9bee-b17fe91ef637
+ - 697fad89-ed0c-4b19-a017-0f7aa40a3970
+ - 2e222f5d-dddb-46ef-a284-074cfd8fbb0d
+ - 50873f75-0d1e-4717-8482-3b5d9a8fd067
+ - 3677150c-4996-4121-8acc-6eff251fa7ab
+ - 0c583e97-0764-47e8-a8bd-7880cc07c232
+ - 46c776c4-7ca3-4b86-b1e5-54d4aaaa19b3
+ - 1c12ee8d-94ec-462b-a5bc-882f08df648a
+ - 9aff4bc8-d0ea-4611-905e-7d68dfdef9d9
+ - f83e7873-fd7d-4508-923c-0a1ccf1f5173
+ - 627b51c5-9ba6-4062-990b-d2644fab7d08
+ - 8f563cb8-9910-4e8f-8b51-d6a1eb025af6
+ - b3d7308b-bd5a-4724-b108-23089d3defeb
+ - 1d83bc70-a220-4c43-aab3-dfcbb61a9a4c
+ - ac94063c-4ea8-4bd7-a1d9-331c5dae31b4
+ - 99ca1918-5b9f-48be-a244-7eba09c2a10c
+ - 83
+ - fc459a7c-1cd5-42a1-ac87-0a9258ade1b4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6ad47e04-c775-4a57-a73e-2ed7b095038c
+ - f954a659-5062-447e-9158-d5051bfbdea3
+ - b53d1f77-608a-4c61-9559-4eb316076796
+ - ba14223b-9856-48cc-a64a-ea001a07bc7b
+ - 4c4f6f4e-770b-4771-818a-433699bdebfa
+ - a643dd61-7fdb-409d-903c-79805a46b9a4
+ - d37d7f72-8b27-495f-b2d9-2ad63b616116
+ - e4dc0d57-9ce6-4836-938f-9116521f833c
+ - e050872a-8764-467a-a1e9-bb04d939de45
+ - 30b2c23f-8683-4fef-996c-03f6aa1e9afe
+ - 219c0fa8-912a-49ba-8b85-0f746c3c66f9
+ - e7b831aa-68e9-44d9-8efc-496946509db9
+ - 6927ab14-0ec8-425e-a84f-02340f79d740
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 24c12657-9231-42d5-962e-3459238abf6b
+ - 3aeaa679-c8fa-47a2-b9c3-1868572b291c
+ - c227a8ff-262c-4247-b446-6a6a409dbb5b
+ - 4230986a-8ed3-4a92-9e8a-4b00cb3dd536
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9dd91ab6-75a6-48ce-93cd-2b30e34153fb
+ - 2355ed38-5d29-469d-a4c3-14ee6ab32283
+ - 84ce8d06-633a-4b85-9d58-99f099ae4242
+ - 80d375d4-8b07-4dee-8779-6702412242e0
+ - 44d495d1-0282-469c-bae8-1b7b114e82aa
+ - 141df525-4941-4245-9dbb-7aa96ad0ef17
+ - 82650166-1a70-400b-ba95-f48c82cf522a
+ - a04706b6-5974-46f2-8142-af0e5eb2e404
+ - 13ca4a8a-17a9-474d-8d12-e869ded133d6
+ - d64cd4a9-d31e-4b3c-906c-9e3339a4665b
+ - 8313ef34-90a3-4468-9c25-12254136998b
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - 307c6d55-e3a7-42a1-b0db-9f791b11eff0
+ - 4935389c-f07e-4524-8242-4a47ef4fb7f9
+ - 4613d0c7-efad-43cd-941c-5cf519f01adc
+ - 803d6eef-8fc3-4891-b72a-0d1509b172b5
+ - ace18051-a13a-43c1-b49d-1eb9257a0199
+ - 83bcd048-d0fa-430f-8b3b-500b492ac590
+ - d7b860ab-9124-433b-ae6c-b3d14e797346
+ - f8da6e13-27a9-441f-82bb-751c752b32bf
+ - c118a0fa-1192-4a02-bd3c-43ff79e6d313
+ - 720b6578-cc9c-48d0-9307-02714aaef24b
+ - 9180f22d-6524-4aae-91d0-10a92e93f8c1
+ - 3c01166c-f0a6-4a88-93ac-c5c19c376a87
+ - 213a0814-ab74-42a4-9fdb-216c876eec66
+ - b226b6d8-5cd2-4cef-86d7-b36c65b97de6
+ - f67d9f4c-56da-41d5-8c82-7441814e2c85
+ - c611f570-ad63-4756-a6fb-1677ee1128e3
+ - 0a8930ac-b09d-4f87-b49c-2f40967ade30
+ - caced6a5-77f5-4a1f-87e5-7a507a1ae158
+ - 50f612ca-6a0a-47b4-8fc9-bad763a08dc9
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 6b93d7d0-45fb-45a0-bea0-8005836d7e60
+ - 1d906e19-2e90-4b08-a90d-ac1b5243f4af
+ - 9f1bed51-60ef-42bf-8096-04570ace019e
+ - b7772b7e-c7ba-400e-91c0-2338ccd91e6b
+ - d1624b40-e462-4048-8f8d-3f14c45083a9
+ - 90499343-ea4d-48db-8ecd-c73332b983b6
+ - 73fd317c-8b54-429b-91b1-65298c28a8ba
+ - b45428d6-2c80-4814-993d-02f4893b26a6
+ - b6b196ef-2842-4803-b7c1-49fe08c11203
+ - cd0aa9c7-f698-4083-8c48-93e774e27f13
+ - 5d39145e-2afd-40c3-9f19-3be03cd8e940
+ - d92ee07f-096c-44bd-9f99-31909c8fc35b
+ - 1f9c820d-c6a5-4943-b20d-bc4eaa2943a8
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - da61e8d2-e7e5-424f-aba4-e696dcf5d685
+ - 44b8b5fa-fa61-4ad1-9bee-b17fe91ef637
+ - 697fad89-ed0c-4b19-a017-0f7aa40a3970
+ - 2e222f5d-dddb-46ef-a284-074cfd8fbb0d
+ - 50873f75-0d1e-4717-8482-3b5d9a8fd067
+ - 3677150c-4996-4121-8acc-6eff251fa7ab
+ - 0c583e97-0764-47e8-a8bd-7880cc07c232
+ - 46c776c4-7ca3-4b86-b1e5-54d4aaaa19b3
+ - 1c12ee8d-94ec-462b-a5bc-882f08df648a
+ - 9aff4bc8-d0ea-4611-905e-7d68dfdef9d9
+ - f83e7873-fd7d-4508-923c-0a1ccf1f5173
+ - 627b51c5-9ba6-4062-990b-d2644fab7d08
+ - 8f563cb8-9910-4e8f-8b51-d6a1eb025af6
+ - b3d7308b-bd5a-4724-b108-23089d3defeb
+ - 79
+ - d1981487-8ad8-40de-95d2-2dfd11bb02ca
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 627b51c5-9ba6-4062-990b-d2644fab7d08
+ - 1
+ - 6ad47e04-c775-4a57-a73e-2ed7b095038c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b53d1f77-608a-4c61-9559-4eb316076796
+ - 1
+ - f954a659-5062-447e-9158-d5051bfbdea3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ba14223b-9856-48cc-a64a-ea001a07bc7b
+ - 1
+ - b53d1f77-608a-4c61-9559-4eb316076796
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4c4f6f4e-770b-4771-818a-433699bdebfa
+ - 1
+ - ba14223b-9856-48cc-a64a-ea001a07bc7b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a643dd61-7fdb-409d-903c-79805a46b9a4
+ - 1
+ - 4c4f6f4e-770b-4771-818a-433699bdebfa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d37d7f72-8b27-495f-b2d9-2ad63b616116
+ - 1
+ - a643dd61-7fdb-409d-903c-79805a46b9a4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e050872a-8764-467a-a1e9-bb04d939de45
+ - 1
+ - d37d7f72-8b27-495f-b2d9-2ad63b616116
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e4dc0d57-9ce6-4836-938f-9116521f833c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9271
+ 13146
+ 50
+ 24
+
+ -
+ 9296.593
+ 13158.82
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e4dc0d57-9ce6-4836-938f-9116521f833c
+ - 1
+ - e050872a-8764-467a-a1e9-bb04d939de45
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d64cd4a9-d31e-4b3c-906c-9e3339a4665b
+ - 1
+ - 30b2c23f-8683-4fef-996c-03f6aa1e9afe
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e7b831aa-68e9-44d9-8efc-496946509db9
+ - 6927ab14-0ec8-425e-a84f-02340f79d740
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 24c12657-9231-42d5-962e-3459238abf6b
+ - 3aeaa679-c8fa-47a2-b9c3-1868572b291c
+ - c227a8ff-262c-4247-b446-6a6a409dbb5b
+ - 4230986a-8ed3-4a92-9e8a-4b00cb3dd536
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 2355ed38-5d29-469d-a4c3-14ee6ab32283
+ - 9dd91ab6-75a6-48ce-93cd-2b30e34153fb
+ - 30b2c23f-8683-4fef-996c-03f6aa1e9afe
+ - e050872a-8764-467a-a1e9-bb04d939de45
+ - da61e8d2-e7e5-424f-aba4-e696dcf5d685
+ - 44b8b5fa-fa61-4ad1-9bee-b17fe91ef637
+ - 697fad89-ed0c-4b19-a017-0f7aa40a3970
+ - 2e222f5d-dddb-46ef-a284-074cfd8fbb0d
+ - 50873f75-0d1e-4717-8482-3b5d9a8fd067
+ - 3677150c-4996-4121-8acc-6eff251fa7ab
+ - d92ee07f-096c-44bd-9f99-31909c8fc35b
+ - 1f9c820d-c6a5-4943-b20d-bc4eaa2943a8
+ - 20
+ - 219c0fa8-912a-49ba-8b85-0f746c3c66f9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - e7b831aa-68e9-44d9-8efc-496946509db9
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 9247
+ 14311
+ 104
+ 64
+
+ -
+ 9306
+ 14343
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 08cff85b-5fec-4c8d-91e5-4e501afd9597
+ - Data
+ - Data
+ - false
+ - 0dab6791-f1ad-4881-a86b-223e0ea6c394
+ - 1
+
+
+
+
+ -
+ 9249
+ 14313
+ 42
+ 20
+
+ -
+ 9271.5
+ 14323
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 14e90ae5-bb82-4f62-b045-c378083493de
+ - Number
+ - Number
+ - false
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - 1
+
+
+
+
+ -
+ 9249
+ 14333
+ 42
+ 20
+
+ -
+ 9271.5
+ 14343
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 2d5721cc-8e70-48f7-b33b-b4afde2d293a
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 9249
+ 14353
+ 42
+ 20
+
+ -
+ 9271.5
+ 14363
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 8bbc29ac-fcbc-4437-9601-bc9f55f32ca9
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 9321
+ 14313
+ 28
+ 60
+
+ -
+ 9336.5
+ 14343
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 6927ab14-0ec8-425e-a84f-02340f79d740
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 9233
+ 12383
+ 116
+ 44
+
+ -
+ 9294
+ 12405
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 9587f9b7-7dd9-4ecd-be26-d2a39b149705
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 8bbc29ac-fcbc-4437-9601-bc9f55f32ca9
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9235
+ 12385
+ 44
+ 20
+
+ -
+ 9258.5
+ 12395
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 1a79516e-2dea-41d2-ace4-6fcbb289194d
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - ac57a99a-70b3-4c0f-a385-602f9f11134c
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9235
+ 12405
+ 44
+ 20
+
+ -
+ 9258.5
+ 12415
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 307e8f4c-863a-40b2-8a47-78f224ec8668
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 9309
+ 12385
+ 38
+ 20
+
+ -
+ 9329.5
+ 12395
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 4ff605e6-a509-4af8-9890-63cf4e497a61
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9309
+ 12405
+ 38
+ 20
+
+ -
+ 9329.5
+ 12415
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 24c12657-9231-42d5-962e-3459238abf6b
+ - Series
+ - Series
+
+
+
+
+ -
+ 9244
+ 13640
+ 101
+ 64
+
+ -
+ 9294
+ 13672
+
+
+
+
+
+ - First number in the series
+ - 0f237553-f061-4f77-b92e-17f1a1e75e85
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9246
+ 13642
+ 33
+ 20
+
+ -
+ 9264
+ 13652
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 0dd83b16-14fe-451d-b087-c12c4b1989d5
+ - Step
+ - Step
+ - false
+ - f83e7873-fd7d-4508-923c-0a1ccf1f5173
+ - 1
+
+
+
+
+ -
+ 9246
+ 13662
+ 33
+ 20
+
+ -
+ 9264
+ 13672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 23f160dc-5692-48fc-a5bf-c896c957f8f9
+ - Count
+ - Count
+ - false
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - 1
+
+
+
+
+ -
+ 9246
+ 13682
+ 33
+ 20
+
+ -
+ 9264
+ 13692
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 7d00bba9-0c4c-4b11-92af-fad7f8f0ebc0
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 9309
+ 13642
+ 34
+ 60
+
+ -
+ 9327.5
+ 13672
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 3aeaa679-c8fa-47a2-b9c3-1868572b291c
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9229
+ 14490
+ 150
+ 20
+
+ -
+ 9229.272
+ 14490.67
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - c227a8ff-262c-4247-b446-6a6a409dbb5b
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 9233
+ 13857
+ 120
+ 28
+
+ -
+ 9294
+ 13871
+
+
+
+
+
+ - Angle in degrees
+ - 695e0ed5-c343-4fa5-85c4-d24c3161d366
+ - Degrees
+ - Degrees
+ - false
+ - 22d8d287-574a-486a-bb10-c3dd6f030770
+ - 1
+
+
+
+
+ -
+ 9235
+ 13859
+ 44
+ 24
+
+ -
+ 9258.5
+ 13871
+
+
+
+
+
+
+
+ - Angle in radians
+ - 54f44873-8d34-4412-9dda-78426a1a8b25
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 9309
+ 13859
+ 42
+ 24
+
+ -
+ 9331.5
+ 13871
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 4230986a-8ed3-4a92-9e8a-4b00cb3dd536
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 9169
+ 14165
+ 251
+ 20
+
+ -
+ 9169.984
+ 14165.94
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 9dd91ab6-75a6-48ce-93cd-2b30e34153fb
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 9219
+ 11618
+ 144
+ 84
+
+ -
+ 9305
+ 11660
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - deb06cb6-2eec-4ec0-8320-05716a9ccf70
+ - Vertices
+ - Vertices
+ - false
+ - e9fa65ea-db30-4e31-abf4-2dd776fcae3e
+ - 1
+
+
+
+
+ -
+ 9221
+ 11620
+ 69
+ 20
+
+ -
+ 9257
+ 11630
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 920f550f-d7a1-4816-b13d-96e13367511a
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11640
+ 69
+ 20
+
+ -
+ 9257
+ 11650
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - e3e3a347-403b-441a-9fc3-765d2eba5ff9
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11660
+ 69
+ 20
+
+ -
+ 9257
+ 11670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9ce86003-c292-40d4-97ed-e737c1291321
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11680
+ 69
+ 20
+
+ -
+ 9257
+ 11690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 5995f820-88d6-4cba-b80c-7032b09c885b
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9320
+ 11620
+ 41
+ 26
+
+ -
+ 9342
+ 11633.33
+
+
+
+
+
+
+
+ - Curve length
+ - 7ae1e6b8-c28b-4554-a0b1-617baba0429b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9320
+ 11646
+ 41
+ 27
+
+ -
+ 9342
+ 11660
+
+
+
+
+
+
+
+ - Curve domain
+ - db4d91a3-c62e-455e-8a3a-1de63b19e19f
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9320
+ 11673
+ 41
+ 27
+
+ -
+ 9342
+ 11686.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e7b831aa-68e9-44d9-8efc-496946509db9
+ - 6927ab14-0ec8-425e-a84f-02340f79d740
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 24c12657-9231-42d5-962e-3459238abf6b
+ - 3aeaa679-c8fa-47a2-b9c3-1868572b291c
+ - c227a8ff-262c-4247-b446-6a6a409dbb5b
+ - 4230986a-8ed3-4a92-9e8a-4b00cb3dd536
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 46c776c4-7ca3-4b86-b1e5-54d4aaaa19b3
+ - 4935389c-f07e-4524-8242-4a47ef4fb7f9
+ - 5d39145e-2afd-40c3-9f19-3be03cd8e940
+ - 0c583e97-0764-47e8-a8bd-7880cc07c232
+ - 1c12ee8d-94ec-462b-a5bc-882f08df648a
+ - 72d0b584-fd81-41fc-a990-23a44f9c78b4
+ - 14
+ - 2355ed38-5d29-469d-a4c3-14ee6ab32283
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 84ce8d06-633a-4b85-9d58-99f099ae4242
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9219
+ 11450
+ 144
+ 64
+
+ -
+ 9293
+ 11482
+
+
+
+
+
+ - Curve to evaluate
+ - 2b080345-87ac-4258-98d1-68c2c722a3e7
+ - Curve
+ - Curve
+ - false
+ - 5995f820-88d6-4cba-b80c-7032b09c885b
+ - 1
+
+
+
+
+ -
+ 9221
+ 11452
+ 57
+ 20
+
+ -
+ 9251
+ 11462
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b69dad12-f193-4f82-82ef-a1c6d9817151
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11472
+ 57
+ 20
+
+ -
+ 9251
+ 11482
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 185fb470-ea10-4099-a0fe-cf906b73551f
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11492
+ 57
+ 20
+
+ -
+ 9251
+ 11502
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d8b4f148-6f8f-44ad-90f8-31160aef333d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11452
+ 53
+ 20
+
+ -
+ 9336
+ 11462
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 07963215-86f6-46e7-9525-20edcb638961
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11472
+ 53
+ 20
+
+ -
+ 9336
+ 11482
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c44627c1-2571-4098-b0bf-5ddbbe6ef12f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11492
+ 53
+ 20
+
+ -
+ 9336
+ 11502
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 80d375d4-8b07-4dee-8779-6702412242e0
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9222
+ 11388
+ 138
+ 44
+
+ -
+ 9290
+ 11410
+
+
+
+
+
+ - Base geometry
+ - 20db97e8-42c9-41b8-8e97-8e353a34e1da
+ - Geometry
+ - Geometry
+ - true
+ - 5995f820-88d6-4cba-b80c-7032b09c885b
+ - 1
+
+
+
+
+ -
+ 9224
+ 11390
+ 51
+ 20
+
+ -
+ 9251
+ 11400
+
+
+
+
+
+
+
+ - Mirror plane
+ - 6bd97404-9e59-4a2c-b843-e57c205c05c6
+ - Plane
+ - Plane
+ - false
+ - d419dc03-8b47-43ec-b8a0-a1912ce27b2f
+ - 1
+
+
+
+
+ -
+ 9224
+ 11410
+ 51
+ 20
+
+ -
+ 9251
+ 11420
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 6bb971f2-985b-4626-b42d-f75c2de5d3b6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9305
+ 11390
+ 53
+ 20
+
+ -
+ 9333
+ 11400
+
+
+
+
+
+
+
+ - Transformation data
+ - f7d084d0-82bc-4c5a-ae2f-5aec5923b0ec
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9305
+ 11410
+ 53
+ 20
+
+ -
+ 9333
+ 11420
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 44d495d1-0282-469c-bae8-1b7b114e82aa
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 9238
+ 11534
+ 106
+ 64
+
+ -
+ 9302
+ 11566
+
+
+
+
+
+ - Line start point
+ - b6df254a-1801-4774-8c18-f2bf68e75c7c
+ - Start
+ - Start
+ - false
+ - d8b4f148-6f8f-44ad-90f8-31160aef333d
+ - 1
+
+
+
+
+ -
+ 9240
+ 11536
+ 47
+ 20
+
+ -
+ 9265
+ 11546
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 12d66a83-9833-4342-9a58-dc489fef3381
+ - Direction
+ - Direction
+ - false
+ - 07963215-86f6-46e7-9525-20edcb638961
+ - 1
+
+
+
+
+ -
+ 9240
+ 11556
+ 47
+ 20
+
+ -
+ 9265
+ 11566
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - fc369da7-1af3-4ff1-bd26-5fba1504a688
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9240
+ 11576
+ 47
+ 20
+
+ -
+ 9265
+ 11586
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - d419dc03-8b47-43ec-b8a0-a1912ce27b2f
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 9317
+ 11536
+ 25
+ 60
+
+ -
+ 9331
+ 11566
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 141df525-4941-4245-9dbb-7aa96ad0ef17
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9232
+ 11326
+ 118
+ 44
+
+ -
+ 9295
+ 11348
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 5adbecd7-2c15-423d-b710-5f3d506cdcdf
+ - Curves
+ - Curves
+ - false
+ - 5995f820-88d6-4cba-b80c-7032b09c885b
+ - 6bb971f2-985b-4626-b42d-f75c2de5d3b6
+ - 2
+
+
+
+
+ -
+ 9234
+ 11328
+ 46
+ 20
+
+ -
+ 9258.5
+ 11338
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 2a52dbf1-e00f-4e7a-8801-28fa7b489dca
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9234
+ 11348
+ 46
+ 20
+
+ -
+ 9258.5
+ 11358
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - f43c56d1-3f88-4554-ac88-2c9d52d60ce3
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9310
+ 11328
+ 38
+ 40
+
+ -
+ 9330.5
+ 11348
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 82650166-1a70-400b-ba95-f48c82cf522a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9219
+ 11242
+ 144
+ 64
+
+ -
+ 9293
+ 11274
+
+
+
+
+
+ - Curve to evaluate
+ - 6dbf41b6-bc1d-4ded-b22a-6bbf69b92501
+ - Curve
+ - Curve
+ - false
+ - f43c56d1-3f88-4554-ac88-2c9d52d60ce3
+ - 1
+
+
+
+
+ -
+ 9221
+ 11244
+ 57
+ 20
+
+ -
+ 9251
+ 11254
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - db7e5307-e57e-4a9e-9882-0bba71bc010e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11264
+ 57
+ 20
+
+ -
+ 9251
+ 11274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b502a490-fe40-4642-b9f4-3ea541f7d352
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11284
+ 57
+ 20
+
+ -
+ 9251
+ 11294
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - af7fa660-384b-4638-94b8-7f96d03bbdfa
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11244
+ 53
+ 20
+
+ -
+ 9336
+ 11254
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e00a0eb1-1934-4e05-a54f-71a6ad6deb6a
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11264
+ 53
+ 20
+
+ -
+ 9336
+ 11274
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ecd463ee-9bdd-483a-b953-84ac6ae18ae3
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11284
+ 53
+ 20
+
+ -
+ 9336
+ 11294
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - a04706b6-5974-46f2-8142-af0e5eb2e404
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 9222
+ 11159
+ 138
+ 64
+
+ -
+ 9290
+ 11191
+
+
+
+
+
+ - Base geometry
+ - f2e4711c-35ff-476a-8f95-68f9490f3f8b
+ - Geometry
+ - Geometry
+ - true
+ - f43c56d1-3f88-4554-ac88-2c9d52d60ce3
+ - 1
+
+
+
+
+ -
+ 9224
+ 11161
+ 51
+ 20
+
+ -
+ 9251
+ 11171
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - b058f46c-fc27-4024-9778-97edb3ee873e
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 9224
+ 11181
+ 51
+ 20
+
+ -
+ 9251
+ 11191
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 84a97add-29ad-4eaf-a223-307a04b535ec
+ - Plane
+ - Plane
+ - false
+ - af7fa660-384b-4638-94b8-7f96d03bbdfa
+ - 1
+
+
+
+
+ -
+ 9224
+ 11201
+ 51
+ 20
+
+ -
+ 9251
+ 11211
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - ea798e10-519f-4e29-b14b-b017599dacda
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9305
+ 11161
+ 53
+ 30
+
+ -
+ 9333
+ 11176
+
+
+
+
+
+
+
+ - Transformation data
+ - 6243ee3b-645d-493b-aad6-54cccde3003e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9305
+ 11191
+ 53
+ 30
+
+ -
+ 9333
+ 11206
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 13ca4a8a-17a9-474d-8d12-e869ded133d6
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9232
+ 11096
+ 118
+ 44
+
+ -
+ 9295
+ 11118
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 379e054e-327a-408a-b768-11aeb7c8d88b
+ - Curves
+ - Curves
+ - false
+ - f43c56d1-3f88-4554-ac88-2c9d52d60ce3
+ - ea798e10-519f-4e29-b14b-b017599dacda
+ - 2
+
+
+
+
+ -
+ 9234
+ 11098
+ 46
+ 20
+
+ -
+ 9258.5
+ 11108
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 379fa5f7-0f0f-4702-97f5-1951f0d39c24
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9234
+ 11118
+ 46
+ 20
+
+ -
+ 9258.5
+ 11128
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - cbdd2b86-77b6-4da7-ac7d-29a5d26dfeaa
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9310
+ 11098
+ 38
+ 40
+
+ -
+ 9330.5
+ 11118
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9dd91ab6-75a6-48ce-93cd-2b30e34153fb
+ - 84ce8d06-633a-4b85-9d58-99f099ae4242
+ - 80d375d4-8b07-4dee-8779-6702412242e0
+ - 44d495d1-0282-469c-bae8-1b7b114e82aa
+ - 141df525-4941-4245-9dbb-7aa96ad0ef17
+ - 82650166-1a70-400b-ba95-f48c82cf522a
+ - a04706b6-5974-46f2-8142-af0e5eb2e404
+ - 13ca4a8a-17a9-474d-8d12-e869ded133d6
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - c8993beb-b45b-4c31-9990-7eb86ffdc60d
+ - 1208fa26-35cd-449c-8bab-d5024ce56926
+ - e9fa65ea-db30-4e31-abf4-2dd776fcae3e
+ - 9acdadaa-96e4-4e3f-b354-95632380b4b1
+ - 30884d74-7a79-4131-9e30-3d6188286538
+ - 993a4bbf-a82f-4209-b544-cec1a75b5c95
+ - 15
+ - d64cd4a9-d31e-4b3c-906c-9e3339a4665b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8313ef34-90a3-4468-9c25-12254136998b
+ - Panel
+
+ - false
+ - 0
+ - 3c01166c-f0a6-4a88-93ac-c5c19c376a87
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9223
+ 13732
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9223.014
+ 13732.16
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - Curve
+ - Curve
+ - false
+ - cbdd2b86-77b6-4da7-ac7d-29a5d26dfeaa
+ - 1
+
+
+
+
+ -
+ 9271
+ 11059
+ 50
+ 24
+
+ -
+ 9296.593
+ 11071.74
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - 1
+ - 307c6d55-e3a7-42a1-b0db-9f791b11eff0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4935389c-f07e-4524-8242-4a47ef4fb7f9
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 9076
+ 13940
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9076.574
+ 13940.25
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4613d0c7-efad-43cd-941c-5cf519f01adc
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9219
+ 10970
+ 144
+ 64
+
+ -
+ 9293
+ 11002
+
+
+
+
+
+ - Curve to evaluate
+ - 1ac88282-f977-4d25-8900-d1d6ef298912
+ - Curve
+ - Curve
+ - false
+ - cbdd2b86-77b6-4da7-ac7d-29a5d26dfeaa
+ - 1
+
+
+
+
+ -
+ 9221
+ 10972
+ 57
+ 20
+
+ -
+ 9251
+ 10982
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - eb6ed6e2-fa2d-4e88-829d-3c29000835f3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 10992
+ 57
+ 20
+
+ -
+ 9251
+ 11002
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 1df8c5a7-83db-4347-ac42-38af50920b4a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 11012
+ 57
+ 20
+
+ -
+ 9251
+ 11022
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - ed65d188-a3f6-4c2f-8cc3-5d57e4df4a3c
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 10972
+ 53
+ 20
+
+ -
+ 9336
+ 10982
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 41a04ed1-42e0-4179-9cbc-186ba6a6d75c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 10992
+ 53
+ 20
+
+ -
+ 9336
+ 11002
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 1e710b0c-83cc-4f68-b24d-eb671c22dd9a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 11012
+ 53
+ 20
+
+ -
+ 9336
+ 11022
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 803d6eef-8fc3-4891-b72a-0d1509b172b5
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10748
+ 194
+ 28
+
+ -
+ 9294
+ 10762
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e484ee6e-5009-4533-a443-e56c691fe550
+ - Variable O
+ - O
+ - true
+ - dcea8318-4462-4721-818c-6661172d9f46
+ - 1
+
+
+
+
+ -
+ 9196
+ 10750
+ 14
+ 24
+
+ -
+ 9204.5
+ 10762
+
+
+
+
+
+
+
+ - Result of expression
+ - cf654097-b4ec-4b47-a624-e30607dcdd52
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10750
+ 9
+ 24
+
+ -
+ 9383
+ 10762
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - ace18051-a13a-43c1-b49d-1eb9257a0199
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9225
+ 10882
+ 132
+ 64
+
+ -
+ 9272
+ 10914
+
+
+
+
+
+ - Input point
+ - b8ff2131-7592-4744-b7e1-d57cc4ff9f66
+ - Point
+ - Point
+ - false
+ - ed65d188-a3f6-4c2f-8cc3-5d57e4df4a3c
+ - 1
+
+
+
+
+ -
+ 9227
+ 10884
+ 30
+ 60
+
+ -
+ 9243.5
+ 10914
+
+
+
+
+
+
+
+ - Point {x} component
+ - dcea8318-4462-4721-818c-6661172d9f46
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 10884
+ 68
+ 20
+
+ -
+ 9322.5
+ 10894
+
+
+
+
+
+
+
+ - Point {y} component
+ - ecdf5289-9397-4cbd-9569-1f270b0025d4
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 10904
+ 68
+ 20
+
+ -
+ 9322.5
+ 10914
+
+
+
+
+
+
+
+ - Point {z} component
+ - 85a5b295-95b1-4c4c-8a9b-ee1d2f11543a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 10924
+ 68
+ 20
+
+ -
+ 9322.5
+ 10934
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 83bcd048-d0fa-430f-8b3b-500b492ac590
+ - Panel
+
+ - false
+ - 0
+ - cf654097-b4ec-4b47-a624-e30607dcdd52
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 10725
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.362
+ 10725.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d7b860ab-9124-433b-ae6c-b3d14e797346
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10662
+ 194
+ 28
+
+ -
+ 9294
+ 10676
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f535c1ca-18d7-4c5b-9820-1a2c3a925fde
+ - Variable O
+ - O
+ - true
+ - ecdf5289-9397-4cbd-9569-1f270b0025d4
+ - 1
+
+
+
+
+ -
+ 9196
+ 10664
+ 14
+ 24
+
+ -
+ 9204.5
+ 10676
+
+
+
+
+
+
+
+ - Result of expression
+ - bf298f6b-c168-4187-99d3-52b41d3381af
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10664
+ 9
+ 24
+
+ -
+ 9383
+ 10676
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f8da6e13-27a9-441f-82bb-751c752b32bf
+ - Panel
+
+ - false
+ - 0
+ - bf298f6b-c168-4187-99d3-52b41d3381af
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 10636
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.362
+ 10636.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c118a0fa-1192-4a02-bd3c-43ff79e6d313
+ - Division
+ - Division
+
+
+
+
+ -
+ 9250
+ 10560
+ 82
+ 44
+
+ -
+ 9281
+ 10582
+
+
+
+
+
+ - Item to divide (dividend)
+ - c9b48328-a28e-4154-99f2-bb9ae2bafa90
+ - A
+ - A
+ - false
+ - 83bcd048-d0fa-430f-8b3b-500b492ac590
+ - 1
+
+
+
+
+ -
+ 9252
+ 10562
+ 14
+ 20
+
+ -
+ 9260.5
+ 10572
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - e2078d84-29cd-49d0-9fbc-81a12cd552b1
+ - B
+ - B
+ - false
+ - f8da6e13-27a9-441f-82bb-751c752b32bf
+ - 1
+
+
+
+
+ -
+ 9252
+ 10582
+ 14
+ 20
+
+ -
+ 9260.5
+ 10592
+
+
+
+
+
+
+
+ - The result of the Division
+ - 4707558e-4f6c-4d08-a9ce-774549099616
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9296
+ 10562
+ 34
+ 40
+
+ -
+ 9314.5
+ 10582
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 720b6578-cc9c-48d0-9307-02714aaef24b
+ - Panel
+
+ - false
+ - 0
+ - 3c01166c-f0a6-4a88-93ac-c5c19c376a87
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 10489
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.603
+ 10489.38
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9180f22d-6524-4aae-91d0-10a92e93f8c1
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10513
+ 194
+ 28
+
+ -
+ 9294
+ 10527
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0a020148-b993-48dc-a739-ee780f114b00
+ - Variable O
+ - O
+ - true
+ - 4707558e-4f6c-4d08-a9ce-774549099616
+ - 1
+
+
+
+
+ -
+ 9196
+ 10515
+ 14
+ 24
+
+ -
+ 9204.5
+ 10527
+
+
+
+
+
+
+
+ - Result of expression
+ - e0df863f-0609-4335-b87e-3d667f2818ec
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10515
+ 9
+ 24
+
+ -
+ 9383
+ 10527
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3c01166c-f0a6-4a88-93ac-c5c19c376a87
+ - Relay
+
+ - false
+ - e0df863f-0609-4335-b87e-3d667f2818ec
+ - 1
+
+
+
+
+ -
+ 9271
+ 10438
+ 40
+ 16
+
+ -
+ 9291
+ 10446
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 213a0814-ab74-42a4-9fdb-216c876eec66
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 9250
+ 10375
+ 82
+ 44
+
+ -
+ 9281
+ 10397
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 470c78c0-e34b-4999-8562-50933ca277ba
+ - A
+ - A
+ - true
+ - f8da6e13-27a9-441f-82bb-751c752b32bf
+ - 1
+
+
+
+
+ -
+ 9252
+ 10377
+ 14
+ 20
+
+ -
+ 9260.5
+ 10387
+
+
+
+
+
+
+
+ - Second item for addition
+ - be18d145-1140-4dd5-8eaf-2104492a0de0
+ - B
+ - B
+ - true
+ - 83bcd048-d0fa-430f-8b3b-500b492ac590
+ - 1
+
+
+
+
+ -
+ 9252
+ 10397
+ 14
+ 20
+
+ -
+ 9260.5
+ 10407
+
+
+
+
+
+
+
+ - Result of addition
+ - ef000462-7d92-4f67-ace9-64ae6584d4b8
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9296
+ 10377
+ 34
+ 40
+
+ -
+ 9314.5
+ 10397
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - b226b6d8-5cd2-4cef-86d7-b36c65b97de6
+ - Division
+ - Division
+
+
+
+
+ -
+ 9250
+ 10225
+ 82
+ 44
+
+ -
+ 9281
+ 10247
+
+
+
+
+
+ - Item to divide (dividend)
+ - f87413b3-9faf-46a5-a180-b288078b4b0c
+ - A
+ - A
+ - false
+ - 0a8930ac-b09d-4f87-b49c-2f40967ade30
+ - 1
+
+
+
+
+ -
+ 9252
+ 10227
+ 14
+ 20
+
+ -
+ 9260.5
+ 10237
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 3a96c9bf-8e51-4546-a673-2dc37842d689
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 9252
+ 10247
+ 14
+ 20
+
+ -
+ 9260.5
+ 10257
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 98d5a869-fbb0-44c3-8045-e5adad20d28f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9296
+ 10227
+ 34
+ 40
+
+ -
+ 9314.5
+ 10247
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f67d9f4c-56da-41d5-8c82-7441814e2c85
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10177
+ 194
+ 28
+
+ -
+ 9294
+ 10191
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0efb9ff9-55fb-49cc-88ef-726a46de14c8
+ - Variable O
+ - O
+ - true
+ - 98d5a869-fbb0-44c3-8045-e5adad20d28f
+ - 1
+
+
+
+
+ -
+ 9196
+ 10179
+ 14
+ 24
+
+ -
+ 9204.5
+ 10191
+
+
+
+
+
+
+
+ - Result of expression
+ - f9fc978a-007a-407e-90eb-b1a3f716c5d0
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10179
+ 9
+ 24
+
+ -
+ 9383
+ 10191
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c611f570-ad63-4756-a6fb-1677ee1128e3
+ - Panel
+
+ - false
+ - 0
+ - f9fc978a-007a-407e-90eb-b1a3f716c5d0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 10153
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.362
+ 10153.24
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0a8930ac-b09d-4f87-b49c-2f40967ade30
+ - Panel
+
+ - false
+ - 0
+ - eb3b65ef-5abc-47ce-9d0e-2bc308f3f05c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 10305
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.362
+ 10305.15
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - caced6a5-77f5-4a1f-87e5-7a507a1ae158
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10328
+ 194
+ 28
+
+ -
+ 9294
+ 10342
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5b018c75-fd8b-475b-a822-bdfbcb28840f
+ - Variable O
+ - O
+ - true
+ - ef000462-7d92-4f67-ace9-64ae6584d4b8
+ - 1
+
+
+
+
+ -
+ 9196
+ 10330
+ 14
+ 24
+
+ -
+ 9204.5
+ 10342
+
+
+
+
+
+
+
+ - Result of expression
+ - eb3b65ef-5abc-47ce-9d0e-2bc308f3f05c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10330
+ 9
+ 24
+
+ -
+ 9383
+ 10342
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 50f612ca-6a0a-47b4-8fc9-bad763a08dc9
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9214
+ 10054
+ 154
+ 64
+
+ -
+ 9298
+ 10086
+
+
+
+
+
+ - Base geometry
+ - b351ce39-a5be-419b-bc41-725227d0ede9
+ - Geometry
+ - Geometry
+ - true
+ - 172ff63d-e54e-444f-834d-cfeef2a85dc7
+ - 1
+
+
+
+
+ -
+ 9216
+ 10056
+ 67
+ 20
+
+ -
+ 9259
+ 10066
+
+
+
+
+
+
+
+ - Center of scaling
+ - 4909aa96-7b9d-42d3-89ad-293af250bf2b
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9216
+ 10076
+ 67
+ 20
+
+ -
+ 9259
+ 10086
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - d7041b9b-f893-45bb-b4cd-390c4a3b2394
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - c611f570-ad63-4756-a6fb-1677ee1128e3
+ - 1
+
+
+
+
+ -
+ 9216
+ 10096
+ 67
+ 20
+
+ -
+ 9259
+ 10106
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 41c38292-40ac-4837-a7e7-51adbae97a31
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9313
+ 10056
+ 53
+ 30
+
+ -
+ 9341
+ 10071
+
+
+
+
+
+
+
+ - Transformation data
+ - b39227d0-da81-4913-bb64-c10b36e8ac12
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9313
+ 10086
+ 53
+ 30
+
+ -
+ 9341
+ 10101
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - Curve
+ - Curve
+ - false
+ - 41c38292-40ac-4837-a7e7-51adbae97a31
+ - 1
+
+
+
+
+ -
+ 9269
+ 9458
+ 50
+ 24
+
+ -
+ 9294.343
+ 9470.74
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6b93d7d0-45fb-45a0-bea0-8005836d7e60
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 10835
+ 194
+ 28
+
+ -
+ 9294
+ 10849
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2b031595-0114-4b20-91c1-3ec9a6f640fb
+ - Variable O
+ - O
+ - true
+ - 85a5b295-95b1-4c4c-8a9b-ee1d2f11543a
+ - 1
+
+
+
+
+ -
+ 9196
+ 10837
+ 14
+ 24
+
+ -
+ 9204.5
+ 10849
+
+
+
+
+
+
+
+ - Result of expression
+ - e10d9ce4-f261-4302-84e8-f9f927880f20
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 10837
+ 9
+ 24
+
+ -
+ 9383
+ 10849
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1d906e19-2e90-4b08-a90d-ac1b5243f4af
+ - Panel
+
+ - false
+ - 0
+ - e10d9ce4-f261-4302-84e8-f9f927880f20
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9216
+ 10811
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9216.232
+ 10811.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 9f1bed51-60ef-42bf-8096-04570ace019e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9219
+ 9844
+ 144
+ 64
+
+ -
+ 9293
+ 9876
+
+
+
+
+
+ - Curve to evaluate
+ - d680a6ea-4645-4671-b4f8-b93da93835cd
+ - Curve
+ - Curve
+ - false
+ - 41c38292-40ac-4837-a7e7-51adbae97a31
+ - 1
+
+
+
+
+ -
+ 9221
+ 9846
+ 57
+ 20
+
+ -
+ 9251
+ 9856
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 302ad02d-818c-458d-8b67-418dd83c5d66
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 9866
+ 57
+ 20
+
+ -
+ 9251
+ 9876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 86cde452-4286-49b9-ae1d-dab4289d5298
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9221
+ 9886
+ 57
+ 20
+
+ -
+ 9251
+ 9896
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d921b6dc-e6ef-4578-99ba-1ca29f3e0dcd
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 9846
+ 53
+ 20
+
+ -
+ 9336
+ 9856
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 3a3f618c-4c35-418f-860f-9749a6b87b59
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 9866
+ 53
+ 20
+
+ -
+ 9336
+ 9876
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 311397ff-2d1b-45e5-a6ef-8fe2723ef4f4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 9886
+ 53
+ 20
+
+ -
+ 9336
+ 9896
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b7772b7e-c7ba-400e-91c0-2338ccd91e6b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 9627
+ 194
+ 28
+
+ -
+ 9294
+ 9641
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c30eabfa-9866-4ee8-9efd-63f6e2783fd4
+ - Variable O
+ - O
+ - true
+ - 393d33c6-b5e2-46bf-a025-6ffdd399b22f
+ - 1
+
+
+
+
+ -
+ 9196
+ 9629
+ 14
+ 24
+
+ -
+ 9204.5
+ 9641
+
+
+
+
+
+
+
+ - Result of expression
+ - 3646ed69-ade4-4608-bfc7-ad7554937824
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 9629
+ 9
+ 24
+
+ -
+ 9383
+ 9641
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - d1624b40-e462-4048-8f8d-3f14c45083a9
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9225
+ 9761
+ 132
+ 64
+
+ -
+ 9272
+ 9793
+
+
+
+
+
+ - Input point
+ - 05935f3a-1dca-43b1-9f36-9153b01c5c7c
+ - Point
+ - Point
+ - false
+ - d921b6dc-e6ef-4578-99ba-1ca29f3e0dcd
+ - 1
+
+
+
+
+ -
+ 9227
+ 9763
+ 30
+ 60
+
+ -
+ 9243.5
+ 9793
+
+
+
+
+
+
+
+ - Point {x} component
+ - 393d33c6-b5e2-46bf-a025-6ffdd399b22f
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 9763
+ 68
+ 20
+
+ -
+ 9322.5
+ 9773
+
+
+
+
+
+
+
+ - Point {y} component
+ - a5ab5605-3cf3-407d-89e8-886683c380ae
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 9783
+ 68
+ 20
+
+ -
+ 9322.5
+ 9793
+
+
+
+
+
+
+
+ - Point {z} component
+ - 0a45fb63-5d3b-4bcd-8a4d-88c384ce2920
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 9803
+ 68
+ 20
+
+ -
+ 9322.5
+ 9813
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 90499343-ea4d-48db-8ecd-c73332b983b6
+ - Panel
+
+ - false
+ - 0
+ - 3646ed69-ade4-4608-bfc7-ad7554937824
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 9598
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.612
+ 9598.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 73fd317c-8b54-429b-91b1-65298c28a8ba
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 9541
+ 194
+ 28
+
+ -
+ 9294
+ 9555
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3f8a4cad-6c7c-4149-a15b-67977b46355b
+ - Variable O
+ - O
+ - true
+ - a5ab5605-3cf3-407d-89e8-886683c380ae
+ - 1
+
+
+
+
+ -
+ 9196
+ 9543
+ 14
+ 24
+
+ -
+ 9204.5
+ 9555
+
+
+
+
+
+
+
+ - Result of expression
+ - ed594e86-224d-461d-ab93-50b60377f0d6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 9543
+ 9
+ 24
+
+ -
+ 9383
+ 9555
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b45428d6-2c80-4814-993d-02f4893b26a6
+ - Panel
+
+ - false
+ - 0
+ - ed594e86-224d-461d-ab93-50b60377f0d6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 9513
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.624
+ 9513.031
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b6b196ef-2842-4803-b7c1-49fe08c11203
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 9713
+ 194
+ 28
+
+ -
+ 9294
+ 9727
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3ad379ea-eb49-4406-98d0-14fbbfb9280f
+ - Variable O
+ - O
+ - true
+ - 0a45fb63-5d3b-4bcd-8a4d-88c384ce2920
+ - 1
+
+
+
+
+ -
+ 9196
+ 9715
+ 14
+ 24
+
+ -
+ 9204.5
+ 9727
+
+
+
+
+
+
+
+ - Result of expression
+ - 61a94372-a0d6-4cc9-bcc5-027067de7991
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 9715
+ 9
+ 24
+
+ -
+ 9383
+ 9727
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cd0aa9c7-f698-4083-8c48-93e774e27f13
+ - Panel
+
+ - false
+ - 0
+ - 61a94372-a0d6-4cc9-bcc5-027067de7991
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9215
+ 9684
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9215.362
+ 9684.871
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5d39145e-2afd-40c3-9f19-3be03cd8e940
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 9114
+ 14019
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 9114.019
+ 14019.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d92ee07f-096c-44bd-9f99-31909c8fc35b
+ - Panel
+
+ - false
+ - 0
+ - 9a33b66c-90bf-4d36-a63b-cc8307500888
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9127
+ 12048
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 9127.554
+ 12048.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1f9c820d-c6a5-4943-b20d-bc4eaa2943a8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 12335
+ 194
+ 28
+
+ -
+ 9294
+ 12349
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f8fe4245-b6ab-46b1-b821-a57301a4a126
+ - Variable O
+ - O
+ - true
+ - 4ff605e6-a509-4af8-9890-63cf4e497a61
+ - 1
+
+
+
+
+ -
+ 9196
+ 12337
+ 14
+ 24
+
+ -
+ 9204.5
+ 12349
+
+
+
+
+
+
+
+ - Result of expression
+ - 9a33b66c-90bf-4d36-a63b-cc8307500888
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 12337
+ 9
+ 24
+
+ -
+ 9383
+ 12349
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 9279
+ 14448
+ 50
+ 24
+
+ -
+ 9304.325
+ 14460.96
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - da61e8d2-e7e5-424f-aba4-e696dcf5d685
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 9122
+ 12617
+ 160
+ 224
+
+ -
+ 9190
+ 12729
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - e500bf0b-4708-4831-b576-9ec4fcdf09a4
+ - true
+ - Curves
+ - Curves
+ - false
+ - ee07fea5-e231-490f-8b21-7edc29afcd22
+ - 1
+
+
+
+
+ -
+ 9124
+ 12619
+ 51
+ 27
+
+ -
+ 9151
+ 12632.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 55a5935f-b713-43c6-91df-16f2083e2821
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - cc13e18e-fa92-4e6b-9ec0-8a53b47c25a9
+ - 1
+
+
+
+
+ -
+ 9124
+ 12646
+ 51
+ 28
+
+ -
+ 9151
+ 12660.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 1b4f836c-242d-44ce-ad86-a170412ab8e5
+ - true
+ - Values
+ - Values
+ - false
+ - 7d00bba9-0c4c-4b11-92af-fad7f8f0ebc0
+ - 1
+
+
+
+
+ -
+ 9124
+ 12674
+ 51
+ 27
+
+ -
+ 9151
+ 12687.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 74369cc4-1797-4d03-94d9-95d8480376d4
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9124
+ 12701
+ 51
+ 28
+
+ -
+ 9151
+ 12715.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 72475106-68d5-49e6-bb1e-db1dfeea3cc3
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9124
+ 12729
+ 51
+ 27
+
+ -
+ 9151
+ 12742.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 59de63e5-079b-47b0-b047-c69e4a1d0848
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 9124
+ 12756
+ 51
+ 28
+
+ -
+ 9151
+ 12770.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 6d6c9fec-83ce-4043-a747-4e5f87f113a0
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 9124
+ 12784
+ 51
+ 27
+
+ -
+ 9151
+ 12797.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - e13af5cb-9565-4d31-81f5-821ca1729c78
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 9124
+ 12811
+ 51
+ 28
+
+ -
+ 9151
+ 12825.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 11ba84f1-b66b-4b32-b0b0-311544d960f6
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12619
+ 75
+ 20
+
+ -
+ 9244
+ 12629
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 5b0ec43e-1db7-4e33-aaea-6133bac9ed2b
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12639
+ 75
+ 20
+
+ -
+ 9244
+ 12649
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - bace6a17-5de3-494a-af7a-9b0462e4511d
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12659
+ 75
+ 20
+
+ -
+ 9244
+ 12669
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 14eef7f8-6d08-41ab-b409-7b1150face2b
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12679
+ 75
+ 20
+
+ -
+ 9244
+ 12689
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - f6cd9617-d61b-4e3f-be7a-939ce1cc8723
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12699
+ 75
+ 20
+
+ -
+ 9244
+ 12709
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 9d331249-3761-431e-84af-4cdfd4ebc593
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12719
+ 75
+ 20
+
+ -
+ 9244
+ 12729
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 0facdca8-f514-41af-adc2-de99863bde9f
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12739
+ 75
+ 20
+
+ -
+ 9244
+ 12749
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 418c8682-e61a-4b7c-856b-d72426c55c16
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12759
+ 75
+ 20
+
+ -
+ 9244
+ 12769
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - c6fc3a10-3122-4fa6-9c7d-193ff6e2bbd1
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12779
+ 75
+ 20
+
+ -
+ 9244
+ 12789
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 6f1f68c4-6623-41e1-931d-82065930c133
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12799
+ 75
+ 20
+
+ -
+ 9244
+ 12809
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 788acccd-f8a5-4bf3-863c-63ea8171e9fb
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 9205
+ 12819
+ 75
+ 20
+
+ -
+ 9244
+ 12829
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 44b8b5fa-fa61-4ad1-9bee-b17fe91ef637
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 9243
+ 13042
+ 96
+ 44
+
+ -
+ 9293
+ 13064
+
+
+
+
+
+ - Curve to evaluate
+ - b3c86617-3d11-4c04-b39c-c9bcb9fb3bc1
+ - Curve
+ - Curve
+ - false
+ - ee07fea5-e231-490f-8b21-7edc29afcd22
+ - 1
+
+
+
+
+ -
+ 9245
+ 13044
+ 33
+ 40
+
+ -
+ 9263
+ 13064
+
+
+
+
+
+
+
+ - Curve start point
+ - 9c543a18-b693-40dc-af5a-2ac6f01a78b3
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 13044
+ 29
+ 20
+
+ -
+ 9324
+ 13054
+
+
+
+
+
+
+
+ - Curve end point
+ - 5dc904f7-c89d-4e04-921c-61b75435e58f
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9308
+ 13064
+ 29
+ 20
+
+ -
+ 9324
+ 13074
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 697fad89-ed0c-4b19-a017-0f7aa40a3970
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 9228
+ 12940
+ 126
+ 84
+
+ -
+ 9286
+ 12982
+
+
+
+
+
+ - Rectangle base plane
+ - 9a53928f-96e5-467a-b224-5211cd437a17
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9230
+ 12942
+ 41
+ 20
+
+ -
+ 9252
+ 12952
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - ef4f375a-26f7-4756-8f39-b94aeb7f2184
+ - Point A
+ - Point A
+ - false
+ - 9c543a18-b693-40dc-af5a-2ac6f01a78b3
+ - 1
+
+
+
+
+ -
+ 9230
+ 12962
+ 41
+ 20
+
+ -
+ 9252
+ 12972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 8949fbf1-f53c-4e96-8f8a-6102f1d71e50
+ - Point B
+ - Point B
+ - false
+ - 5dc904f7-c89d-4e04-921c-61b75435e58f
+ - 1
+
+
+
+
+ -
+ 9230
+ 12982
+ 41
+ 20
+
+ -
+ 9252
+ 12992
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - bbddf918-e457-4b94-8147-80acddcbe50a
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 9230
+ 13002
+ 41
+ 20
+
+ -
+ 9252
+ 13012
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - cc13e18e-fa92-4e6b-9ec0-8a53b47c25a9
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 9301
+ 12942
+ 51
+ 40
+
+ -
+ 9328
+ 12962
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 718c1de5-0921-4086-b353-a7041f0f57bd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9301
+ 12982
+ 51
+ 40
+
+ -
+ 9328
+ 13002
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 2e222f5d-dddb-46ef-a284-074cfd8fbb0d
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 9282
+ 12737
+ 126
+ 104
+
+ -
+ 9349
+ 12789
+
+
+
+
+
+ - External curve as a graph
+ - 881d7006-f6cb-4f3a-a677-c3e4bc0319b2
+ - Curve
+ - Curve
+ - false
+ - ee07fea5-e231-490f-8b21-7edc29afcd22
+ - 1
+
+
+
+
+ -
+ 9284
+ 12739
+ 50
+ 20
+
+ -
+ 9310.5
+ 12749
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - a9e28367-1877-4d4d-b87f-06c9352bada3
+ - Boundary
+ - Boundary
+ - true
+ - cc13e18e-fa92-4e6b-9ec0-8a53b47c25a9
+ - 1
+
+
+
+
+ -
+ 9284
+ 12759
+ 50
+ 20
+
+ -
+ 9310.5
+ 12769
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 850f6c27-937c-4926-955a-d00baa2fee1c
+ - Numbers
+ - Numbers
+ - false
+ - 7d00bba9-0c4c-4b11-92af-fad7f8f0ebc0
+ - 1
+
+
+
+
+ -
+ 9284
+ 12779
+ 50
+ 20
+
+ -
+ 9310.5
+ 12789
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 80a9b4df-e97f-4beb-a513-2da538f7eca4
+ - Input
+ - Input
+ - true
+ - fc0c07eb-e460-44e9-b49f-010dd7ee264b
+ - 1
+
+
+
+
+ -
+ 9284
+ 12799
+ 50
+ 20
+
+ -
+ 9310.5
+ 12809
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 9c5b55fa-986e-4b13-bcc4-260aae6360cb
+ - Output
+ - Output
+ - true
+ - fc0c07eb-e460-44e9-b49f-010dd7ee264b
+ - 1
+
+
+
+
+ -
+ 9284
+ 12819
+ 50
+ 20
+
+ -
+ 9310.5
+ 12829
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 42eb47e6-9c62-4d8d-994a-74cec8b44aff
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 9364
+ 12739
+ 42
+ 100
+
+ -
+ 9386.5
+ 12789
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 50873f75-0d1e-4717-8482-3b5d9a8fd067
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 9257
+ 12534
+ 89
+ 64
+
+ -
+ 9302
+ 12566
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 4826c6c3-aa93-440e-ba73-13f384dfd020
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 9259
+ 12536
+ 28
+ 20
+
+ -
+ 9274.5
+ 12546
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - a2411043-42f0-4534-ab40-3e6b341c4f0b
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 11ba84f1-b66b-4b32-b0b0-311544d960f6
+ - 1
+
+
+
+
+ -
+ 9259
+ 12556
+ 28
+ 20
+
+ -
+ 9274.5
+ 12566
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 9424b08d-dc64-482f-a05a-3054f070bc2d
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 42eb47e6-9c62-4d8d-994a-74cec8b44aff
+ - 1
+
+
+
+
+ -
+ 9259
+ 12576
+ 28
+ 20
+
+ -
+ 9274.5
+ 12586
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - ac57a99a-70b3-4c0f-a385-602f9f11134c
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 9317
+ 12536
+ 27
+ 60
+
+ -
+ 9332
+ 12566
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 3677150c-4996-4121-8acc-6eff251fa7ab
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9225
+ 12460
+ 150
+ 20
+
+ -
+ 9225.982
+ 12460.26
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0c583e97-0764-47e8-a8bd-7880cc07c232
+ - Panel
+
+ - false
+ - 1
+ - b2bf7e4a-b211-4688-aafa-add547525897
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9206
+ 13235
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 9206.054
+ 13235.52
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 46c776c4-7ca3-4b86-b1e5-54d4aaaa19b3
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 9232
+ 13181
+ 122
+ 28
+
+ -
+ 9296
+ 13195
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 5b8c8460-0f3d-4383-9bcd-0c612c25b722
+ - Numbers
+ - Numbers
+ - false
+ - 7d00bba9-0c4c-4b11-92af-fad7f8f0ebc0
+ - 1
+
+
+
+
+ -
+ 9234
+ 13183
+ 47
+ 24
+
+ -
+ 9259
+ 13195
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - fc0c07eb-e460-44e9-b49f-010dd7ee264b
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9311
+ 13183
+ 41
+ 24
+
+ -
+ 9333
+ 13195
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1c12ee8d-94ec-462b-a5bc-882f08df648a
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9194
+ 13595
+ 194
+ 28
+
+ -
+ 9294
+ 13609
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 502eaf4a-ffb6-4367-814a-a8314de27587
+ - true
+ - Variable O
+ - O
+ - true
+ - 7d00bba9-0c4c-4b11-92af-fad7f8f0ebc0
+ - 1
+
+
+
+
+ -
+ 9196
+ 13597
+ 14
+ 24
+
+ -
+ 9204.5
+ 13609
+
+
+
+
+
+
+
+ - Result of expression
+ - b2bf7e4a-b211-4688-aafa-add547525897
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9377
+ 13597
+ 9
+ 24
+
+ -
+ 9383
+ 13609
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 9aff4bc8-d0ea-4611-905e-7d68dfdef9d9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9108
+ 13809
+ 367
+ 28
+
+ -
+ 9294
+ 13823
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2fb28a62-6ce8-4b63-9e3c-e245db22aedb
+ - Variable O
+ - O
+ - true
+ - 54f44873-8d34-4412-9dda-78426a1a8b25
+ - 1
+
+
+
+
+ -
+ 9110
+ 13811
+ 14
+ 24
+
+ -
+ 9118.5
+ 13823
+
+
+
+
+
+
+
+ - Result of expression
+ - 6227b81c-2695-495a-8438-386f2b55fd52
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9464
+ 13811
+ 9
+ 24
+
+ -
+ 9470
+ 13823
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f83e7873-fd7d-4508-923c-0a1ccf1f5173
+ - Panel
+
+ - false
+ - 0
+ - 6227b81c-2695-495a-8438-386f2b55fd52
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9206
+ 13772
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9206.192
+ 13772.38
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+ - 627b51c5-9ba6-4062-990b-d2644fab7d08
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 8f563cb8-9910-4e8f-8b51-d6a1eb025af6
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9214
+ 9969
+ 154
+ 64
+
+ -
+ 9298
+ 10001
+
+
+
+
+
+ - Base geometry
+ - 646f1f5e-342f-4ad3-9a54-f48c6520ce0d
+ - Geometry
+ - Geometry
+ - true
+ - e9fa65ea-db30-4e31-abf4-2dd776fcae3e
+ - 1
+
+
+
+
+ -
+ 9216
+ 9971
+ 67
+ 20
+
+ -
+ 9259
+ 9981
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7052e9ef-5fb6-457a-b78f-b878dbc09380
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9216
+ 9991
+ 67
+ 20
+
+ -
+ 9259
+ 10001
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - f7e20aa0-3838-4b02-8245-26bd6357e10d
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - c611f570-ad63-4756-a6fb-1677ee1128e3
+ - 1
+
+
+
+
+ -
+ 9216
+ 10011
+ 67
+ 20
+
+ -
+ 9259
+ 10021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - d9aad32e-b6d7-4e88-a1c2-a9e84f1fff68
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9313
+ 9971
+ 53
+ 30
+
+ -
+ 9341
+ 9986
+
+
+
+
+
+
+
+ - Transformation data
+ - 060838a8-24a7-47ae-8b25-7b1c817a8dd8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9313
+ 10001
+ 53
+ 30
+
+ -
+ 9341
+ 10016
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - b3d7308b-bd5a-4724-b108-23089d3defeb
+ - Point
+ - Point
+ - false
+ - d9aad32e-b6d7-4e88-a1c2-a9e84f1fff68
+ - 1
+
+
+
+
+ -
+ 9270
+ 9936
+ 50
+ 24
+
+ -
+ 9295.343
+ 9948.91
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 1d83bc70-a220-4c43-aab3-dfcbb61a9a4c
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9236
+ 9329
+ 138
+ 44
+
+ -
+ 9304
+ 9351
+
+
+
+
+
+ - Base geometry
+ - 6355b944-52b6-4c12-9965-f0d2ed3e99c7
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 9238
+ 9331
+ 51
+ 20
+
+ -
+ 9265
+ 9341
+
+
+
+
+
+
+
+ - Mirror plane
+ - 079c86ac-fc90-470b-a0c6-a815603df048
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9238
+ 9351
+ 51
+ 20
+
+ -
+ 9265
+ 9361
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 49675102-ada8-4da0-a13c-ab8b29f23b51
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9319
+ 9331
+ 53
+ 20
+
+ -
+ 9347
+ 9341
+
+
+
+
+
+
+
+ - Transformation data
+ - 7e331478-3c93-4f9d-8e1b-5aa5c2f60f97
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9319
+ 9351
+ 53
+ 20
+
+ -
+ 9347
+ 9361
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ac94063c-4ea8-4bd7-a1d9-331c5dae31b4
+ - Curve
+ - Curve
+ - false
+ - 700e1289-8912-478e-b981-8c721ed05a37
+ - 1
+
+
+
+
+ -
+ 9277
+ 9228
+ 50
+ 24
+
+ -
+ 9302.593
+ 9240.92
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - ee07fea5-e231-490f-8b21-7edc29afcd22
+ - Relay
+
+ - false
+ - e2c66b67-3d14-4ba5-bfb2-e25109ddbc91
+ - 1
+
+
+
+
+ -
+ 9273
+ 13109
+ 40
+ 16
+
+ -
+ 9293
+ 13117
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d4ee5f33-f554-4034-b7f6-14fd100d6a47
+ - Curve
+ - Curve
+ - false
+ - 3f7e3b9e-e49f-490c-9fac-9e238f044562
+ - 1
+
+
+
+
+ -
+ 8840
+ 13504
+ 50
+ 24
+
+ -
+ 8865.092
+ 13516.38
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e2c66b67-3d14-4ba5-bfb2-e25109ddbc91
+ - Curve
+ - Curve
+ - false
+ - ef592b8f-92d2-4a2c-a563-1977cd6aad47
+ - 1
+
+
+
+
+ -
+ 8839
+ 13214
+ 50
+ 24
+
+ -
+ 8864.188
+ 13226.53
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - b7b2a002-a144-4b1e-a1c5-227412cac4b8
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 8783
+ 13248
+ 154
+ 64
+
+ -
+ 8867
+ 13280
+
+
+
+
+
+ - Base geometry
+ - dd31428e-0cd0-489c-abc3-9a74837b4489
+ - Geometry
+ - Geometry
+ - true
+ - d4ee5f33-f554-4034-b7f6-14fd100d6a47
+ - 1
+
+
+
+
+ -
+ 8785
+ 13250
+ 67
+ 20
+
+ -
+ 8828
+ 13260
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7b7ec746-f76c-48dc-a649-b09da857e68e
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 8785
+ 13270
+ 67
+ 20
+
+ -
+ 8828
+ 13280
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a09c0f0d-0d69-4260-831a-9fd11ef119f9
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 010c6158-cd42-4c79-868f-0276d9b2f3fa
+ - 1
+
+
+
+
+ -
+ 8785
+ 13290
+ 67
+ 20
+
+ -
+ 8828
+ 13300
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ef592b8f-92d2-4a2c-a563-1977cd6aad47
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8882
+ 13250
+ 53
+ 30
+
+ -
+ 8910
+ 13265
+
+
+
+
+
+
+
+ - Transformation data
+ - 3832caa9-5a38-418b-b7bf-5e1e9b40efeb
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8882
+ 13280
+ 53
+ 30
+
+ -
+ 8910
+ 13295
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d4ee5f33-f554-4034-b7f6-14fd100d6a47
+ - e2c66b67-3d14-4ba5-bfb2-e25109ddbc91
+ - b7b2a002-a144-4b1e-a1c5-227412cac4b8
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 82fbeaaf-eadf-485f-82d0-b4fb6356a6b5
+ - 1f5227c9-0bd8-46a9-92eb-b4cc68012211
+ - f86306f1-c8d9-4880-859a-aabecea31011
+ - fe6da4e4-f011-449c-a16e-76977f2cf8e6
+ - 010c6158-cd42-4c79-868f-0276d9b2f3fa
+ - 517de05e-10b8-4c63-a805-3bfd4a055d28
+ - 77810d07-6a5e-4230-97d8-292cb1c543b4
+ - 11
+ - e89ccdeb-a509-49db-a074-10e074a5cdfe
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 99ca1918-5b9f-48be-a244-7eba09c2a10c
+ - Move
+ - Move
+
+
+
+
+ -
+ 9236
+ 9265
+ 138
+ 44
+
+ -
+ 9304
+ 9287
+
+
+
+
+
+ - Base geometry
+ - cd198352-59ee-4d6e-94c5-12c6a4f5f2bc
+ - Geometry
+ - Geometry
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 9238
+ 9267
+ 51
+ 20
+
+ -
+ 9265
+ 9277
+
+
+
+
+
+
+
+ - Translation vector
+ - 77d6f118-5300-4296-bb33-0a74b10fb2d3
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 9238
+ 9287
+ 51
+ 20
+
+ -
+ 9265
+ 9297
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 10
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 700e1289-8912-478e-b981-8c721ed05a37
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9319
+ 9267
+ 53
+ 20
+
+ -
+ 9347
+ 9277
+
+
+
+
+
+
+
+ - Transformation data
+ - 1a7dadfe-a664-4d8b-8f99-7f79657960ba
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9319
+ 9287
+ 53
+ 20
+
+ -
+ 9347
+ 9297
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 82fbeaaf-eadf-485f-82d0-b4fb6356a6b5
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 8736
+ 13460
+ 250
+ 20
+
+ -
+ 8736.918
+ 13460.76
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1f5227c9-0bd8-46a9-92eb-b4cc68012211
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 8796
+ 13339
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 8796.655
+ 13339.24
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f86306f1-c8d9-4880-859a-aabecea31011
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8839
+ 13171
+ 50
+ 24
+
+ -
+ 8864.188
+ 13183.53
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - fe6da4e4-f011-449c-a16e-76977f2cf8e6
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8842
+ 13641
+ 50
+ 24
+
+ -
+ 8867.688
+ 13653.48
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 31d5333d-2f3d-4ecd-b423-21f29b7f4ae5
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 9076
+ 13982
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9076.574
+ 13982.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - adc9af1f-6618-430b-878e-74d0382907f3
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 9661
+ 9960
+ 96
+ 44
+
+ -
+ 9711
+ 9982
+
+
+
+
+
+ - Curve to evaluate
+ - ac5b0219-e862-4b32-a338-c8d0d993eb88
+ - Curve
+ - Curve
+ - false
+ - d8b30c72-4c75-49c2-9897-3a886d8b0b00
+ - 1
+
+
+
+
+ -
+ 9663
+ 9962
+ 33
+ 40
+
+ -
+ 9681
+ 9982
+
+
+
+
+
+
+
+ - Curve start point
+ - 9bb167c2-4add-4cc1-829c-ff4cf603938f
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9726
+ 9962
+ 29
+ 20
+
+ -
+ 9742
+ 9972
+
+
+
+
+
+
+
+ - Curve end point
+ - 8e693133-5b75-4f5d-8672-b4970127c1c6
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9726
+ 9982
+ 29
+ 20
+
+ -
+ 9742
+ 9992
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 617fc1e7-a4ed-4c98-92e0-dd4bc994a854
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 9646
+ 9857
+ 126
+ 84
+
+ -
+ 9704
+ 9899
+
+
+
+
+
+ - Rectangle base plane
+ - 8aef71c0-ddae-407b-9a99-a4d1c46b3846
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9648
+ 9859
+ 41
+ 20
+
+ -
+ 9670
+ 9869
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - e3c600f1-da43-4003-8817-1f6545f0e601
+ - Point A
+ - Point A
+ - false
+ - 9bb167c2-4add-4cc1-829c-ff4cf603938f
+ - 1
+
+
+
+
+ -
+ 9648
+ 9879
+ 41
+ 20
+
+ -
+ 9670
+ 9889
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - d5510864-a7dd-4004-af81-705cf49a96c5
+ - Point B
+ - Point B
+ - false
+ - 8e693133-5b75-4f5d-8672-b4970127c1c6
+ - 1
+
+
+
+
+ -
+ 9648
+ 9899
+ 41
+ 20
+
+ -
+ 9670
+ 9909
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 257fb57a-99ac-44a6-9096-7340d07eec21
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 9648
+ 9919
+ 41
+ 20
+
+ -
+ 9670
+ 9929
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 0a67dc9b-4caf-41e3-8ade-bf99a13c8f62
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 9719
+ 9859
+ 51
+ 40
+
+ -
+ 9746
+ 9879
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - b663e79e-25f5-4c3a-a18e-cb62704c8d38
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9719
+ 9899
+ 51
+ 40
+
+ -
+ 9746
+ 9919
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - ce9a1e3e-294a-4732-ad79-2b4d4d03cc71
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 9638
+ 9774
+ 142
+ 64
+
+ -
+ 9706
+ 9806
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 881cc932-4b55-4452-a5b1-c797041d8c85
+ - Rectangle
+ - Rectangle
+ - false
+ - 0a67dc9b-4caf-41e3-8ade-bf99a13c8f62
+ - 1
+
+
+
+
+ -
+ 9640
+ 9776
+ 51
+ 60
+
+ -
+ 9667
+ 9806
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - 67f2178c-5451-46a6-a776-2ea1dab9a03d
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9721
+ 9776
+ 57
+ 20
+
+ -
+ 9751
+ 9786
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 6d62cfa2-87e5-4e73-bf7c-59602111c661
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 9721
+ 9796
+ 57
+ 20
+
+ -
+ 9751
+ 9806
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 1ecfb5b4-2f1b-40ca-af51-1487bfd0beb5
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 9721
+ 9816
+ 57
+ 20
+
+ -
+ 9751
+ 9826
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 935baace-be97-4d0a-84b6-c4c250a58d8d
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 9657
+ 9647
+ 104
+ 44
+
+ -
+ 9715
+ 9669
+
+
+
+
+
+ - Base domain
+ - efd1c6bf-d5e8-4a31-b5c6-8026a7d70e71
+ - Domain
+ - Domain
+ - false
+ - 1ecfb5b4-2f1b-40ca-af51-1487bfd0beb5
+ - 1
+
+
+
+
+ -
+ 9659
+ 9649
+ 41
+ 40
+
+ -
+ 9681
+ 9669
+
+
+
+
+
+
+
+ - Start of domain
+ - f2e8150c-64c1-488e-ac7c-b971c37bba17
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9730
+ 9649
+ 29
+ 20
+
+ -
+ 9746
+ 9659
+
+
+
+
+
+
+
+ - End of domain
+ - 67759308-df73-4a46-bfce-1514a5076595
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9730
+ 9669
+ 29
+ 20
+
+ -
+ 9746
+ 9679
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 272e3fd7-5edd-4507-a6ee-d1b778257c1a
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 9657
+ 9709
+ 104
+ 44
+
+ -
+ 9715
+ 9731
+
+
+
+
+
+ - Base domain
+ - b868b8b1-3c97-4d7c-9272-4c1338de4bfe
+ - Domain
+ - Domain
+ - false
+ - 6d62cfa2-87e5-4e73-bf7c-59602111c661
+ - 1
+
+
+
+
+ -
+ 9659
+ 9711
+ 41
+ 40
+
+ -
+ 9681
+ 9731
+
+
+
+
+
+
+
+ - Start of domain
+ - 9b9e285b-80b4-426d-9514-8da27385c283
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9730
+ 9711
+ 29
+ 20
+
+ -
+ 9746
+ 9721
+
+
+
+
+
+
+
+ - End of domain
+ - 23b8cc44-9782-48ce-b7cc-7cd850f42c18
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9730
+ 9731
+ 29
+ 20
+
+ -
+ 9746
+ 9741
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 00528d7f-8c30-4e4b-8aa9-d51b29ddb452
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 9632
+ 9524
+ 154
+ 104
+
+ -
+ 9716
+ 9576
+
+
+
+
+
+ - Base geometry
+ - dff888e5-719f-4255-8e28-1c8659844b30
+ - Geometry
+ - Geometry
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 9634
+ 9526
+ 67
+ 20
+
+ -
+ 9677
+ 9536
+
+
+
+
+
+
+
+ - Base plane
+ - f9dcb013-c047-4a17-a9b0-276b6e2b6725
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9634
+ 9546
+ 67
+ 20
+
+ -
+ 9677
+ 9556
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 8ccff032-89bd-455c-9090-1316d5432e0d
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - 23b8cc44-9782-48ce-b7cc-7cd850f42c18
+ - 1
+
+
+
+
+ -
+ 9634
+ 9566
+ 67
+ 20
+
+ -
+ 9677
+ 9576
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 4520bdaa-e3ca-44ab-9c06-32625e92f692
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 67759308-df73-4a46-bfce-1514a5076595
+ - 1
+
+
+
+
+ -
+ 9634
+ 9586
+ 67
+ 20
+
+ -
+ 9677
+ 9596
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 835ea717-dd6d-4d57-82da-9b6b833e9161
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 9634
+ 9606
+ 67
+ 20
+
+ -
+ 9677
+ 9616
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 7f310464-458a-4d8f-a25d-c26becc86f07
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9731
+ 9526
+ 53
+ 50
+
+ -
+ 9759
+ 9551
+
+
+
+
+
+
+
+ - Transformation data
+ - 6f75b075-4ff9-444f-b539-a9ef0e076205
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9731
+ 9576
+ 53
+ 50
+
+ -
+ 9759
+ 9601
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - adc9af1f-6618-430b-878e-74d0382907f3
+ - 617fc1e7-a4ed-4c98-92e0-dd4bc994a854
+ - ce9a1e3e-294a-4732-ad79-2b4d4d03cc71
+ - 935baace-be97-4d0a-84b6-c4c250a58d8d
+ - 272e3fd7-5edd-4507-a6ee-d1b778257c1a
+ - 00528d7f-8c30-4e4b-8aa9-d51b29ddb452
+ - d8b30c72-4c75-49c2-9897-3a886d8b0b00
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - 2f0446bb-badd-4a2d-b2f7-3ecaffcea83e
+ - d3694f49-88f8-4c69-a50e-2af49ddb9407
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - 72d7ba69-f418-4938-9888-b4b9200c1976
+ - 12
+ - a035e05c-284c-4ac7-83d4-fe3f77d478dc
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d8b30c72-4c75-49c2-9897-3a886d8b0b00
+ - Curve
+ - Curve
+ - false
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 9688
+ 10034
+ 50
+ 24
+
+ -
+ 9713.233
+ 10046.13
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - Curve
+ - Curve
+ - false
+ - 7f310464-458a-4d8f-a25d-c26becc86f07
+ - 1
+
+
+
+
+ -
+ 9685
+ 9482
+ 50
+ 24
+
+ -
+ 9710.018
+ 9494.376
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 2f0446bb-badd-4a2d-b2f7-3ecaffcea83e
+ - Move
+ - Move
+
+
+
+
+ -
+ 9638
+ 9271
+ 138
+ 44
+
+ -
+ 9706
+ 9293
+
+
+
+
+
+ - Base geometry
+ - d7dd5ec1-7f45-4309-93b8-cdbbbe8c7ae8
+ - Geometry
+ - Geometry
+ - true
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - 1
+
+
+
+
+ -
+ 9640
+ 9273
+ 51
+ 20
+
+ -
+ 9667
+ 9283
+
+
+
+
+
+
+
+ - Translation vector
+ - 5c6631fb-0696-45e3-a6b9-de77990fb016
+ - Motion
+ - Motion
+ - false
+ - 061ec223-6427-41e5-bb45-ff42561fac13
+ - 1
+
+
+
+
+ -
+ 9640
+ 9293
+ 51
+ 20
+
+ -
+ 9667
+ 9303
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 275760ae-43fe-482e-8a87-497bb13078ef
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9721
+ 9273
+ 53
+ 20
+
+ -
+ 9749
+ 9283
+
+
+
+
+
+
+
+ - Transformation data
+ - a25178d3-0c97-492c-8e28-9683f2fb3800
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9721
+ 9293
+ 53
+ 20
+
+ -
+ 9749
+ 9303
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d3694f49-88f8-4c69-a50e-2af49ddb9407
+ - Curve
+ - Curve
+ - false
+ - 275760ae-43fe-482e-8a87-497bb13078ef
+ - 1
+
+
+
+
+ -
+ 9685
+ 9228
+ 50
+ 24
+
+ -
+ 9710.349
+ 9240.589
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9c3abe66-6178-41fc-9486-5a8a5127c817
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 9076
+ 14143
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 9076.879
+ 14143.81
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 6a8fee44-2302-45df-b1b2-d84c0a567487
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 9169
+ 14294
+ 251
+ 20
+
+ -
+ 9169.484
+ 14294.21
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cb3edda4-af7d-4284-a8c6-e088a6688f37
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 9076
+ 14202
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9076.324
+ 14202.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 72d0b584-fd81-41fc-a990-23a44f9c78b4
+ - Expression
+
+
+
+
+
+ -
+ 9259
+ 14391
+ 79
+ 28
+
+ -
+ 9301
+ 14405
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b13c2214-da95-44c6-a1f3-60ee94066955
+ - Variable X
+ - X
+ - true
+ - ffab67ab-18ec-45a4-aa0f-a657ab7a28ad
+ - 1
+
+
+
+
+ -
+ 9261
+ 14393
+ 14
+ 24
+
+ -
+ 9269.5
+ 14405
+
+
+
+
+
+
+
+ - Result of expression
+ - 0dab6791-f1ad-4881-a86b-223e0ea6c394
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 9327
+ 14393
+ 9
+ 24
+
+ -
+ 9333
+ 14405
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - c8993beb-b45b-4c31-9990-7eb86ffdc60d
+ - Point
+ - Point
+ - false
+ - 1208fa26-35cd-449c-8bab-d5024ce56926
+ - 1
+
+
+
+
+ -
+ 9292
+ 11918
+ 50
+ 24
+
+ -
+ 9317.3
+ 11930.94
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1208fa26-35cd-449c-8bab-d5024ce56926
+ - Relay
+
+ - false
+ - 4ff605e6-a509-4af8-9890-63cf4e497a61
+ - 1
+
+
+
+
+ -
+ 9295
+ 11965
+ 40
+ 16
+
+ -
+ 9315
+ 11973
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e9fa65ea-db30-4e31-abf4-2dd776fcae3e
+ - Relay
+
+ - false
+ - fe2c1b3f-3bda-479f-9ab6-83e2e178d9e7
+ - 1
+
+
+
+
+ -
+ 9295
+ 11742
+ 40
+ 16
+
+ -
+ 9315
+ 11750
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 9acdadaa-96e4-4e3f-b354-95632380b4b1
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9238
+ 11778
+ 154
+ 64
+
+ -
+ 9322
+ 11810
+
+
+
+
+
+ - Base geometry
+ - e5fdd253-0cf5-4ae6-9611-d7b0eae02c32
+ - Geometry
+ - Geometry
+ - true
+ - c8993beb-b45b-4c31-9990-7eb86ffdc60d
+ - 1
+
+
+
+
+ -
+ 9240
+ 11780
+ 67
+ 20
+
+ -
+ 9283
+ 11790
+
+
+
+
+
+
+
+ - Center of scaling
+ - d8ae4010-44ab-4990-8935-08bf1a605baf
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9240
+ 11800
+ 67
+ 20
+
+ -
+ 9283
+ 11810
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2703f972-737f-46b6-ad79-0d52eac2fbb2
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 993a4bbf-a82f-4209-b544-cec1a75b5c95
+ - 1
+
+
+
+
+ -
+ 9240
+ 11820
+ 67
+ 20
+
+ -
+ 9283
+ 11830
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - fe2c1b3f-3bda-479f-9ab6-83e2e178d9e7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9337
+ 11780
+ 53
+ 30
+
+ -
+ 9365
+ 11795
+
+
+
+
+
+
+
+ - Transformation data
+ - 2b888928-1ad5-4036-9283-5785e6b35b24
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9337
+ 11810
+ 53
+ 30
+
+ -
+ 9365
+ 11825
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 993a4bbf-a82f-4209-b544-cec1a75b5c95
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 9197
+ 11863
+ 250
+ 20
+
+ -
+ 9197.079
+ 11863.3
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c8993beb-b45b-4c31-9990-7eb86ffdc60d
+ - 1
+ - 30884d74-7a79-4131-9e30-3d6188286538
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 010c6158-cd42-4c79-868f-0276d9b2f3fa
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 8845
+ 13423
+ 40
+ 16
+
+ -
+ 8865
+ 13431
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 517de05e-10b8-4c63-a805-3bfd4a055d28
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 8793
+ 13390
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 8793.912
+ 13390.07
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3108fcf8-bcd2-4ede-be7f-b826424c45a3
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 9169
+ 14245
+ 251
+ 20
+
+ -
+ 9169.484
+ 14245.96
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 72d7ba69-f418-4938-9888-b4b9200c1976
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 9638
+ 9357
+ 139
+ 64
+
+ -
+ 9723
+ 9389
+
+
+
+
+
+ - Vector {x} component
+ - db523777-9cbd-4f02-acfd-bd8d8b9ccdd8
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9640
+ 9359
+ 68
+ 20
+
+ -
+ 9675.5
+ 9369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 07143fa2-c6c8-47a1-a84f-c8e0308f782b
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9640
+ 9379
+ 68
+ 20
+
+ -
+ 9675.5
+ 9389
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 87691a0a-08c6-40eb-adc3-6ea410c7464d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9640
+ 9399
+ 68
+ 20
+
+ -
+ 9675.5
+ 9409
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 061ec223-6427-41e5-bb45-ff42561fac13
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 9738
+ 9359
+ 37
+ 30
+
+ -
+ 9758
+ 9374
+
+
+
+
+
+
+
+ - Vector length
+ - b9bd2d66-f1e1-40ae-8ba4-3041ae4cea1a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9738
+ 9389
+ 37
+ 30
+
+ -
+ 9758
+ 9404
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 22d8d287-574a-486a-bb10-c3dd6f030770
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 9274
+ 13903
+ 40
+ 16
+
+ -
+ 9294
+ 13911
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 77810d07-6a5e-4230-97d8-292cb1c543b4
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 8822
+ 13555
+ 89
+ 64
+
+ -
+ 8867
+ 13587
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - fe40f09c-a6e0-4c98-b50a-2c5676661f2c
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 8824
+ 13557
+ 28
+ 20
+
+ -
+ 8839.5
+ 13567
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 19c5bf70-ae47-423e-873a-ef0070300ef2
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 8824
+ 13577
+ 28
+ 20
+
+ -
+ 8839.5
+ 13587
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - d60c5593-cb13-47c1-af94-d41c5d7a4bfa
+ - false
+ - Stream 1
+ - 1
+ - true
+ - b09beea0-b303-4bd8-86ed-e165609c0970
+ - 1
+
+
+
+
+ -
+ 8824
+ 13597
+ 28
+ 20
+
+ -
+ 8839.5
+ 13607
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 3f7e3b9e-e49f-490c-9fac-9e238f044562
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 8882
+ 13557
+ 27
+ 60
+
+ -
+ 8897
+ 13587
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c93e1bf6-0f3e-4135-b085-2deae15e75c6
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 16.0000000000
+
+
+
+
+ -
+ 12302
+ 24680
+ 250
+ 20
+
+ -
+ 12302.49
+ 24680.89
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - Relay
+
+ - false
+ - 75f1723a-1115-4b28-b4c3-e710e5895f81
+ - 1
+
+
+
+
+ -
+ 12406
+ 24592
+ 40
+ 16
+
+ -
+ 12426
+ 24600
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 75f1723a-1115-4b28-b4c3-e710e5895f81
+ - Number
+ - Number
+ - false
+ - c93e1bf6-0f3e-4135-b085-2deae15e75c6
+ - 1
+
+
+
+
+ -
+ 12401
+ 24638
+ 50
+ 24
+
+ -
+ 12426.58
+ 24650.26
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c93e1bf6-0f3e-4135-b085-2deae15e75c6
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 75f1723a-1115-4b28-b4c3-e710e5895f81
+ - 3
+ - e48d37a4-31d8-475b-b2b4-409089413c61
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ddda4732-6250-4450-a11a-010b13680da0
+ - a3f6ca53-8639-4a50-8e51-9d73d0818a56
+ - c86ec8a3-9ea7-4981-9a9d-edda0165242c
+ - 3fe7a6e2-d179-493c-a8f1-8105d057ade7
+ - 3b353169-95e9-4680-9cf6-3f909e1356e1
+ - 76aa88d4-0024-4f8d-bdda-fa012bf2b40c
+ - 6
+ - a1587c9a-f3ec-4c84-9897-785b73d7cb38
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0115c254-9173-42fc-bf12-071a5eb0256a
+ - 7d213a68-e09d-4328-8663-9c213a37e085
+ - a7307d35-ba82-4827-bbec-ff43d07462e9
+ - 39f238ce-fb8f-4df8-b2f2-934202f77966
+ - 438f4c39-f2d7-409a-b6df-acadf084676b
+ - 51e947dc-647a-4275-a7bc-34d84f8c3e57
+ - 97d48673-4187-4fef-af36-5f353e9172b7
+ - becf9e3b-cad2-4c0e-a4dc-9cd9eb99aa22
+ - c03cf540-76a6-4eca-9036-4d3a467c372c
+ - 8f0c38e7-275b-4512-9c33-0dc8fe13dce8
+ - 85fe1e3c-2f5a-43ce-9ab4-9ce1b14da7c7
+ - 05264c8f-592a-476b-80f9-5b962afd2102
+ - 97fa5528-d1af-4dff-b66b-8510b1b0723d
+ - 799111ff-a894-4037-975b-d2f9969e7e8e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 92d09aed-b1f5-40c3-998b-c15e31faa838
+ - eb7774ed-5951-4ab5-8a4e-422674d17722
+ - 42069a71-d151-4dbd-8337-e9a35f50d4ba
+ - da98717c-d14f-48a8-9166-edd2eecf5c2e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - eaa6e43c-8b92-43bf-b10e-37fcfc2c2fef
+ - dd14e3bf-8d3f-4586-aad2-35d0a0c949f7
+ - 04753d62-726c-4f0a-b953-215fae1965c1
+ - a16d2583-b304-4455-b1f8-443b2dfd903f
+ - b43e97f9-9efd-409a-9c38-8aca960258ee
+ - 55ea1684-66d4-4e70-bf7e-36f8da5eb144
+ - 3f6cea5e-c88f-465c-88bc-98d162d76cc7
+ - 266dea25-3691-42cd-9388-199752211091
+ - 560c22be-246f-444d-ae21-3eae4fdc2c5e
+ - 07ce4975-8027-48f5-b1dd-799d75f55227
+ - 37e63a3e-af5a-41ef-8276-fb65806d30ae
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - 4db807a3-68da-4624-885c-4004466b221d
+ - e8a97c6e-2791-4014-9d84-cc711e836f99
+ - aee43447-61a8-4e59-9956-72dcbac410de
+ - b7b49fbf-17c8-43da-a6df-339d9a9a6557
+ - 4a0c4826-3100-4299-a630-853b544f4737
+ - 01016d06-2882-4690-9359-fd036cf1bc89
+ - d67a7210-fc04-4817-ba96-8ef643797ca8
+ - 39284689-e8f7-4167-8bbc-9ec3a75d5b77
+ - 088d3c70-70d6-4b21-9673-93bd3a7b5ae5
+ - f5a8249a-5963-48e9-993b-d937df7e5887
+ - c3e28a5d-c3ae-4a90-9942-c3881598e108
+ - 24a26a0a-2c77-42f7-817b-159896d7f078
+ - 72662119-790d-4cdb-be73-a81f3a3315d1
+ - 7f8c120c-673e-4ea2-b61b-045af5897f90
+ - e8a0fc04-4f1d-4ca3-9c5c-3c550e3067c1
+ - 27be3162-4c6a-4a59-a453-7ca65d602b63
+ - 2707a334-7398-47dd-a6d7-7e43f545bdd2
+ - 9a38140c-37fa-42cf-af9f-b387bb97fcbf
+ - 8a747494-7e8b-40ea-bb93-fcb27e7ad93e
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 00279feb-16c9-400b-98c3-c230f7c5baf1
+ - b1d42c60-3f0c-4e7a-a12d-46dda6710889
+ - 6bd6aad8-5fb1-494e-b1b2-7a5af0b6be06
+ - d851c0fc-b58d-4fc4-8f66-48db18d0524d
+ - f9a0ebd0-236d-434b-baa1-c89d9887e509
+ - bffd1539-4139-4b0c-b604-e7f7d7a49e27
+ - 78c6c476-3e5a-43d9-942a-e32a1bd8341c
+ - 63da5a14-14d8-4b3a-bca3-90f33f5a6d2d
+ - 0657fa7f-36d6-4ded-87c9-fa3214ed6a40
+ - b3400eb7-f424-4126-93fb-7a46f60c09de
+ - 3f37173e-5d6c-40dd-8cc1-b846e92fd738
+ - 7a47c011-cbf4-4047-8c80-c1178ae035ab
+ - 3ef9ab54-9776-4aed-aee8-f1a09b0b6701
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - d8844e6a-8ed6-47e6-b71d-3e8759974784
+ - 2466d393-59b0-44a7-9bd6-a60e3db2a1c6
+ - dcf57667-d488-4173-a38b-e201d6714472
+ - a9982cc5-6f10-4b54-adef-fa826b701d03
+ - 58091a26-9398-4dc8-a07a-187aacb3aeba
+ - 1dbe9a75-22aa-4f51-84fc-b8e986d66b5e
+ - 7516f2d4-2a9b-4fdd-a932-aa5a77b81a08
+ - 3b6e3bdb-033f-4638-95fc-9a56faba2fdb
+ - 618ef6f7-de00-4431-89c5-1f39302e094c
+ - c110440b-e321-42a9-9db8-78497fbde38f
+ - 756d2d51-d7f6-4402-9d75-aad4ee697736
+ - 5cc374f6-23ee-40c4-a583-270d25678efb
+ - e44c5a2a-fb8d-4dcb-9a13-a9154875d3d5
+ - 8226fdbd-9d16-4960-baba-a79b21bec7dc
+ - 34b91d1e-2f87-484a-b784-0cc6d1cd5f34
+ - 1cc4ce65-802a-413c-851c-f786e9032630
+ - bb3d5a6c-0b9d-4f22-8e71-bc35406b7647
+ - 83
+ - 830247f2-8a9a-4b01-90cf-3c751e89f2fe
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7d213a68-e09d-4328-8663-9c213a37e085
+ - a7307d35-ba82-4827-bbec-ff43d07462e9
+ - 39f238ce-fb8f-4df8-b2f2-934202f77966
+ - 438f4c39-f2d7-409a-b6df-acadf084676b
+ - 51e947dc-647a-4275-a7bc-34d84f8c3e57
+ - 97d48673-4187-4fef-af36-5f353e9172b7
+ - becf9e3b-cad2-4c0e-a4dc-9cd9eb99aa22
+ - c03cf540-76a6-4eca-9036-4d3a467c372c
+ - 8f0c38e7-275b-4512-9c33-0dc8fe13dce8
+ - 85fe1e3c-2f5a-43ce-9ab4-9ce1b14da7c7
+ - 05264c8f-592a-476b-80f9-5b962afd2102
+ - 97fa5528-d1af-4dff-b66b-8510b1b0723d
+ - 799111ff-a894-4037-975b-d2f9969e7e8e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 92d09aed-b1f5-40c3-998b-c15e31faa838
+ - eb7774ed-5951-4ab5-8a4e-422674d17722
+ - 42069a71-d151-4dbd-8337-e9a35f50d4ba
+ - da98717c-d14f-48a8-9166-edd2eecf5c2e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - eaa6e43c-8b92-43bf-b10e-37fcfc2c2fef
+ - dd14e3bf-8d3f-4586-aad2-35d0a0c949f7
+ - 04753d62-726c-4f0a-b953-215fae1965c1
+ - a16d2583-b304-4455-b1f8-443b2dfd903f
+ - b43e97f9-9efd-409a-9c38-8aca960258ee
+ - 55ea1684-66d4-4e70-bf7e-36f8da5eb144
+ - 3f6cea5e-c88f-465c-88bc-98d162d76cc7
+ - 266dea25-3691-42cd-9388-199752211091
+ - 560c22be-246f-444d-ae21-3eae4fdc2c5e
+ - 07ce4975-8027-48f5-b1dd-799d75f55227
+ - 37e63a3e-af5a-41ef-8276-fb65806d30ae
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - 4db807a3-68da-4624-885c-4004466b221d
+ - e8a97c6e-2791-4014-9d84-cc711e836f99
+ - aee43447-61a8-4e59-9956-72dcbac410de
+ - b7b49fbf-17c8-43da-a6df-339d9a9a6557
+ - 4a0c4826-3100-4299-a630-853b544f4737
+ - 01016d06-2882-4690-9359-fd036cf1bc89
+ - d67a7210-fc04-4817-ba96-8ef643797ca8
+ - 39284689-e8f7-4167-8bbc-9ec3a75d5b77
+ - 088d3c70-70d6-4b21-9673-93bd3a7b5ae5
+ - f5a8249a-5963-48e9-993b-d937df7e5887
+ - c3e28a5d-c3ae-4a90-9942-c3881598e108
+ - 24a26a0a-2c77-42f7-817b-159896d7f078
+ - 72662119-790d-4cdb-be73-a81f3a3315d1
+ - 7f8c120c-673e-4ea2-b61b-045af5897f90
+ - e8a0fc04-4f1d-4ca3-9c5c-3c550e3067c1
+ - 27be3162-4c6a-4a59-a453-7ca65d602b63
+ - 2707a334-7398-47dd-a6d7-7e43f545bdd2
+ - 9a38140c-37fa-42cf-af9f-b387bb97fcbf
+ - 8a747494-7e8b-40ea-bb93-fcb27e7ad93e
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 00279feb-16c9-400b-98c3-c230f7c5baf1
+ - b1d42c60-3f0c-4e7a-a12d-46dda6710889
+ - 6bd6aad8-5fb1-494e-b1b2-7a5af0b6be06
+ - d851c0fc-b58d-4fc4-8f66-48db18d0524d
+ - f9a0ebd0-236d-434b-baa1-c89d9887e509
+ - bffd1539-4139-4b0c-b604-e7f7d7a49e27
+ - 78c6c476-3e5a-43d9-942a-e32a1bd8341c
+ - 63da5a14-14d8-4b3a-bca3-90f33f5a6d2d
+ - 0657fa7f-36d6-4ded-87c9-fa3214ed6a40
+ - b3400eb7-f424-4126-93fb-7a46f60c09de
+ - 3f37173e-5d6c-40dd-8cc1-b846e92fd738
+ - 7a47c011-cbf4-4047-8c80-c1178ae035ab
+ - 3ef9ab54-9776-4aed-aee8-f1a09b0b6701
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - d8844e6a-8ed6-47e6-b71d-3e8759974784
+ - 2466d393-59b0-44a7-9bd6-a60e3db2a1c6
+ - dcf57667-d488-4173-a38b-e201d6714472
+ - a9982cc5-6f10-4b54-adef-fa826b701d03
+ - 58091a26-9398-4dc8-a07a-187aacb3aeba
+ - 1dbe9a75-22aa-4f51-84fc-b8e986d66b5e
+ - 7516f2d4-2a9b-4fdd-a932-aa5a77b81a08
+ - 3b6e3bdb-033f-4638-95fc-9a56faba2fdb
+ - 618ef6f7-de00-4431-89c5-1f39302e094c
+ - c110440b-e321-42a9-9db8-78497fbde38f
+ - 756d2d51-d7f6-4402-9d75-aad4ee697736
+ - 5cc374f6-23ee-40c4-a583-270d25678efb
+ - e44c5a2a-fb8d-4dcb-9a13-a9154875d3d5
+ - 8226fdbd-9d16-4960-baba-a79b21bec7dc
+ - 79
+ - 0115c254-9173-42fc-bf12-071a5eb0256a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5cc374f6-23ee-40c4-a583-270d25678efb
+ - 1
+ - 7d213a68-e09d-4328-8663-9c213a37e085
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 39f238ce-fb8f-4df8-b2f2-934202f77966
+ - 1
+ - a7307d35-ba82-4827-bbec-ff43d07462e9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 438f4c39-f2d7-409a-b6df-acadf084676b
+ - 1
+ - 39f238ce-fb8f-4df8-b2f2-934202f77966
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 51e947dc-647a-4275-a7bc-34d84f8c3e57
+ - 1
+ - 438f4c39-f2d7-409a-b6df-acadf084676b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97d48673-4187-4fef-af36-5f353e9172b7
+ - 1
+ - 51e947dc-647a-4275-a7bc-34d84f8c3e57
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - becf9e3b-cad2-4c0e-a4dc-9cd9eb99aa22
+ - 1
+ - 97d48673-4187-4fef-af36-5f353e9172b7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8f0c38e7-275b-4512-9c33-0dc8fe13dce8
+ - 1
+ - becf9e3b-cad2-4c0e-a4dc-9cd9eb99aa22
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c03cf540-76a6-4eca-9036-4d3a467c372c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 11213
+ 13162
+ 50
+ 24
+
+ -
+ 11238.33
+ 13174.48
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c03cf540-76a6-4eca-9036-4d3a467c372c
+ - 1
+ - 8f0c38e7-275b-4512-9c33-0dc8fe13dce8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 07ce4975-8027-48f5-b1dd-799d75f55227
+ - 1
+ - 85fe1e3c-2f5a-43ce-9ab4-9ce1b14da7c7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97fa5528-d1af-4dff-b66b-8510b1b0723d
+ - 799111ff-a894-4037-975b-d2f9969e7e8e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 92d09aed-b1f5-40c3-998b-c15e31faa838
+ - eb7774ed-5951-4ab5-8a4e-422674d17722
+ - 42069a71-d151-4dbd-8337-e9a35f50d4ba
+ - da98717c-d14f-48a8-9166-edd2eecf5c2e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - dd14e3bf-8d3f-4586-aad2-35d0a0c949f7
+ - eaa6e43c-8b92-43bf-b10e-37fcfc2c2fef
+ - 85fe1e3c-2f5a-43ce-9ab4-9ce1b14da7c7
+ - 8f0c38e7-275b-4512-9c33-0dc8fe13dce8
+ - d8844e6a-8ed6-47e6-b71d-3e8759974784
+ - 2466d393-59b0-44a7-9bd6-a60e3db2a1c6
+ - dcf57667-d488-4173-a38b-e201d6714472
+ - a9982cc5-6f10-4b54-adef-fa826b701d03
+ - 58091a26-9398-4dc8-a07a-187aacb3aeba
+ - 1dbe9a75-22aa-4f51-84fc-b8e986d66b5e
+ - 7a47c011-cbf4-4047-8c80-c1178ae035ab
+ - 3ef9ab54-9776-4aed-aee8-f1a09b0b6701
+ - 20
+ - 05264c8f-592a-476b-80f9-5b962afd2102
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 97fa5528-d1af-4dff-b66b-8510b1b0723d
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 11188
+ 14326
+ 104
+ 64
+
+ -
+ 11247
+ 14358
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 273777b5-63c7-4554-8ade-40bc7c166f1e
+ - Data
+ - Data
+ - false
+ - d2af385a-c99b-412b-875e-b7f232cf85d5
+ - 1
+
+
+
+
+ -
+ 11190
+ 14328
+ 42
+ 20
+
+ -
+ 11212.5
+ 14338
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 88b90c14-24ef-4b27-838f-c5e1dc1f3b01
+ - Number
+ - Number
+ - false
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - 1
+
+
+
+
+ -
+ 11190
+ 14348
+ 42
+ 20
+
+ -
+ 11212.5
+ 14358
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 346ed1af-e879-4418-a63a-d4517ce4c44e
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 11190
+ 14368
+ 42
+ 20
+
+ -
+ 11212.5
+ 14378
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - e85bb288-0b73-4631-9ca9-b495a29c7a2e
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 11262
+ 14328
+ 28
+ 60
+
+ -
+ 11277.5
+ 14358
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 799111ff-a894-4037-975b-d2f9969e7e8e
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 11174
+ 12398
+ 116
+ 44
+
+ -
+ 11235
+ 12420
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - b77c12a2-ec4f-4dca-80a6-898b8c983661
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - e85bb288-0b73-4631-9ca9-b495a29c7a2e
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 11176
+ 12400
+ 44
+ 20
+
+ -
+ 11199.5
+ 12410
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 7c56eed6-933c-49e0-a940-33041919ee4e
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 2051c393-183d-424b-8496-cd6a361d114b
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 11176
+ 12420
+ 44
+ 20
+
+ -
+ 11199.5
+ 12430
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - f23e7782-d952-4671-8ef8-5b08eb1e4790
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 11250
+ 12400
+ 38
+ 20
+
+ -
+ 11270.5
+ 12410
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 6675e784-7e56-4b18-8b5b-3311ab42d31a
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11250
+ 12420
+ 38
+ 20
+
+ -
+ 11270.5
+ 12430
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 92d09aed-b1f5-40c3-998b-c15e31faa838
+ - Series
+ - Series
+
+
+
+
+ -
+ 11185
+ 13655
+ 101
+ 64
+
+ -
+ 11235
+ 13687
+
+
+
+
+
+ - First number in the series
+ - 7ce218dd-2717-404e-9ac3-dfed36bf0bf1
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11187
+ 13657
+ 33
+ 20
+
+ -
+ 11205
+ 13667
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - f7e99b0e-cf72-47db-acfd-b926c724caad
+ - Step
+ - Step
+ - false
+ - 756d2d51-d7f6-4402-9d75-aad4ee697736
+ - 1
+
+
+
+
+ -
+ 11187
+ 13677
+ 33
+ 20
+
+ -
+ 11205
+ 13687
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - aa269e61-4b90-4db9-8c0c-2001ff3fc67c
+ - Count
+ - Count
+ - false
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - 1
+
+
+
+
+ -
+ 11187
+ 13697
+ 33
+ 20
+
+ -
+ 11205
+ 13707
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 3922bdee-0233-40b3-8d10-a0a0cd81b6ab
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 11250
+ 13657
+ 34
+ 60
+
+ -
+ 11268.5
+ 13687
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - eb7774ed-5951-4ab5-8a4e-422674d17722
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11171
+ 14506
+ 150
+ 20
+
+ -
+ 11171.01
+ 14506.33
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 42069a71-d151-4dbd-8337-e9a35f50d4ba
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 11174
+ 13872
+ 120
+ 28
+
+ -
+ 11235
+ 13886
+
+
+
+
+
+ - Angle in degrees
+ - 69a2b85d-c1c8-495f-a565-7cc67dd8b2e9
+ - Degrees
+ - Degrees
+ - false
+ - cce1227a-54c9-49c2-b6fc-09416f38af63
+ - 1
+
+
+
+
+ -
+ 11176
+ 13874
+ 44
+ 24
+
+ -
+ 11199.5
+ 13886
+
+
+
+
+
+
+
+ - Angle in radians
+ - 6ab8d1eb-c048-4e31-be0c-e13b590101c4
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 11250
+ 13874
+ 42
+ 24
+
+ -
+ 11272.5
+ 13886
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - da98717c-d14f-48a8-9166-edd2eecf5c2e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 11111
+ 14181
+ 251
+ 20
+
+ -
+ 11111.72
+ 14181.6
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - eaa6e43c-8b92-43bf-b10e-37fcfc2c2fef
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 11160
+ 11633
+ 144
+ 84
+
+ -
+ 11246
+ 11675
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - b69a07e8-dd90-4055-bd3d-d1f456cc5f2b
+ - Vertices
+ - Vertices
+ - false
+ - c86ec8a3-9ea7-4981-9a9d-edda0165242c
+ - 1
+
+
+
+
+ -
+ 11162
+ 11635
+ 69
+ 20
+
+ -
+ 11198
+ 11645
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 1901724b-21a1-444a-b82f-9defb71de72e
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11655
+ 69
+ 20
+
+ -
+ 11198
+ 11665
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - aac5daa1-5440-4fad-a59c-70b69b4e7c2d
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11675
+ 69
+ 20
+
+ -
+ 11198
+ 11685
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - b3b5bae3-b7a6-41b7-9944-b7171388e0c2
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11695
+ 69
+ 20
+
+ -
+ 11198
+ 11705
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 50d574b8-2cc7-4eb6-8e9f-63004b4c4a6b
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 11261
+ 11635
+ 41
+ 26
+
+ -
+ 11283
+ 11648.33
+
+
+
+
+
+
+
+ - Curve length
+ - e65f2032-b1f4-4d2f-90f9-86477a6e223c
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11261
+ 11661
+ 41
+ 27
+
+ -
+ 11283
+ 11675
+
+
+
+
+
+
+
+ - Curve domain
+ - ee33a623-0089-4e90-ac66-4f4e97759337
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 11261
+ 11688
+ 41
+ 27
+
+ -
+ 11283
+ 11701.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97fa5528-d1af-4dff-b66b-8510b1b0723d
+ - 799111ff-a894-4037-975b-d2f9969e7e8e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 92d09aed-b1f5-40c3-998b-c15e31faa838
+ - eb7774ed-5951-4ab5-8a4e-422674d17722
+ - 42069a71-d151-4dbd-8337-e9a35f50d4ba
+ - da98717c-d14f-48a8-9166-edd2eecf5c2e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 3b6e3bdb-033f-4638-95fc-9a56faba2fdb
+ - e8a97c6e-2791-4014-9d84-cc711e836f99
+ - 3f37173e-5d6c-40dd-8cc1-b846e92fd738
+ - 7516f2d4-2a9b-4fdd-a932-aa5a77b81a08
+ - 618ef6f7-de00-4431-89c5-1f39302e094c
+ - b297a4bc-6ceb-462f-a794-9fe2bd6e73c9
+ - 14
+ - dd14e3bf-8d3f-4586-aad2-35d0a0c949f7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 04753d62-726c-4f0a-b953-215fae1965c1
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11160
+ 11465
+ 144
+ 64
+
+ -
+ 11234
+ 11497
+
+
+
+
+
+ - Curve to evaluate
+ - 775bccae-e3db-45af-8fcd-154b93b7d840
+ - Curve
+ - Curve
+ - false
+ - 50d574b8-2cc7-4eb6-8e9f-63004b4c4a6b
+ - 1
+
+
+
+
+ -
+ 11162
+ 11467
+ 57
+ 20
+
+ -
+ 11192
+ 11477
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0de78bc5-97dc-4c12-a0c3-7f5c0c6482ba
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11487
+ 57
+ 20
+
+ -
+ 11192
+ 11497
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4a121bf2-472b-4f16-a175-55a930861cf6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11507
+ 57
+ 20
+
+ -
+ 11192
+ 11517
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e5aee969-d839-4183-ba72-a80a5ff27f80
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11467
+ 53
+ 20
+
+ -
+ 11277
+ 11477
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f6381e3b-b9f3-4331-b1eb-a5fa1815abe8
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11487
+ 53
+ 20
+
+ -
+ 11277
+ 11497
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b5519545-829e-4294-ad3e-b418d2c391e7
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11507
+ 53
+ 20
+
+ -
+ 11277
+ 11517
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - a16d2583-b304-4455-b1f8-443b2dfd903f
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 11163
+ 11403
+ 138
+ 44
+
+ -
+ 11231
+ 11425
+
+
+
+
+
+ - Base geometry
+ - ef7bd927-8088-4452-b3f7-479883ea72df
+ - Geometry
+ - Geometry
+ - true
+ - 50d574b8-2cc7-4eb6-8e9f-63004b4c4a6b
+ - 1
+
+
+
+
+ -
+ 11165
+ 11405
+ 51
+ 20
+
+ -
+ 11192
+ 11415
+
+
+
+
+
+
+
+ - Mirror plane
+ - 0fb43728-5ecc-4d35-b3af-748c0b6c6ee7
+ - Plane
+ - Plane
+ - false
+ - 274f6ef7-cbef-49b4-80aa-6ba6bc9745cf
+ - 1
+
+
+
+
+ -
+ 11165
+ 11425
+ 51
+ 20
+
+ -
+ 11192
+ 11435
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - d5aa6ccd-1694-4b45-a780-ad02d5bc37a0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11246
+ 11405
+ 53
+ 20
+
+ -
+ 11274
+ 11415
+
+
+
+
+
+
+
+ - Transformation data
+ - a1e8c81d-6797-4580-a27c-be2c36847f2f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11246
+ 11425
+ 53
+ 20
+
+ -
+ 11274
+ 11435
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - b43e97f9-9efd-409a-9c38-8aca960258ee
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 11179
+ 11549
+ 106
+ 64
+
+ -
+ 11243
+ 11581
+
+
+
+
+
+ - Line start point
+ - 2de69161-bd69-40dc-82ca-a93fb28ba0d3
+ - Start
+ - Start
+ - false
+ - e5aee969-d839-4183-ba72-a80a5ff27f80
+ - 1
+
+
+
+
+ -
+ 11181
+ 11551
+ 47
+ 20
+
+ -
+ 11206
+ 11561
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - c339d068-c71d-46ca-aea7-fd3f77dce50d
+ - Direction
+ - Direction
+ - false
+ - f6381e3b-b9f3-4331-b1eb-a5fa1815abe8
+ - 1
+
+
+
+
+ -
+ 11181
+ 11571
+ 47
+ 20
+
+ -
+ 11206
+ 11581
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - b454c211-53ea-44fc-ac27-f6ac85273032
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11181
+ 11591
+ 47
+ 20
+
+ -
+ 11206
+ 11601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 274f6ef7-cbef-49b4-80aa-6ba6bc9745cf
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 11258
+ 11551
+ 25
+ 60
+
+ -
+ 11272
+ 11581
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 55ea1684-66d4-4e70-bf7e-36f8da5eb144
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 11173
+ 11341
+ 118
+ 44
+
+ -
+ 11236
+ 11363
+
+
+
+
+
+ - 1
+ - Curves to join
+ - ea2f7eeb-6aa0-4c54-bc0a-e5734e9802bf
+ - Curves
+ - Curves
+ - false
+ - 50d574b8-2cc7-4eb6-8e9f-63004b4c4a6b
+ - d5aa6ccd-1694-4b45-a780-ad02d5bc37a0
+ - 2
+
+
+
+
+ -
+ 11175
+ 11343
+ 46
+ 20
+
+ -
+ 11199.5
+ 11353
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - caaf36c7-0e3d-4a33-932e-82d1308223c5
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 11175
+ 11363
+ 46
+ 20
+
+ -
+ 11199.5
+ 11373
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 0c4fa04b-0df7-4c77-bcef-4f44e825b58e
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11251
+ 11343
+ 38
+ 40
+
+ -
+ 11271.5
+ 11363
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3f6cea5e-c88f-465c-88bc-98d162d76cc7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11160
+ 11257
+ 144
+ 64
+
+ -
+ 11234
+ 11289
+
+
+
+
+
+ - Curve to evaluate
+ - 28e20bff-7614-4269-a1a0-db7fa1b86b75
+ - Curve
+ - Curve
+ - false
+ - 0c4fa04b-0df7-4c77-bcef-4f44e825b58e
+ - 1
+
+
+
+
+ -
+ 11162
+ 11259
+ 57
+ 20
+
+ -
+ 11192
+ 11269
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 99a291e7-491e-404d-b96b-34eca24f583a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11279
+ 57
+ 20
+
+ -
+ 11192
+ 11289
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 00385587-6b08-489d-8026-7cb66b324f45
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11299
+ 57
+ 20
+
+ -
+ 11192
+ 11309
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 06379fb2-509d-4321-947c-f2c178e5f5cd
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11259
+ 53
+ 20
+
+ -
+ 11277
+ 11269
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 428199f5-776f-43d7-85d6-a51ed6af6d4d
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11279
+ 53
+ 20
+
+ -
+ 11277
+ 11289
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 9bd8189b-a8fc-4fe3-a55d-5635dc456164
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11299
+ 53
+ 20
+
+ -
+ 11277
+ 11309
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 266dea25-3691-42cd-9388-199752211091
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 11163
+ 11174
+ 138
+ 64
+
+ -
+ 11231
+ 11206
+
+
+
+
+
+ - Base geometry
+ - 5f5d95ab-d319-4353-95f4-64c5e4272ee1
+ - Geometry
+ - Geometry
+ - true
+ - 0c4fa04b-0df7-4c77-bcef-4f44e825b58e
+ - 1
+
+
+
+
+ -
+ 11165
+ 11176
+ 51
+ 20
+
+ -
+ 11192
+ 11186
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - b1111ec4-1375-4770-a4bc-23132c61cd3c
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 11165
+ 11196
+ 51
+ 20
+
+ -
+ 11192
+ 11206
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 56fecd41-4f7c-4a5a-97fc-ec4c5c48396e
+ - Plane
+ - Plane
+ - false
+ - 06379fb2-509d-4321-947c-f2c178e5f5cd
+ - 1
+
+
+
+
+ -
+ 11165
+ 11216
+ 51
+ 20
+
+ -
+ 11192
+ 11226
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - e4cfb605-76bf-43cf-a3d3-ac904e0f3856
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11246
+ 11176
+ 53
+ 30
+
+ -
+ 11274
+ 11191
+
+
+
+
+
+
+
+ - Transformation data
+ - 00e96f54-aa2b-4be4-8876-42f34a41e026
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11246
+ 11206
+ 53
+ 30
+
+ -
+ 11274
+ 11221
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 560c22be-246f-444d-ae21-3eae4fdc2c5e
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 11173
+ 11111
+ 118
+ 44
+
+ -
+ 11236
+ 11133
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 4a044e93-4dd1-45dd-b514-5d042aad28b2
+ - Curves
+ - Curves
+ - false
+ - 0c4fa04b-0df7-4c77-bcef-4f44e825b58e
+ - e4cfb605-76bf-43cf-a3d3-ac904e0f3856
+ - 2
+
+
+
+
+ -
+ 11175
+ 11113
+ 46
+ 20
+
+ -
+ 11199.5
+ 11123
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 6ea14958-538c-4716-b20b-4c5ee679d14f
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 11175
+ 11133
+ 46
+ 20
+
+ -
+ 11199.5
+ 11143
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 91cd64d0-1038-4c7c-ab06-37f222bc885a
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11251
+ 11113
+ 38
+ 40
+
+ -
+ 11271.5
+ 11133
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eaa6e43c-8b92-43bf-b10e-37fcfc2c2fef
+ - 04753d62-726c-4f0a-b953-215fae1965c1
+ - a16d2583-b304-4455-b1f8-443b2dfd903f
+ - b43e97f9-9efd-409a-9c38-8aca960258ee
+ - 55ea1684-66d4-4e70-bf7e-36f8da5eb144
+ - 3f6cea5e-c88f-465c-88bc-98d162d76cc7
+ - 266dea25-3691-42cd-9388-199752211091
+ - 560c22be-246f-444d-ae21-3eae4fdc2c5e
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - ddda4732-6250-4450-a11a-010b13680da0
+ - a3f6ca53-8639-4a50-8e51-9d73d0818a56
+ - c86ec8a3-9ea7-4981-9a9d-edda0165242c
+ - 3fe7a6e2-d179-493c-a8f1-8105d057ade7
+ - 76aa88d4-0024-4f8d-bdda-fa012bf2b40c
+ - 3b353169-95e9-4680-9cf6-3f909e1356e1
+ - 15
+ - 07ce4975-8027-48f5-b1dd-799d75f55227
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 37e63a3e-af5a-41ef-8276-fb65806d30ae
+ - Panel
+
+ - false
+ - 0
+ - 24a26a0a-2c77-42f7-817b-159896d7f078
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11164
+ 13747
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11164.75
+ 13747.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - Curve
+ - Curve
+ - false
+ - 91cd64d0-1038-4c7c-ab06-37f222bc885a
+ - 1
+
+
+
+
+ -
+ 11213
+ 11075
+ 50
+ 24
+
+ -
+ 11238.33
+ 11087.4
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - 1
+ - 4db807a3-68da-4624-885c-4004466b221d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e8a97c6e-2791-4014-9d84-cc711e836f99
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 11018
+ 13955
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11018.31
+ 13955.91
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - aee43447-61a8-4e59-9956-72dcbac410de
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11160
+ 10985
+ 144
+ 64
+
+ -
+ 11234
+ 11017
+
+
+
+
+
+ - Curve to evaluate
+ - c35d2e5d-281f-4483-b180-7bb189f7cff3
+ - Curve
+ - Curve
+ - false
+ - 91cd64d0-1038-4c7c-ab06-37f222bc885a
+ - 1
+
+
+
+
+ -
+ 11162
+ 10987
+ 57
+ 20
+
+ -
+ 11192
+ 10997
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 16c5614d-fbbf-44f4-8b42-6ce092f8aed7
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11007
+ 57
+ 20
+
+ -
+ 11192
+ 11017
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5d96f440-13d3-468b-8c2a-893764c36e3a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 11027
+ 57
+ 20
+
+ -
+ 11192
+ 11037
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 33a6e631-248f-4ae3-9fd3-be1c941ab1fa
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 10987
+ 53
+ 20
+
+ -
+ 11277
+ 10997
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 1d104ba0-077b-4838-b542-d50f9432e84c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11007
+ 53
+ 20
+
+ -
+ 11277
+ 11017
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 46d9c2a6-7e9b-49b2-b23b-fe64195fc4de
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 11027
+ 53
+ 20
+
+ -
+ 11277
+ 11037
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b7b49fbf-17c8-43da-a6df-339d9a9a6557
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10763
+ 194
+ 28
+
+ -
+ 11235
+ 10777
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a1a826a3-3fc8-4a16-a628-cb6ead0fa8cf
+ - Variable O
+ - O
+ - true
+ - e1dc828c-fa8a-44bf-8a55-7cfe87d33a21
+ - 1
+
+
+
+
+ -
+ 11137
+ 10765
+ 14
+ 24
+
+ -
+ 11145.5
+ 10777
+
+
+
+
+
+
+
+ - Result of expression
+ - 1c9a574f-b015-46e7-8efd-f3e721b77bc8
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10765
+ 9
+ 24
+
+ -
+ 11324
+ 10777
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 4a0c4826-3100-4299-a630-853b544f4737
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 11166
+ 10897
+ 132
+ 64
+
+ -
+ 11213
+ 10929
+
+
+
+
+
+ - Input point
+ - d40f01bd-c2e6-4a47-9784-66bf3822a8d5
+ - Point
+ - Point
+ - false
+ - 33a6e631-248f-4ae3-9fd3-be1c941ab1fa
+ - 1
+
+
+
+
+ -
+ 11168
+ 10899
+ 30
+ 60
+
+ -
+ 11184.5
+ 10929
+
+
+
+
+
+
+
+ - Point {x} component
+ - e1dc828c-fa8a-44bf-8a55-7cfe87d33a21
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 10899
+ 68
+ 20
+
+ -
+ 11263.5
+ 10909
+
+
+
+
+
+
+
+ - Point {y} component
+ - c5576664-3ee6-412c-b7d8-27c89d237814
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 10919
+ 68
+ 20
+
+ -
+ 11263.5
+ 10929
+
+
+
+
+
+
+
+ - Point {z} component
+ - 67160d2e-0586-4e44-a700-e8f407fb5b17
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 10939
+ 68
+ 20
+
+ -
+ 11263.5
+ 10949
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 01016d06-2882-4690-9359-fd036cf1bc89
+ - Panel
+
+ - false
+ - 0
+ - 1c9a574f-b015-46e7-8efd-f3e721b77bc8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10740
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.1
+ 10740.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d67a7210-fc04-4817-ba96-8ef643797ca8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10677
+ 194
+ 28
+
+ -
+ 11235
+ 10691
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d12fe67b-3e03-49a7-8f85-c4080243f152
+ - Variable O
+ - O
+ - true
+ - c5576664-3ee6-412c-b7d8-27c89d237814
+ - 1
+
+
+
+
+ -
+ 11137
+ 10679
+ 14
+ 24
+
+ -
+ 11145.5
+ 10691
+
+
+
+
+
+
+
+ - Result of expression
+ - f6bce4f4-0f8b-4c85-a75f-e2eee9818bc5
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10679
+ 9
+ 24
+
+ -
+ 11324
+ 10691
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 39284689-e8f7-4167-8bbc-9ec3a75d5b77
+ - Panel
+
+ - false
+ - 0
+ - f6bce4f4-0f8b-4c85-a75f-e2eee9818bc5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10652
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.1
+ 10652.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 088d3c70-70d6-4b21-9673-93bd3a7b5ae5
+ - Division
+ - Division
+
+
+
+
+ -
+ 11191
+ 10575
+ 82
+ 44
+
+ -
+ 11222
+ 10597
+
+
+
+
+
+ - Item to divide (dividend)
+ - 1c67cf6f-c35a-4f7e-bd40-9e30bcad3812
+ - A
+ - A
+ - false
+ - 01016d06-2882-4690-9359-fd036cf1bc89
+ - 1
+
+
+
+
+ -
+ 11193
+ 10577
+ 14
+ 20
+
+ -
+ 11201.5
+ 10587
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 1f7bc369-e232-4f2d-b2ab-2d6ba04563f6
+ - B
+ - B
+ - false
+ - 39284689-e8f7-4167-8bbc-9ec3a75d5b77
+ - 1
+
+
+
+
+ -
+ 11193
+ 10597
+ 14
+ 20
+
+ -
+ 11201.5
+ 10607
+
+
+
+
+
+
+
+ - The result of the Division
+ - b2037863-c8f3-481e-aa69-d6a680f5ab5e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11237
+ 10577
+ 34
+ 40
+
+ -
+ 11255.5
+ 10597
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f5a8249a-5963-48e9-993b-d937df7e5887
+ - Panel
+
+ - false
+ - 0
+ - 24a26a0a-2c77-42f7-817b-159896d7f078
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10505
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.34
+ 10505.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c3e28a5d-c3ae-4a90-9942-c3881598e108
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10528
+ 194
+ 28
+
+ -
+ 11235
+ 10542
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 764d6eeb-86a3-4de2-b6ad-420891e006ff
+ - Variable O
+ - O
+ - true
+ - b2037863-c8f3-481e-aa69-d6a680f5ab5e
+ - 1
+
+
+
+
+ -
+ 11137
+ 10530
+ 14
+ 24
+
+ -
+ 11145.5
+ 10542
+
+
+
+
+
+
+
+ - Result of expression
+ - 33410658-a95f-4b96-bb5d-261751eac7df
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10530
+ 9
+ 24
+
+ -
+ 11324
+ 10542
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 24a26a0a-2c77-42f7-817b-159896d7f078
+ - Relay
+
+ - false
+ - 33410658-a95f-4b96-bb5d-261751eac7df
+ - 1
+
+
+
+
+ -
+ 11212
+ 10453
+ 40
+ 16
+
+ -
+ 11232
+ 10461
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 72662119-790d-4cdb-be73-a81f3a3315d1
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 11191
+ 10390
+ 82
+ 44
+
+ -
+ 11222
+ 10412
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 4df43557-2f41-4567-9c05-9fac833005e5
+ - A
+ - A
+ - true
+ - 39284689-e8f7-4167-8bbc-9ec3a75d5b77
+ - 1
+
+
+
+
+ -
+ 11193
+ 10392
+ 14
+ 20
+
+ -
+ 11201.5
+ 10402
+
+
+
+
+
+
+
+ - Second item for addition
+ - b80c1e89-bb68-4318-a097-9f81474664d0
+ - B
+ - B
+ - true
+ - 01016d06-2882-4690-9359-fd036cf1bc89
+ - 1
+
+
+
+
+ -
+ 11193
+ 10412
+ 14
+ 20
+
+ -
+ 11201.5
+ 10422
+
+
+
+
+
+
+
+ - Result of addition
+ - ca6d6fa0-53ce-4ab1-a8e5-f46f9d03f3aa
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11237
+ 10392
+ 34
+ 40
+
+ -
+ 11255.5
+ 10412
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7f8c120c-673e-4ea2-b61b-045af5897f90
+ - Division
+ - Division
+
+
+
+
+ -
+ 11191
+ 10240
+ 82
+ 44
+
+ -
+ 11222
+ 10262
+
+
+
+
+
+ - Item to divide (dividend)
+ - c91a6bc9-f9f5-4ece-bb4d-a82000ac5ecb
+ - A
+ - A
+ - false
+ - 2707a334-7398-47dd-a6d7-7e43f545bdd2
+ - 1
+
+
+
+
+ -
+ 11193
+ 10242
+ 14
+ 20
+
+ -
+ 11201.5
+ 10252
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 6def653c-dbbc-42b1-a730-7b5e0abb9b09
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 11193
+ 10262
+ 14
+ 20
+
+ -
+ 11201.5
+ 10272
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 3351a659-8c71-4d12-8242-8eda33f88716
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 11237
+ 10242
+ 34
+ 40
+
+ -
+ 11255.5
+ 10262
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e8a0fc04-4f1d-4ca3-9c5c-3c550e3067c1
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10192
+ 194
+ 28
+
+ -
+ 11235
+ 10206
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d6ec4727-0887-43cb-a6b3-11c5668a88a7
+ - Variable O
+ - O
+ - true
+ - 3351a659-8c71-4d12-8242-8eda33f88716
+ - 1
+
+
+
+
+ -
+ 11137
+ 10194
+ 14
+ 24
+
+ -
+ 11145.5
+ 10206
+
+
+
+
+
+
+
+ - Result of expression
+ - 05440660-bccc-4d90-b72d-63743fff90b3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10194
+ 9
+ 24
+
+ -
+ 11324
+ 10206
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 27be3162-4c6a-4a59-a453-7ca65d602b63
+ - Panel
+
+ - false
+ - 0
+ - 05440660-bccc-4d90-b72d-63743fff90b3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10168
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.1
+ 10168.9
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2707a334-7398-47dd-a6d7-7e43f545bdd2
+ - Panel
+
+ - false
+ - 0
+ - 983c8c79-db3b-4bce-aa0c-7bfa4719504d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10320
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.1
+ 10320.81
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9a38140c-37fa-42cf-af9f-b387bb97fcbf
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10343
+ 194
+ 28
+
+ -
+ 11235
+ 10357
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1bc04c67-160a-4f54-83bb-00ef75db4ae8
+ - Variable O
+ - O
+ - true
+ - ca6d6fa0-53ce-4ab1-a8e5-f46f9d03f3aa
+ - 1
+
+
+
+
+ -
+ 11137
+ 10345
+ 14
+ 24
+
+ -
+ 11145.5
+ 10357
+
+
+
+
+
+
+
+ - Result of expression
+ - 983c8c79-db3b-4bce-aa0c-7bfa4719504d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10345
+ 9
+ 24
+
+ -
+ 11324
+ 10357
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 8a747494-7e8b-40ea-bb93-fcb27e7ad93e
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11155
+ 10069
+ 154
+ 64
+
+ -
+ 11239
+ 10101
+
+
+
+
+
+ - Base geometry
+ - c670eb69-ecd3-45fc-98c6-8d9581221c4c
+ - Geometry
+ - Geometry
+ - true
+ - 3f5f29a7-3853-47be-bf24-5c7c84e0abc1
+ - 1
+
+
+
+
+ -
+ 11157
+ 10071
+ 67
+ 20
+
+ -
+ 11200
+ 10081
+
+
+
+
+
+
+
+ - Center of scaling
+ - 0aa22b2b-f64f-4cad-a4ca-4cbb9755b5b9
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11157
+ 10091
+ 67
+ 20
+
+ -
+ 11200
+ 10101
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 08b506dc-e2bb-4000-af9d-a205a7e704dc
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 27be3162-4c6a-4a59-a453-7ca65d602b63
+ - 1
+
+
+
+
+ -
+ 11157
+ 10111
+ 67
+ 20
+
+ -
+ 11200
+ 10121
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - bde6c6ca-f117-4aa0-86ee-01922fc09cab
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11254
+ 10071
+ 53
+ 30
+
+ -
+ 11282
+ 10086
+
+
+
+
+
+
+
+ - Transformation data
+ - 4e1bd863-6204-495a-b4df-7c47c5e55b8d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11254
+ 10101
+ 53
+ 30
+
+ -
+ 11282
+ 10116
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - Curve
+ - Curve
+ - false
+ - bde6c6ca-f117-4aa0-86ee-01922fc09cab
+ - 1
+
+
+
+
+ -
+ 11211
+ 9474
+ 50
+ 24
+
+ -
+ 11236.08
+ 9486.403
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 00279feb-16c9-400b-98c3-c230f7c5baf1
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 10850
+ 194
+ 28
+
+ -
+ 11235
+ 10864
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ce13476f-3ca3-4106-8fda-b9b5ee254933
+ - Variable O
+ - O
+ - true
+ - 67160d2e-0586-4e44-a700-e8f407fb5b17
+ - 1
+
+
+
+
+ -
+ 11137
+ 10852
+ 14
+ 24
+
+ -
+ 11145.5
+ 10864
+
+
+
+
+
+
+
+ - Result of expression
+ - 64c0dee1-edab-4cb8-b6f0-8530d517f81e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 10852
+ 9
+ 24
+
+ -
+ 11324
+ 10864
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b1d42c60-3f0c-4e7a-a12d-46dda6710889
+ - Panel
+
+ - false
+ - 0
+ - 64c0dee1-edab-4cb8-b6f0-8530d517f81e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 10826
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.97
+ 10826.75
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 6bd6aad8-5fb1-494e-b1b2-7a5af0b6be06
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 11160
+ 9859
+ 144
+ 64
+
+ -
+ 11234
+ 9891
+
+
+
+
+
+ - Curve to evaluate
+ - bb01f94d-f08c-4a1a-8f03-ec466ee8b2ff
+ - Curve
+ - Curve
+ - false
+ - bde6c6ca-f117-4aa0-86ee-01922fc09cab
+ - 1
+
+
+
+
+ -
+ 11162
+ 9861
+ 57
+ 20
+
+ -
+ 11192
+ 9871
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5906be9d-af5e-460f-8a3a-646c9db971b5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 9881
+ 57
+ 20
+
+ -
+ 11192
+ 9891
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 94e159f2-b91f-45d7-a8a5-d6b136561de6
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 11162
+ 9901
+ 57
+ 20
+
+ -
+ 11192
+ 9911
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4f64a082-0009-4f24-bd34-b5c9d81c162f
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 9861
+ 53
+ 20
+
+ -
+ 11277
+ 9871
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 98facd6e-0709-4eaf-a864-2ad12cc18e0f
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 9881
+ 53
+ 20
+
+ -
+ 11277
+ 9891
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 2f812334-cc74-4150-96e5-ce9a4af0b77a
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 9901
+ 53
+ 20
+
+ -
+ 11277
+ 9911
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d851c0fc-b58d-4fc4-8f66-48db18d0524d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 9642
+ 194
+ 28
+
+ -
+ 11235
+ 9656
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - da8626a7-289a-4216-89b5-9cd4faeafdb2
+ - Variable O
+ - O
+ - true
+ - f106ca36-4958-4730-9c3a-16d27a9e6ba2
+ - 1
+
+
+
+
+ -
+ 11137
+ 9644
+ 14
+ 24
+
+ -
+ 11145.5
+ 9656
+
+
+
+
+
+
+
+ - Result of expression
+ - fde286bf-8706-4604-a243-711945aa0e03
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 9644
+ 9
+ 24
+
+ -
+ 11324
+ 9656
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - f9a0ebd0-236d-434b-baa1-c89d9887e509
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 11166
+ 9776
+ 132
+ 64
+
+ -
+ 11213
+ 9808
+
+
+
+
+
+ - Input point
+ - 14c7c4b5-498b-477b-b796-8a1810c846cd
+ - Point
+ - Point
+ - false
+ - 4f64a082-0009-4f24-bd34-b5c9d81c162f
+ - 1
+
+
+
+
+ -
+ 11168
+ 9778
+ 30
+ 60
+
+ -
+ 11184.5
+ 9808
+
+
+
+
+
+
+
+ - Point {x} component
+ - f106ca36-4958-4730-9c3a-16d27a9e6ba2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 9778
+ 68
+ 20
+
+ -
+ 11263.5
+ 9788
+
+
+
+
+
+
+
+ - Point {y} component
+ - da117ace-1e49-4c90-912c-13c434ae0abe
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 9798
+ 68
+ 20
+
+ -
+ 11263.5
+ 9808
+
+
+
+
+
+
+
+ - Point {z} component
+ - a8f56cd0-3e3d-441c-91f7-9ba4841af9f6
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 11228
+ 9818
+ 68
+ 20
+
+ -
+ 11263.5
+ 9828
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bffd1539-4139-4b0c-b604-e7f7d7a49e27
+ - Panel
+
+ - false
+ - 0
+ - fde286bf-8706-4604-a243-711945aa0e03
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 9614
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.35
+ 9614.323
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 78c6c476-3e5a-43d9-942a-e32a1bd8341c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 9556
+ 194
+ 28
+
+ -
+ 11235
+ 9570
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2ceccfe2-a118-4c78-ae08-7587d94200c7
+ - Variable O
+ - O
+ - true
+ - da117ace-1e49-4c90-912c-13c434ae0abe
+ - 1
+
+
+
+
+ -
+ 11137
+ 9558
+ 14
+ 24
+
+ -
+ 11145.5
+ 9570
+
+
+
+
+
+
+
+ - Result of expression
+ - eee693b7-b735-48c0-b65d-155f23d220c2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 9558
+ 9
+ 24
+
+ -
+ 11324
+ 9570
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 63da5a14-14d8-4b3a-bca3-90f33f5a6d2d
+ - Panel
+
+ - false
+ - 0
+ - eee693b7-b735-48c0-b65d-155f23d220c2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 9528
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.36
+ 9528.694
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0657fa7f-36d6-4ded-87c9-fa3214ed6a40
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 9728
+ 194
+ 28
+
+ -
+ 11235
+ 9742
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 26bcbf9a-efce-4209-a257-fefa3fd2854f
+ - Variable O
+ - O
+ - true
+ - a8f56cd0-3e3d-441c-91f7-9ba4841af9f6
+ - 1
+
+
+
+
+ -
+ 11137
+ 9730
+ 14
+ 24
+
+ -
+ 11145.5
+ 9742
+
+
+
+
+
+
+
+ - Result of expression
+ - 02c03f94-be99-4a2e-93ba-14cbb61fd077
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 9730
+ 9
+ 24
+
+ -
+ 11324
+ 9742
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b3400eb7-f424-4126-93fb-7a46f60c09de
+ - Panel
+
+ - false
+ - 0
+ - 02c03f94-be99-4a2e-93ba-14cbb61fd077
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11157
+ 9700
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11157.1
+ 9700.534
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f37173e-5d6c-40dd-8cc1-b846e92fd738
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 11055
+ 14034
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 11055.75
+ 14034.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7a47c011-cbf4-4047-8c80-c1178ae035ab
+ - Panel
+
+ - false
+ - 0
+ - 3fe1f684-3608-4a00-9ad9-228cad6ae6e1
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11069
+ 12064
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 11069.29
+ 12064.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3ef9ab54-9776-4aed-aee8-f1a09b0b6701
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 12350
+ 194
+ 28
+
+ -
+ 11235
+ 12364
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f21a93cf-46b1-40df-9b70-8b7983777a6d
+ - Variable O
+ - O
+ - true
+ - 6675e784-7e56-4b18-8b5b-3311ab42d31a
+ - 1
+
+
+
+
+ -
+ 11137
+ 12352
+ 14
+ 24
+
+ -
+ 11145.5
+ 12364
+
+
+
+
+
+
+
+ - Result of expression
+ - 3fe1f684-3608-4a00-9ad9-228cad6ae6e1
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 12352
+ 9
+ 24
+
+ -
+ 11324
+ 12364
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 11221
+ 14464
+ 50
+ 24
+
+ -
+ 11246.06
+ 14476.62
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - d8844e6a-8ed6-47e6-b71d-3e8759974784
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 11063
+ 12632
+ 160
+ 224
+
+ -
+ 11131
+ 12744
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 594a3d94-9c3f-4828-94f3-c45c92d2fe0e
+ - true
+ - Curves
+ - Curves
+ - false
+ - 91ecf790-e5af-4621-84ca-f762605af1ce
+ - 1
+
+
+
+
+ -
+ 11065
+ 12634
+ 51
+ 27
+
+ -
+ 11092
+ 12647.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 9f285f6d-85f4-4825-9e01-d0e658bd1c59
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - a8323a2c-df86-4083-9419-bcdaeb198fd3
+ - 1
+
+
+
+
+ -
+ 11065
+ 12661
+ 51
+ 28
+
+ -
+ 11092
+ 12675.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 3acbd6c4-0a53-4468-b1b3-9c4e050d18c9
+ - true
+ - Values
+ - Values
+ - false
+ - 3922bdee-0233-40b3-8d10-a0a0cd81b6ab
+ - 1
+
+
+
+
+ -
+ 11065
+ 12689
+ 51
+ 27
+
+ -
+ 11092
+ 12702.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 85853436-f2e0-4bc8-a888-56730895f082
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 11065
+ 12716
+ 51
+ 28
+
+ -
+ 11092
+ 12730.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 30dc4398-e211-48f2-9a14-2baa5dbbbe43
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 11065
+ 12744
+ 51
+ 27
+
+ -
+ 11092
+ 12757.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 3a04d29f-a474-416d-89c3-7137f1a55f0d
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 11065
+ 12771
+ 51
+ 28
+
+ -
+ 11092
+ 12785.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 6560210d-563b-4bec-af0f-8bfbd836c8ff
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 11065
+ 12799
+ 51
+ 27
+
+ -
+ 11092
+ 12812.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 1c9d39d6-114a-4ba7-a756-90dcaf846baf
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 11065
+ 12826
+ 51
+ 28
+
+ -
+ 11092
+ 12840.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 6a6c4b64-fb64-4f13-ace9-26e9ca1761c7
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12634
+ 75
+ 20
+
+ -
+ 11185
+ 12644
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - a77e1434-5d83-43ab-945d-0088d9c945b7
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12654
+ 75
+ 20
+
+ -
+ 11185
+ 12664
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 7646b16f-118b-4451-b12d-537d0100347d
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12674
+ 75
+ 20
+
+ -
+ 11185
+ 12684
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - f12c9b76-e686-490e-8e11-9537a6b01183
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12694
+ 75
+ 20
+
+ -
+ 11185
+ 12704
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 6f82499e-7996-40da-9994-5a725cb8acc7
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12714
+ 75
+ 20
+
+ -
+ 11185
+ 12724
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 2e5e80c5-c3cf-4efe-950d-267f90dc6551
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12734
+ 75
+ 20
+
+ -
+ 11185
+ 12744
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 605a2c4b-c803-4cbd-8406-cd66665b2d7b
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12754
+ 75
+ 20
+
+ -
+ 11185
+ 12764
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 85be56bb-8057-4d1e-94e3-1528d297d7ae
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12774
+ 75
+ 20
+
+ -
+ 11185
+ 12784
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - a28729d7-bdcb-42ca-bd78-e84d803c8d9c
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12794
+ 75
+ 20
+
+ -
+ 11185
+ 12804
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 83cb36aa-18bf-4f88-9c0b-3451d82e6340
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12814
+ 75
+ 20
+
+ -
+ 11185
+ 12824
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 7dadbf14-b025-4e90-9928-ee6e52c27a33
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 11146
+ 12834
+ 75
+ 20
+
+ -
+ 11185
+ 12844
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 2466d393-59b0-44a7-9bd6-a60e3db2a1c6
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 11184
+ 13057
+ 96
+ 44
+
+ -
+ 11234
+ 13079
+
+
+
+
+
+ - Curve to evaluate
+ - 62a6df5f-6c94-407e-9d19-74ca749acfaa
+ - Curve
+ - Curve
+ - false
+ - 91ecf790-e5af-4621-84ca-f762605af1ce
+ - 1
+
+
+
+
+ -
+ 11186
+ 13059
+ 33
+ 40
+
+ -
+ 11204
+ 13079
+
+
+
+
+
+
+
+ - Curve start point
+ - 86829735-b9f7-441a-b677-7ce0f5e64083
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 13059
+ 29
+ 20
+
+ -
+ 11265
+ 13069
+
+
+
+
+
+
+
+ - Curve end point
+ - 14acbc38-5dfa-4199-90f8-48d6adad767f
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 11249
+ 13079
+ 29
+ 20
+
+ -
+ 11265
+ 13089
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - dcf57667-d488-4173-a38b-e201d6714472
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 11169
+ 12955
+ 126
+ 84
+
+ -
+ 11227
+ 12997
+
+
+
+
+
+ - Rectangle base plane
+ - 641c5136-db4e-4577-bf79-2d440c526737
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11171
+ 12957
+ 41
+ 20
+
+ -
+ 11193
+ 12967
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 1686037d-2630-43b5-9b9a-bad0c5d53286
+ - Point A
+ - Point A
+ - false
+ - 86829735-b9f7-441a-b677-7ce0f5e64083
+ - 1
+
+
+
+
+ -
+ 11171
+ 12977
+ 41
+ 20
+
+ -
+ 11193
+ 12987
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 984b8f08-218e-477d-bca6-819fc6263df1
+ - Point B
+ - Point B
+ - false
+ - 14acbc38-5dfa-4199-90f8-48d6adad767f
+ - 1
+
+
+
+
+ -
+ 11171
+ 12997
+ 41
+ 20
+
+ -
+ 11193
+ 13007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 30977456-c0d3-48cd-af14-5c1d26eef1fe
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 11171
+ 13017
+ 41
+ 20
+
+ -
+ 11193
+ 13027
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - a8323a2c-df86-4083-9419-bcdaeb198fd3
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 11242
+ 12957
+ 51
+ 40
+
+ -
+ 11269
+ 12977
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - f48795e3-88e8-4352-9d49-2facf13e1cfe
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11242
+ 12997
+ 51
+ 40
+
+ -
+ 11269
+ 13017
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - a9982cc5-6f10-4b54-adef-fa826b701d03
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 11223
+ 12752
+ 126
+ 104
+
+ -
+ 11290
+ 12804
+
+
+
+
+
+ - External curve as a graph
+ - 50e85bbf-676e-48a4-9a9a-d53cc380e00a
+ - true
+ - Curve
+ - Curve
+ - false
+ - 91ecf790-e5af-4621-84ca-f762605af1ce
+ - 1
+
+
+
+
+ -
+ 11225
+ 12754
+ 50
+ 20
+
+ -
+ 11251.5
+ 12764
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 5737f0e2-5420-43e9-b6c7-3fe5026ecb53
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - a8323a2c-df86-4083-9419-bcdaeb198fd3
+ - 1
+
+
+
+
+ -
+ 11225
+ 12774
+ 50
+ 20
+
+ -
+ 11251.5
+ 12784
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 5bb2da3b-945b-43d0-af45-3683558c7efd
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - 3922bdee-0233-40b3-8d10-a0a0cd81b6ab
+ - 1
+
+
+
+
+ -
+ 11225
+ 12794
+ 50
+ 20
+
+ -
+ 11251.5
+ 12804
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - b3621b92-ab0c-4520-8389-953f3e1ec57e
+ - true
+ - Input
+ - Input
+ - true
+ - b2d86554-6d5a-40df-857d-3f276a1490bf
+ - 1
+
+
+
+
+ -
+ 11225
+ 12814
+ 50
+ 20
+
+ -
+ 11251.5
+ 12824
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - eb442e49-83e9-433c-9d67-e64a42d7c042
+ - true
+ - Output
+ - Output
+ - true
+ - b2d86554-6d5a-40df-857d-3f276a1490bf
+ - 1
+
+
+
+
+ -
+ 11225
+ 12834
+ 50
+ 20
+
+ -
+ 11251.5
+ 12844
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - e73e1c89-3f0e-43b8-86ce-363f41a082a8
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 11305
+ 12754
+ 42
+ 100
+
+ -
+ 11327.5
+ 12804
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 58091a26-9398-4dc8-a07a-187aacb3aeba
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 11198
+ 12549
+ 89
+ 64
+
+ -
+ 11243
+ 12581
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 369fde68-9e9c-494e-97ad-4bf8558e4988
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 11200
+ 12551
+ 28
+ 20
+
+ -
+ 11215.5
+ 12561
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 148162ca-d89d-481a-a160-e7b6395f1ad8
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 6a6c4b64-fb64-4f13-ace9-26e9ca1761c7
+ - 1
+
+
+
+
+ -
+ 11200
+ 12571
+ 28
+ 20
+
+ -
+ 11215.5
+ 12581
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 0b44b77d-d4c7-4a8e-91de-79f26e856dee
+ - false
+ - Stream 1
+ - 1
+ - true
+ - e73e1c89-3f0e-43b8-86ce-363f41a082a8
+ - 1
+
+
+
+
+ -
+ 11200
+ 12591
+ 28
+ 20
+
+ -
+ 11215.5
+ 12601
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 2051c393-183d-424b-8496-cd6a361d114b
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 11258
+ 12551
+ 27
+ 60
+
+ -
+ 11273
+ 12581
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 1dbe9a75-22aa-4f51-84fc-b8e986d66b5e
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11167
+ 12475
+ 150
+ 20
+
+ -
+ 11167.72
+ 12475.92
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7516f2d4-2a9b-4fdd-a932-aa5a77b81a08
+ - Panel
+
+ - false
+ - 1
+ - 2f490743-335b-4afb-999b-648b0c0321dc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11147
+ 13251
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 11147.79
+ 13251.18
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 3b6e3bdb-033f-4638-95fc-9a56faba2fdb
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 11173
+ 13196
+ 122
+ 28
+
+ -
+ 11237
+ 13210
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 243dc841-6ca9-4c58-8b3b-9c8767758f1d
+ - Numbers
+ - Numbers
+ - false
+ - 3922bdee-0233-40b3-8d10-a0a0cd81b6ab
+ - 1
+
+
+
+
+ -
+ 11175
+ 13198
+ 47
+ 24
+
+ -
+ 11200
+ 13210
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - b2d86554-6d5a-40df-857d-3f276a1490bf
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 11252
+ 13198
+ 41
+ 24
+
+ -
+ 11274
+ 13210
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 618ef6f7-de00-4431-89c5-1f39302e094c
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11135
+ 13610
+ 194
+ 28
+
+ -
+ 11235
+ 13624
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fef473bd-3a59-452a-9eea-7e15005a33e8
+ - true
+ - Variable O
+ - O
+ - true
+ - 3922bdee-0233-40b3-8d10-a0a0cd81b6ab
+ - 1
+
+
+
+
+ -
+ 11137
+ 13612
+ 14
+ 24
+
+ -
+ 11145.5
+ 13624
+
+
+
+
+
+
+
+ - Result of expression
+ - 2f490743-335b-4afb-999b-648b0c0321dc
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11318
+ 13612
+ 9
+ 24
+
+ -
+ 11324
+ 13624
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - c110440b-e321-42a9-9db8-78497fbde38f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 11049
+ 13824
+ 367
+ 28
+
+ -
+ 11235
+ 13838
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b2ee4e28-1066-473d-b0cc-a44fe277fe0b
+ - Variable O
+ - O
+ - true
+ - 6ab8d1eb-c048-4e31-be0c-e13b590101c4
+ - 1
+
+
+
+
+ -
+ 11051
+ 13826
+ 14
+ 24
+
+ -
+ 11059.5
+ 13838
+
+
+
+
+
+
+
+ - Result of expression
+ - 6020af58-303f-436b-9517-098b1b794d32
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 11405
+ 13826
+ 9
+ 24
+
+ -
+ 11411
+ 13838
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 756d2d51-d7f6-4402-9d75-aad4ee697736
+ - Panel
+
+ - false
+ - 0
+ - 6020af58-303f-436b-9517-098b1b794d32
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 11147
+ 13788
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11147.93
+ 13788.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+ - 5cc374f6-23ee-40c4-a583-270d25678efb
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - e44c5a2a-fb8d-4dcb-9a13-a9154875d3d5
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11155
+ 9984
+ 154
+ 64
+
+ -
+ 11239
+ 10016
+
+
+
+
+
+ - Base geometry
+ - 40b6450c-315b-4af4-9848-f7d69edf18ec
+ - Geometry
+ - Geometry
+ - true
+ - c86ec8a3-9ea7-4981-9a9d-edda0165242c
+ - 1
+
+
+
+
+ -
+ 11157
+ 9986
+ 67
+ 20
+
+ -
+ 11200
+ 9996
+
+
+
+
+
+
+
+ - Center of scaling
+ - a6f4935b-75b0-449e-b343-ebf42df66b70
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11157
+ 10006
+ 67
+ 20
+
+ -
+ 11200
+ 10016
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4c896568-056a-413f-a0ca-7dd922440b37
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 27be3162-4c6a-4a59-a453-7ca65d602b63
+ - 1
+
+
+
+
+ -
+ 11157
+ 10026
+ 67
+ 20
+
+ -
+ 11200
+ 10036
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - d2804b4c-8099-4f0a-bfcb-694baa75298b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11254
+ 9986
+ 53
+ 30
+
+ -
+ 11282
+ 10001
+
+
+
+
+
+
+
+ - Transformation data
+ - b06e23ab-8251-4f31-9933-dda5fbcf733c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11254
+ 10016
+ 53
+ 30
+
+ -
+ 11282
+ 10031
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 8226fdbd-9d16-4960-baba-a79b21bec7dc
+ - Point
+ - Point
+ - false
+ - d2804b4c-8099-4f0a-bfcb-694baa75298b
+ - 1
+
+
+
+
+ -
+ 11212
+ 9952
+ 50
+ 24
+
+ -
+ 11237.08
+ 9964.573
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 34b91d1e-2f87-484a-b784-0cc6d1cd5f34
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 11177
+ 9344
+ 138
+ 44
+
+ -
+ 11245
+ 9366
+
+
+
+
+
+ - Base geometry
+ - 6361b086-f0a2-44e3-ae0d-669ebfe0344c
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+
+
+
+
+ -
+ 11179
+ 9346
+ 51
+ 20
+
+ -
+ 11206
+ 9356
+
+
+
+
+
+
+
+ - Mirror plane
+ - 0abf6ae3-65a8-469f-b08e-71ee93c1b223
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11179
+ 9366
+ 51
+ 20
+
+ -
+ 11206
+ 9376
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 1720ec46-d40f-49d2-b2d0-e9948b8880a3
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11260
+ 9346
+ 53
+ 20
+
+ -
+ 11288
+ 9356
+
+
+
+
+
+
+
+ - Transformation data
+ - 2fa45dd1-070c-45af-94bb-e3085f4f0cfa
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11260
+ 9366
+ 53
+ 20
+
+ -
+ 11288
+ 9376
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1cc4ce65-802a-413c-851c-f786e9032630
+ - Curve
+ - Curve
+ - false
+ - d62d3b97-2fc7-4a53-a83a-8db1af4b9e8d
+ - 1
+
+
+
+
+ -
+ 11219
+ 9244
+ 50
+ 24
+
+ -
+ 11244.33
+ 9256.583
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 91ecf790-e5af-4621-84ca-f762605af1ce
+ - Relay
+
+ - false
+ - 425e96e2-ca93-43ee-a9a8-cc741d2dde79
+ - 1
+
+
+
+
+ -
+ 11214
+ 13124
+ 40
+ 16
+
+ -
+ 11234
+ 13132
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4f6f562e-844a-4785-9b00-f3cc00756cdd
+ - Curve
+ - Curve
+ - false
+ - 5b6b9538-a868-4c4e-b7d8-a06492da7f4e
+ - 1
+
+
+
+
+ -
+ 10781
+ 13520
+ 50
+ 24
+
+ -
+ 10806.83
+ 13532.04
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 425e96e2-ca93-43ee-a9a8-cc741d2dde79
+ - Curve
+ - Curve
+ - false
+ - 633601d5-81c8-4baf-a58a-77af1e1adaa1
+ - 1
+
+
+
+
+ -
+ 10780
+ 13230
+ 50
+ 24
+
+ -
+ 10805.92
+ 13242.19
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 282cf104-8889-4a14-87b7-ede9957d162a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 10724
+ 13263
+ 154
+ 64
+
+ -
+ 10808
+ 13295
+
+
+
+
+
+ - Base geometry
+ - 4e675e34-e7be-4e03-b50d-c3c476248f6b
+ - Geometry
+ - Geometry
+ - true
+ - 4f6f562e-844a-4785-9b00-f3cc00756cdd
+ - 1
+
+
+
+
+ -
+ 10726
+ 13265
+ 67
+ 20
+
+ -
+ 10769
+ 13275
+
+
+
+
+
+
+
+ - Center of scaling
+ - 98d0e8e5-684a-4ad8-aaa2-73753b9cc0f9
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 10726
+ 13285
+ 67
+ 20
+
+ -
+ 10769
+ 13295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 06dcca81-9e58-4598-985e-40e19f83f4be
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - b8c8100f-cc98-44a5-ae31-2a5e6a66bb38
+ - 1
+
+
+
+
+ -
+ 10726
+ 13305
+ 67
+ 20
+
+ -
+ 10769
+ 13315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 633601d5-81c8-4baf-a58a-77af1e1adaa1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 10823
+ 13265
+ 53
+ 30
+
+ -
+ 10851
+ 13280
+
+
+
+
+
+
+
+ - Transformation data
+ - 02e13c36-fe6f-446c-b187-8768b7406d68
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 10823
+ 13295
+ 53
+ 30
+
+ -
+ 10851
+ 13310
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4f6f562e-844a-4785-9b00-f3cc00756cdd
+ - 425e96e2-ca93-43ee-a9a8-cc741d2dde79
+ - 282cf104-8889-4a14-87b7-ede9957d162a
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 58050946-3b21-407b-95ec-906607ba8bb3
+ - f943ece7-8ce1-493e-97db-5983ea7ca29d
+ - 3dcb2716-431d-4ad1-9502-00ff2db80844
+ - 59f1d794-a56f-4acf-8b88-3085592a69d6
+ - b8c8100f-cc98-44a5-ae31-2a5e6a66bb38
+ - f5c15749-9790-4708-adc4-cdf138ed172a
+ - ddd3b180-869b-42de-8270-aaf94b69d469
+ - 11
+ - 3375a47c-b3cf-4534-99d0-3f03f44bc06d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - bb3d5a6c-0b9d-4f22-8e71-bc35406b7647
+ - Move
+ - Move
+
+
+
+
+ -
+ 11177
+ 9280
+ 138
+ 44
+
+ -
+ 11245
+ 9302
+
+
+
+
+
+ - Base geometry
+ - f599dd4a-c11a-402a-a621-5929cd9c8cfc
+ - Geometry
+ - Geometry
+ - true
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+
+
+
+
+ -
+ 11179
+ 9282
+ 51
+ 20
+
+ -
+ 11206
+ 9292
+
+
+
+
+
+
+
+ - Translation vector
+ - 61fd2d7f-8e08-4d04-bc84-bbaf3b1fccb9
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 11179
+ 9302
+ 51
+ 20
+
+ -
+ 11206
+ 9312
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 12.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - d62d3b97-2fc7-4a53-a83a-8db1af4b9e8d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11260
+ 9282
+ 53
+ 20
+
+ -
+ 11288
+ 9292
+
+
+
+
+
+
+
+ - Transformation data
+ - 5125cc7f-7c94-475a-a96e-d8b3229bc094
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11260
+ 9302
+ 53
+ 20
+
+ -
+ 11288
+ 9312
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 58050946-3b21-407b-95ec-906607ba8bb3
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 10678
+ 13476
+ 250
+ 20
+
+ -
+ 10678.65
+ 13476.42
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f943ece7-8ce1-493e-97db-5983ea7ca29d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 10738
+ 13354
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 10738.39
+ 13354.9
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3dcb2716-431d-4ad1-9502-00ff2db80844
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 10780
+ 13187
+ 50
+ 24
+
+ -
+ 10805.92
+ 13199.19
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 59f1d794-a56f-4acf-8b88-3085592a69d6
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 10784
+ 13657
+ 50
+ 24
+
+ -
+ 10809.42
+ 13669.14
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 20d897f9-fb0e-4248-9473-759dae7f3985
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 11018
+ 13998
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11018.31
+ 13998.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 4dd39426-4757-4d5a-9089-0bf8a32981e1
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 11602
+ 9975
+ 96
+ 44
+
+ -
+ 11652
+ 9997
+
+
+
+
+
+ - Curve to evaluate
+ - 33da532d-d945-4028-94bd-f87d9fb2fcbb
+ - Curve
+ - Curve
+ - false
+ - 0a11e65e-d83c-4f16-a8d6-0e449e303149
+ - 1
+
+
+
+
+ -
+ 11604
+ 9977
+ 33
+ 40
+
+ -
+ 11622
+ 9997
+
+
+
+
+
+
+
+ - Curve start point
+ - a22bc393-c2be-48ba-a6ee-44cdb68d4f0c
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11667
+ 9977
+ 29
+ 20
+
+ -
+ 11683
+ 9987
+
+
+
+
+
+
+
+ - Curve end point
+ - 3979feb6-f9a4-4284-ac14-1d0be9680eda
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 11667
+ 9997
+ 29
+ 20
+
+ -
+ 11683
+ 10007
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 0c51e735-7128-43bd-a415-e5cf097cbe5f
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 11587
+ 9872
+ 126
+ 84
+
+ -
+ 11645
+ 9914
+
+
+
+
+
+ - Rectangle base plane
+ - 6a03ab59-c267-471c-894c-9bfac48b75fd
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11589
+ 9874
+ 41
+ 20
+
+ -
+ 11611
+ 9884
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - a9dbd128-4ed8-4b42-9e57-f97f15e054a1
+ - Point A
+ - Point A
+ - false
+ - a22bc393-c2be-48ba-a6ee-44cdb68d4f0c
+ - 1
+
+
+
+
+ -
+ 11589
+ 9894
+ 41
+ 20
+
+ -
+ 11611
+ 9904
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 70e24acb-f96b-4837-b783-5f24edf22606
+ - Point B
+ - Point B
+ - false
+ - 3979feb6-f9a4-4284-ac14-1d0be9680eda
+ - 1
+
+
+
+
+ -
+ 11589
+ 9914
+ 41
+ 20
+
+ -
+ 11611
+ 9924
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - bd9c22ee-43d8-46e3-82b6-2faa29915760
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 11589
+ 9934
+ 41
+ 20
+
+ -
+ 11611
+ 9944
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 6f273c1d-6e69-46b2-a6ab-de1c7535e6d1
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 11660
+ 9874
+ 51
+ 40
+
+ -
+ 11687
+ 9894
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 3542c96f-3953-42de-b25a-2516636db1e2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11660
+ 9914
+ 51
+ 40
+
+ -
+ 11687
+ 9934
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - a066dc91-c5e2-4469-9d2e-78cc2ca94a15
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 11579
+ 9789
+ 142
+ 64
+
+ -
+ 11647
+ 9821
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 50db75e4-2e34-4b7a-8f90-e4f787d42c7c
+ - Rectangle
+ - Rectangle
+ - false
+ - 6f273c1d-6e69-46b2-a6ab-de1c7535e6d1
+ - 1
+
+
+
+
+ -
+ 11581
+ 9791
+ 51
+ 60
+
+ -
+ 11608
+ 9821
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - ab8df742-32a5-4270-a8dc-56b720357a38
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11662
+ 9791
+ 57
+ 20
+
+ -
+ 11692
+ 9801
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 1972b165-875a-49f9-a943-315f9b675010
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 11662
+ 9811
+ 57
+ 20
+
+ -
+ 11692
+ 9821
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 04548058-0b6c-42ec-b1a5-bb76ebd79c4c
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 11662
+ 9831
+ 57
+ 20
+
+ -
+ 11692
+ 9841
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - d9bf0b46-bd1c-4601-802b-4bbb035268c6
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 11598
+ 9662
+ 104
+ 44
+
+ -
+ 11656
+ 9684
+
+
+
+
+
+ - Base domain
+ - 930cfef6-afa7-4e23-82de-1554262c673e
+ - Domain
+ - Domain
+ - false
+ - 04548058-0b6c-42ec-b1a5-bb76ebd79c4c
+ - 1
+
+
+
+
+ -
+ 11600
+ 9664
+ 41
+ 40
+
+ -
+ 11622
+ 9684
+
+
+
+
+
+
+
+ - Start of domain
+ - 64bf01a2-6676-4b68-a901-fa8507e049ff
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11671
+ 9664
+ 29
+ 20
+
+ -
+ 11687
+ 9674
+
+
+
+
+
+
+
+ - End of domain
+ - bfb0a1f8-5ba6-4a76-abac-b03ed99f2d4d
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 11671
+ 9684
+ 29
+ 20
+
+ -
+ 11687
+ 9694
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 3cf69b06-b52f-4502-82f2-4e60b42f8cc3
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 11598
+ 9724
+ 104
+ 44
+
+ -
+ 11656
+ 9746
+
+
+
+
+
+ - Base domain
+ - 08045bf9-a622-4109-a2bb-a80fa8f97446
+ - Domain
+ - Domain
+ - false
+ - 1972b165-875a-49f9-a943-315f9b675010
+ - 1
+
+
+
+
+ -
+ 11600
+ 9726
+ 41
+ 40
+
+ -
+ 11622
+ 9746
+
+
+
+
+
+
+
+ - Start of domain
+ - dcc4500e-e314-4e30-a3ab-f9237223f920
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 11671
+ 9726
+ 29
+ 20
+
+ -
+ 11687
+ 9736
+
+
+
+
+
+
+
+ - End of domain
+ - d9fe0984-3aeb-476c-8612-cde1dca8df55
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 11671
+ 9746
+ 29
+ 20
+
+ -
+ 11687
+ 9756
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 9f169e54-507b-4163-abda-cef3e216b751
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 11573
+ 9539
+ 154
+ 104
+
+ -
+ 11657
+ 9591
+
+
+
+
+
+ - Base geometry
+ - 61be92e4-3ba1-405d-85c9-c1daaec69c9c
+ - Geometry
+ - Geometry
+ - true
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+
+
+
+
+ -
+ 11575
+ 9541
+ 67
+ 20
+
+ -
+ 11618
+ 9551
+
+
+
+
+
+
+
+ - Base plane
+ - ddf4be38-20d6-4410-aa34-25cfa964666d
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 11575
+ 9561
+ 67
+ 20
+
+ -
+ 11618
+ 9571
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 1ae5b21a-0eea-4313-8a9a-77e65611333d
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - d9fe0984-3aeb-476c-8612-cde1dca8df55
+ - 1
+
+
+
+
+ -
+ 11575
+ 9581
+ 67
+ 20
+
+ -
+ 11618
+ 9591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 4dec546a-b7ae-470b-b03e-193ff9c206a9
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - bfb0a1f8-5ba6-4a76-abac-b03ed99f2d4d
+ - 1
+
+
+
+
+ -
+ 11575
+ 9601
+ 67
+ 20
+
+ -
+ 11618
+ 9611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 8be6b9b5-7e81-4b88-a285-6f43dee6a0eb
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 11575
+ 9621
+ 67
+ 20
+
+ -
+ 11618
+ 9631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - e73b8fb7-c602-4f45-8a35-c592c27aba49
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11672
+ 9541
+ 53
+ 50
+
+ -
+ 11700
+ 9566
+
+
+
+
+
+
+
+ - Transformation data
+ - 50bdd865-f8fa-4f1b-958f-b28cfbc014cb
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11672
+ 9591
+ 53
+ 50
+
+ -
+ 11700
+ 9616
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4dd39426-4757-4d5a-9089-0bf8a32981e1
+ - 0c51e735-7128-43bd-a415-e5cf097cbe5f
+ - a066dc91-c5e2-4469-9d2e-78cc2ca94a15
+ - d9bf0b46-bd1c-4601-802b-4bbb035268c6
+ - 3cf69b06-b52f-4502-82f2-4e60b42f8cc3
+ - 9f169e54-507b-4163-abda-cef3e216b751
+ - 0a11e65e-d83c-4f16-a8d6-0e449e303149
+ - e27f66f6-779d-49ac-8cac-820afea61e6d
+ - 95592e16-f781-4432-bf8c-7febd23536f6
+ - 4072dd5f-488b-48b1-bb99-6a919c99b6ec
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - d945ae52-67d3-4239-a1da-df27a7e00bb0
+ - 12
+ - d619f561-af55-42ce-8fa5-da99e4f5d54b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 0a11e65e-d83c-4f16-a8d6-0e449e303149
+ - Curve
+ - Curve
+ - false
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+
+
+
+
+ -
+ 11629
+ 10049
+ 50
+ 24
+
+ -
+ 11654.97
+ 10061.79
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e27f66f6-779d-49ac-8cac-820afea61e6d
+ - Curve
+ - Curve
+ - false
+ - e73b8fb7-c602-4f45-8a35-c592c27aba49
+ - 1
+
+
+
+
+ -
+ 11626
+ 9498
+ 50
+ 24
+
+ -
+ 11651.75
+ 9510.039
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 95592e16-f781-4432-bf8c-7febd23536f6
+ - Move
+ - Move
+
+
+
+
+ -
+ 11579
+ 9286
+ 138
+ 44
+
+ -
+ 11647
+ 9308
+
+
+
+
+
+ - Base geometry
+ - cc8c4ccf-ae5b-404c-9e52-36d47e81ce2e
+ - Geometry
+ - Geometry
+ - true
+ - e27f66f6-779d-49ac-8cac-820afea61e6d
+ - 1
+
+
+
+
+ -
+ 11581
+ 9288
+ 51
+ 20
+
+ -
+ 11608
+ 9298
+
+
+
+
+
+
+
+ - Translation vector
+ - 706df9ce-e779-4517-a878-52f1ded82837
+ - Motion
+ - Motion
+ - false
+ - 9ca69f5a-0f79-40d9-82b9-6cbb711d1b3a
+ - 1
+
+
+
+
+ -
+ 11581
+ 9308
+ 51
+ 20
+
+ -
+ 11608
+ 9318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2e9dd332-07b1-447a-9b85-e8b04e115eed
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11662
+ 9288
+ 53
+ 20
+
+ -
+ 11690
+ 9298
+
+
+
+
+
+
+
+ - Transformation data
+ - 6f3066a4-9efe-4ee0-9cea-09de2adc3ffe
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11662
+ 9308
+ 53
+ 20
+
+ -
+ 11690
+ 9318
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4072dd5f-488b-48b1-bb99-6a919c99b6ec
+ - Curve
+ - Curve
+ - false
+ - 2e9dd332-07b1-447a-9b85-e8b04e115eed
+ - 1
+
+
+
+
+ -
+ 11627
+ 9244
+ 50
+ 24
+
+ -
+ 11652.08
+ 9256.252
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5d01f4d6-99bc-4ec4-9a50-725917d669e3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 11018
+ 14159
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 11018.61
+ 14159.47
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b8e7a4d5-ee36-48ac-9821-b87d1a94d60e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 11111
+ 14309
+ 251
+ 20
+
+ -
+ 11111.22
+ 14309.87
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ccc605f7-a0f4-490d-99f2-72959d062d3e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 11018
+ 14218
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 11018.06
+ 14218.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - b297a4bc-6ceb-462f-a794-9fe2bd6e73c9
+ - Expression
+
+
+
+
+
+ -
+ 11200
+ 14406
+ 79
+ 28
+
+ -
+ 11242
+ 14420
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 76e93742-5f4c-4be2-946a-398788bcf838
+ - Variable X
+ - X
+ - true
+ - 3b1f7922-4b7e-4166-983c-75cb3eb8a170
+ - 1
+
+
+
+
+ -
+ 11202
+ 14408
+ 14
+ 24
+
+ -
+ 11210.5
+ 14420
+
+
+
+
+
+
+
+ - Result of expression
+ - d2af385a-c99b-412b-875e-b7f232cf85d5
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 11268
+ 14408
+ 9
+ 24
+
+ -
+ 11274
+ 14420
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - ddda4732-6250-4450-a11a-010b13680da0
+ - Point
+ - Point
+ - false
+ - a3f6ca53-8639-4a50-8e51-9d73d0818a56
+ - 1
+
+
+
+
+ -
+ 11234
+ 11934
+ 50
+ 24
+
+ -
+ 11259.03
+ 11946.6
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a3f6ca53-8639-4a50-8e51-9d73d0818a56
+ - Relay
+
+ - false
+ - 6675e784-7e56-4b18-8b5b-3311ab42d31a
+ - 1
+
+
+
+
+ -
+ 11236
+ 11980
+ 40
+ 16
+
+ -
+ 11256
+ 11988
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c86ec8a3-9ea7-4981-9a9d-edda0165242c
+ - Relay
+
+ - false
+ - 4e4befa7-ccb1-48ef-9e67-abc3834e0b17
+ - 1
+
+
+
+
+ -
+ 11236
+ 11757
+ 40
+ 16
+
+ -
+ 11256
+ 11765
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 3fe7a6e2-d179-493c-a8f1-8105d057ade7
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 11179
+ 11793
+ 154
+ 64
+
+ -
+ 11263
+ 11825
+
+
+
+
+
+ - Base geometry
+ - 5417c611-83be-43d3-8fd9-366ea9cb751e
+ - Geometry
+ - Geometry
+ - true
+ - ddda4732-6250-4450-a11a-010b13680da0
+ - 1
+
+
+
+
+ -
+ 11181
+ 11795
+ 67
+ 20
+
+ -
+ 11224
+ 11805
+
+
+
+
+
+
+
+ - Center of scaling
+ - f9824b60-5218-440b-ab01-2cde20ad3c42
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 11181
+ 11815
+ 67
+ 20
+
+ -
+ 11224
+ 11825
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 93267293-0f36-4350-a95d-f341d0599433
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 3b353169-95e9-4680-9cf6-3f909e1356e1
+ - 1
+
+
+
+
+ -
+ 11181
+ 11835
+ 67
+ 20
+
+ -
+ 11224
+ 11845
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 4e4befa7-ccb1-48ef-9e67-abc3834e0b17
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 11278
+ 11795
+ 53
+ 30
+
+ -
+ 11306
+ 11810
+
+
+
+
+
+
+
+ - Transformation data
+ - 229aa8bc-ceb6-43a4-ab71-6909a68dcb75
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 11278
+ 11825
+ 53
+ 30
+
+ -
+ 11306
+ 11840
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3b353169-95e9-4680-9cf6-3f909e1356e1
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 11138
+ 11878
+ 250
+ 20
+
+ -
+ 11138.81
+ 11878.96
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ddda4732-6250-4450-a11a-010b13680da0
+ - 1
+ - 76aa88d4-0024-4f8d-bdda-fa012bf2b40c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b8c8100f-cc98-44a5-ae31-2a5e6a66bb38
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 10786
+ 13438
+ 40
+ 16
+
+ -
+ 10806
+ 13446
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f5c15749-9790-4708-adc4-cdf138ed172a
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 10735
+ 13405
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 10735.65
+ 13405.73
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b63432c2-001f-4537-b123-f27431ea6265
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 11111
+ 14261
+ 251
+ 20
+
+ -
+ 11111.22
+ 14261.62
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - d945ae52-67d3-4239-a1da-df27a7e00bb0
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 11579
+ 9372
+ 139
+ 64
+
+ -
+ 11664
+ 9404
+
+
+
+
+
+ - Vector {x} component
+ - f0fff69f-4c96-457f-ad9e-97ba8ceeec1c
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 11581
+ 9374
+ 68
+ 20
+
+ -
+ 11616.5
+ 9384
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 12.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 820bca44-b6f4-4a8c-b906-c861fd0c8f70
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 11581
+ 9394
+ 68
+ 20
+
+ -
+ 11616.5
+ 9404
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 0268fc89-40f6-4fa5-9c61-a3daa4174ff3
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 11581
+ 9414
+ 68
+ 20
+
+ -
+ 11616.5
+ 9424
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 9ca69f5a-0f79-40d9-82b9-6cbb711d1b3a
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 11679
+ 9374
+ 37
+ 30
+
+ -
+ 11699
+ 9389
+
+
+
+
+
+
+
+ - Vector length
+ - e5c50b4f-8e3b-422e-8e7e-e801070425be
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 11679
+ 9404
+ 37
+ 30
+
+ -
+ 11699
+ 9419
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - cce1227a-54c9-49c2-b6fc-09416f38af63
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 11215
+ 13918
+ 40
+ 16
+
+ -
+ 11235
+ 13926
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - ddd3b180-869b-42de-8270-aaf94b69d469
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 10763
+ 13570
+ 89
+ 64
+
+ -
+ 10808
+ 13602
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 7be4334c-9ed6-4334-aade-fae73a0784fc
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 10765
+ 13572
+ 28
+ 20
+
+ -
+ 10780.5
+ 13582
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - e6fdcc75-b30f-473b-ade7-793f791caf49
+ - false
+ - Stream 0
+ - 0
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 10765
+ 13592
+ 28
+ 20
+
+ -
+ 10780.5
+ 13602
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - e40c6cc5-5047-44d6-b748-b9131e5ebf7a
+ - false
+ - Stream 1
+ - 1
+ - true
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - 1
+
+
+
+
+ -
+ 10765
+ 13612
+ 28
+ 20
+
+ -
+ 10780.5
+ 13622
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 5b6b9538-a868-4c4e-b7d8-a06492da7f4e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 10823
+ 13572
+ 27
+ 60
+
+ -
+ 10838
+ 13602
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0776aca5-6dbc-4612-8a96-4159a90a0763
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12352
+ 24759
+ 150
+ 20
+
+ -
+ 12352.24
+ 24759.62
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 57c04315-8443-4211-b8a3-ffe22027dbed
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 19867
+ 12459
+ 40
+ 16
+
+ -
+ 19887
+ 12467
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - Relay
+
+ - false
+ - 0776aca5-6dbc-4612-8a96-4159a90a0763
+ - 1
+
+
+
+
+ -
+ 12406
+ 24719
+ 40
+ 16
+
+ -
+ 12426
+ 24727
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0776aca5-6dbc-4612-8a96-4159a90a0763
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 2
+ - ca0b4c8e-f4b8-419c-846a-9f1a9863bf4b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7b693454-2db5-44a3-9c4a-cc11487e6907
+ - Curve
+ - Curve
+ - false
+ - 105dd2da-6e8a-4d38-bd7f-08d0903e13f6
+ - 1
+
+
+
+
+ -
+ 12402
+ 25204
+ 50
+ 24
+
+ -
+ 12427.21
+ 25216.07
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3a650aef-6a0b-4f56-bc6c-8e2ab6306e69
+ - Curve
+ - Curve
+ - false
+ - 2b7f9a30-5371-4790-99c4-557f50f3e7cc
+ - 1
+
+
+
+
+ -
+ 12401
+ 25151
+ 50
+ 24
+
+ -
+ 12426.76
+ 25163.46
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0578316c-418c-4e89-95a7-dc9ddb5ba462
+ - 8f66ad49-6028-4a1b-8324-63844d87d550
+ - eb58ff90-1679-4c1c-9aae-21704022ebf7
+ - 5c8b78b1-f658-485c-9d77-edfdca1b886d
+ - 168c86e3-663d-475f-a603-92ce0e6c763d
+ - 075789cc-fd97-4a29-a0a4-8c0e2f794e3d
+ - 6
+ - 4b1ca85a-e669-4ea2-b90e-e27dc892b2ec
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6da43f5e-2344-42e0-8823-8ec75de07231
+ - 8c0c431d-bd00-4610-9b5a-9e3d0a053f8e
+ - 8dbaf549-2671-4ad4-b5ac-536e6a2a8901
+ - 1721909e-d146-4830-8a60-c58544adb2ee
+ - ed50920d-957d-4fe5-bb0b-7f68b819a4ed
+ - f428a9fd-175d-4ca0-8447-213754536171
+ - a753d0e0-c4d3-445a-b1ae-6c5d03ee3391
+ - 977dbbfd-d9ff-4fdc-9076-714f69226b51
+ - 5009adea-3889-4444-a662-550d073a1b5e
+ - 97d5ad31-67a5-4eec-b0d5-2775b37f1541
+ - 231950ad-fd20-44da-9934-dbdc3bb0bbe5
+ - c35ebd20-cda5-4150-8dbb-66ad350904e1
+ - 5e828d95-2fec-4583-aa06-a540b9e69323
+ - 915c57bd-c5d4-409f-8a53-59251156111f
+ - c224342c-801f-4459-9224-44879ddf539f
+ - cb4cf7f1-0485-4abd-9d98-0d91e11a6dc0
+ - 684f5a7a-2f03-46d6-a594-682e524e0f68
+ - 44d150f7-853c-4c6a-b89d-7b5e1cafb1f8
+ - 6860470d-e422-488a-9a4e-717f9040fa82
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - ca997e41-79d8-4e43-be24-c7b4c29481db
+ - 40e37398-63c4-4a61-8694-7bd0ef83882c
+ - 3efab561-d7ca-4b3f-8baa-e5c5274c459a
+ - 162dd3b1-5741-4663-a444-3fa31148c1ee
+ - 3aca04d1-98fe-4378-828f-c99301545001
+ - e67b0b22-5a9d-4a3c-a163-a804cde0e427
+ - 2a4d5012-04cc-4247-915e-1cbb81186d49
+ - 8fa6f59b-258e-48ca-b17f-63e7e3b21bde
+ - 901e65d6-0c60-4242-bf8e-30887721e972
+ - 8901b2a5-394d-440a-854c-9cfa8fe88dd9
+ - 52850b18-b739-4fe3-b12a-324e456a1b0b
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - 8f5d54fc-e807-440d-a8ba-0e136be67037
+ - b42663bb-8528-4524-acb7-8ce856e76743
+ - 8a1219da-7568-4bee-a1d1-489d4d064c6c
+ - 6b22260c-9522-4182-aec8-00efe0989f78
+ - def5db13-812d-4a84-8f70-2fee3b6ea2e9
+ - cd7bd7ef-5792-4acf-ac07-684674ce7147
+ - 73efbebe-da42-4797-91d5-a45230a418ca
+ - f2a0f7a2-f430-40a1-926c-4afb69938381
+ - 9a36eaef-3e40-4f52-ac71-623ea3dd3e3d
+ - bfb59471-3c40-4fc4-9451-b25199c0640b
+ - 97373ad8-d4a7-40e1-b86f-3a8c7943c731
+ - 7e1231bb-6067-4c0c-8c9e-00b69d5bfb71
+ - b1c735ca-5069-476f-82db-a61298330b88
+ - 303287e2-db47-42d8-ab9a-cdb1cee3814b
+ - 7f194e45-9fbb-4b38-aaab-583c59ceedee
+ - 327f272f-5bf3-4638-9fd6-29b2a9e888a4
+ - a56987c9-5a0c-4c41-973e-58b2ff77fffc
+ - 0b39b96b-83c9-44e7-9f1c-de7fc93311be
+ - 4a8fc40f-d5bb-4256-90c9-d8031661ab5c
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 914c2f95-f40f-4ec9-92ad-a19618256d32
+ - efe35352-6dd4-4382-bc7d-4163c1e963ab
+ - 040ab894-16a7-4940-82e1-b350e4dada1e
+ - 1d37bbe6-c3d7-4338-8012-3e3131f52e93
+ - e6f0628a-91eb-498b-9037-e1eda68231cf
+ - 4b56d016-6f27-482a-b82d-25e4243c057c
+ - d46a4d3a-f49c-4ddb-a9e2-bef53b448819
+ - 7617170b-b3ea-4adf-ad17-80da8e4e2314
+ - 3776ba36-dc6a-43e9-921c-90277b55795c
+ - 1fa63778-59d4-4004-a25a-c4b5189f889b
+ - 8a6b5972-ad07-4ee8-9661-d79409b7ca0c
+ - f5daa0a5-064f-48e0-9aea-0037c20fcd07
+ - 91586ac2-1724-49d2-9bce-dcebd4685515
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - 8b503ea6-0c14-46fc-ae0b-7ae4ce6243b8
+ - 4c64635c-1880-4b55-b09b-268462bf0344
+ - 9b61b62d-1781-425b-8b1f-b7e73ef765da
+ - 1ea137c4-3571-4d3f-8ceb-c0cae1c5bf1e
+ - 768840f7-01a4-42a5-840c-7347ebd0d7e0
+ - 51067a14-7237-490f-9fc3-040d29b665b0
+ - 144184ab-677d-47bc-a4a6-010cda1cf2cf
+ - b3593429-13b3-486e-92c0-19c2f2f74760
+ - 5aeed1da-374b-4672-97ff-7c101c45c07b
+ - 23855da3-6d8e-4093-a346-2efc4f3152ba
+ - a90efd40-4b05-4533-9ad7-0796e67982a3
+ - 312d6dd1-da67-4e61-a386-22acf74b4c94
+ - 9b6b10be-ffa4-4ec6-aca8-19b2c677acf8
+ - e1daa472-99c5-415c-bbc5-9bbba42f5076
+ - 97652b8e-75f7-4d43-9462-ada2217bdd58
+ - 747334ba-25b6-4ffe-903e-79ffdb0809f9
+ - 8d228938-b7a0-485e-b640-49199a3a4d21
+ - 83
+ - d201e9d3-92fe-486a-acc8-f9e90220977c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8c0c431d-bd00-4610-9b5a-9e3d0a053f8e
+ - 8dbaf549-2671-4ad4-b5ac-536e6a2a8901
+ - 1721909e-d146-4830-8a60-c58544adb2ee
+ - ed50920d-957d-4fe5-bb0b-7f68b819a4ed
+ - f428a9fd-175d-4ca0-8447-213754536171
+ - a753d0e0-c4d3-445a-b1ae-6c5d03ee3391
+ - 977dbbfd-d9ff-4fdc-9076-714f69226b51
+ - 5009adea-3889-4444-a662-550d073a1b5e
+ - 97d5ad31-67a5-4eec-b0d5-2775b37f1541
+ - 231950ad-fd20-44da-9934-dbdc3bb0bbe5
+ - c35ebd20-cda5-4150-8dbb-66ad350904e1
+ - 5e828d95-2fec-4583-aa06-a540b9e69323
+ - 915c57bd-c5d4-409f-8a53-59251156111f
+ - c224342c-801f-4459-9224-44879ddf539f
+ - cb4cf7f1-0485-4abd-9d98-0d91e11a6dc0
+ - 684f5a7a-2f03-46d6-a594-682e524e0f68
+ - 44d150f7-853c-4c6a-b89d-7b5e1cafb1f8
+ - 6860470d-e422-488a-9a4e-717f9040fa82
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - ca997e41-79d8-4e43-be24-c7b4c29481db
+ - 40e37398-63c4-4a61-8694-7bd0ef83882c
+ - 3efab561-d7ca-4b3f-8baa-e5c5274c459a
+ - 162dd3b1-5741-4663-a444-3fa31148c1ee
+ - 3aca04d1-98fe-4378-828f-c99301545001
+ - e67b0b22-5a9d-4a3c-a163-a804cde0e427
+ - 2a4d5012-04cc-4247-915e-1cbb81186d49
+ - 8fa6f59b-258e-48ca-b17f-63e7e3b21bde
+ - 901e65d6-0c60-4242-bf8e-30887721e972
+ - 8901b2a5-394d-440a-854c-9cfa8fe88dd9
+ - 52850b18-b739-4fe3-b12a-324e456a1b0b
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - 8f5d54fc-e807-440d-a8ba-0e136be67037
+ - b42663bb-8528-4524-acb7-8ce856e76743
+ - 8a1219da-7568-4bee-a1d1-489d4d064c6c
+ - 6b22260c-9522-4182-aec8-00efe0989f78
+ - def5db13-812d-4a84-8f70-2fee3b6ea2e9
+ - cd7bd7ef-5792-4acf-ac07-684674ce7147
+ - 73efbebe-da42-4797-91d5-a45230a418ca
+ - f2a0f7a2-f430-40a1-926c-4afb69938381
+ - 9a36eaef-3e40-4f52-ac71-623ea3dd3e3d
+ - bfb59471-3c40-4fc4-9451-b25199c0640b
+ - 97373ad8-d4a7-40e1-b86f-3a8c7943c731
+ - 7e1231bb-6067-4c0c-8c9e-00b69d5bfb71
+ - b1c735ca-5069-476f-82db-a61298330b88
+ - 303287e2-db47-42d8-ab9a-cdb1cee3814b
+ - 7f194e45-9fbb-4b38-aaab-583c59ceedee
+ - 327f272f-5bf3-4638-9fd6-29b2a9e888a4
+ - a56987c9-5a0c-4c41-973e-58b2ff77fffc
+ - 0b39b96b-83c9-44e7-9f1c-de7fc93311be
+ - 4a8fc40f-d5bb-4256-90c9-d8031661ab5c
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 914c2f95-f40f-4ec9-92ad-a19618256d32
+ - efe35352-6dd4-4382-bc7d-4163c1e963ab
+ - 040ab894-16a7-4940-82e1-b350e4dada1e
+ - 1d37bbe6-c3d7-4338-8012-3e3131f52e93
+ - e6f0628a-91eb-498b-9037-e1eda68231cf
+ - 4b56d016-6f27-482a-b82d-25e4243c057c
+ - d46a4d3a-f49c-4ddb-a9e2-bef53b448819
+ - 7617170b-b3ea-4adf-ad17-80da8e4e2314
+ - 3776ba36-dc6a-43e9-921c-90277b55795c
+ - 1fa63778-59d4-4004-a25a-c4b5189f889b
+ - 8a6b5972-ad07-4ee8-9661-d79409b7ca0c
+ - f5daa0a5-064f-48e0-9aea-0037c20fcd07
+ - 91586ac2-1724-49d2-9bce-dcebd4685515
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - 8b503ea6-0c14-46fc-ae0b-7ae4ce6243b8
+ - 4c64635c-1880-4b55-b09b-268462bf0344
+ - 9b61b62d-1781-425b-8b1f-b7e73ef765da
+ - 1ea137c4-3571-4d3f-8ceb-c0cae1c5bf1e
+ - 768840f7-01a4-42a5-840c-7347ebd0d7e0
+ - 51067a14-7237-490f-9fc3-040d29b665b0
+ - 144184ab-677d-47bc-a4a6-010cda1cf2cf
+ - b3593429-13b3-486e-92c0-19c2f2f74760
+ - 5aeed1da-374b-4672-97ff-7c101c45c07b
+ - 23855da3-6d8e-4093-a346-2efc4f3152ba
+ - a90efd40-4b05-4533-9ad7-0796e67982a3
+ - 312d6dd1-da67-4e61-a386-22acf74b4c94
+ - 9b6b10be-ffa4-4ec6-aca8-19b2c677acf8
+ - e1daa472-99c5-415c-bbc5-9bbba42f5076
+ - 79
+ - 6da43f5e-2344-42e0-8823-8ec75de07231
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 312d6dd1-da67-4e61-a386-22acf74b4c94
+ - 1
+ - 8c0c431d-bd00-4610-9b5a-9e3d0a053f8e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1721909e-d146-4830-8a60-c58544adb2ee
+ - 1
+ - 8dbaf549-2671-4ad4-b5ac-536e6a2a8901
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ed50920d-957d-4fe5-bb0b-7f68b819a4ed
+ - 1
+ - 1721909e-d146-4830-8a60-c58544adb2ee
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f428a9fd-175d-4ca0-8447-213754536171
+ - 1
+ - ed50920d-957d-4fe5-bb0b-7f68b819a4ed
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a753d0e0-c4d3-445a-b1ae-6c5d03ee3391
+ - 1
+ - f428a9fd-175d-4ca0-8447-213754536171
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 977dbbfd-d9ff-4fdc-9076-714f69226b51
+ - 1
+ - a753d0e0-c4d3-445a-b1ae-6c5d03ee3391
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 97d5ad31-67a5-4eec-b0d5-2775b37f1541
+ - 1
+ - 977dbbfd-d9ff-4fdc-9076-714f69226b51
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5009adea-3889-4444-a662-550d073a1b5e
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13009
+ 13184
+ 50
+ 24
+
+ -
+ 13034.4
+ 13196.67
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5009adea-3889-4444-a662-550d073a1b5e
+ - 1
+ - 97d5ad31-67a5-4eec-b0d5-2775b37f1541
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8901b2a5-394d-440a-854c-9cfa8fe88dd9
+ - 1
+ - 231950ad-fd20-44da-9934-dbdc3bb0bbe5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5e828d95-2fec-4583-aa06-a540b9e69323
+ - 915c57bd-c5d4-409f-8a53-59251156111f
+ - c224342c-801f-4459-9224-44879ddf539f
+ - cb4cf7f1-0485-4abd-9d98-0d91e11a6dc0
+ - 684f5a7a-2f03-46d6-a594-682e524e0f68
+ - 44d150f7-853c-4c6a-b89d-7b5e1cafb1f8
+ - 6860470d-e422-488a-9a4e-717f9040fa82
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 40e37398-63c4-4a61-8694-7bd0ef83882c
+ - ca997e41-79d8-4e43-be24-c7b4c29481db
+ - 231950ad-fd20-44da-9934-dbdc3bb0bbe5
+ - 97d5ad31-67a5-4eec-b0d5-2775b37f1541
+ - 8b503ea6-0c14-46fc-ae0b-7ae4ce6243b8
+ - 4c64635c-1880-4b55-b09b-268462bf0344
+ - 9b61b62d-1781-425b-8b1f-b7e73ef765da
+ - 1ea137c4-3571-4d3f-8ceb-c0cae1c5bf1e
+ - 768840f7-01a4-42a5-840c-7347ebd0d7e0
+ - 51067a14-7237-490f-9fc3-040d29b665b0
+ - f5daa0a5-064f-48e0-9aea-0037c20fcd07
+ - 91586ac2-1724-49d2-9bce-dcebd4685515
+ - 20
+ - c35ebd20-cda5-4150-8dbb-66ad350904e1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 5e828d95-2fec-4583-aa06-a540b9e69323
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 12984
+ 14348
+ 104
+ 64
+
+ -
+ 13043
+ 14380
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - e92f70ca-c0e6-4bba-9438-db807ff62bb9
+ - Data
+ - Data
+ - false
+ - 1ed23266-44be-4f2c-ab56-029d13fee712
+ - 1
+
+
+
+
+ -
+ 12986
+ 14350
+ 42
+ 20
+
+ -
+ 13008.5
+ 14360
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - a7eb5d05-d07c-4f59-bb6a-50db03df49dc
+ - Number
+ - Number
+ - false
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - 1
+
+
+
+
+ -
+ 12986
+ 14370
+ 42
+ 20
+
+ -
+ 13008.5
+ 14380
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 5345db8a-3710-43f4-babd-61953aec8b20
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 12986
+ 14390
+ 42
+ 20
+
+ -
+ 13008.5
+ 14400
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 2ccc3f2c-8a84-41d1-a8e6-75b96b71ed13
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 13058
+ 14350
+ 28
+ 60
+
+ -
+ 13073.5
+ 14380
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 915c57bd-c5d4-409f-8a53-59251156111f
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 12970
+ 12420
+ 116
+ 44
+
+ -
+ 13031
+ 12442
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - c523fe05-35af-4ca8-a83c-190f6a2bef35
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 2ccc3f2c-8a84-41d1-a8e6-75b96b71ed13
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 12972
+ 12422
+ 44
+ 20
+
+ -
+ 12995.5
+ 12432
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 0b7478e7-8000-4420-b738-a37d501ad798
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 6189ad75-b660-4906-90f1-9c39628bb5af
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 12972
+ 12442
+ 44
+ 20
+
+ -
+ 12995.5
+ 12452
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 8e6c6b2c-0cb9-46fb-be7f-244ce0ecd1bf
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 13046
+ 12422
+ 38
+ 20
+
+ -
+ 13066.5
+ 12432
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 289c80b2-fb40-41f0-a44a-49aa726014ee
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 13046
+ 12442
+ 38
+ 20
+
+ -
+ 13066.5
+ 12452
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - cb4cf7f1-0485-4abd-9d98-0d91e11a6dc0
+ - Series
+ - Series
+
+
+
+
+ -
+ 12981
+ 13677
+ 101
+ 64
+
+ -
+ 13031
+ 13709
+
+
+
+
+
+ - First number in the series
+ - 7d78119b-b332-410c-8097-92f63bc27f38
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 12983
+ 13679
+ 33
+ 20
+
+ -
+ 13001
+ 13689
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - cff07a07-5763-4059-957b-4419cf12f07e
+ - Step
+ - Step
+ - false
+ - a90efd40-4b05-4533-9ad7-0796e67982a3
+ - 1
+
+
+
+
+ -
+ 12983
+ 13699
+ 33
+ 20
+
+ -
+ 13001
+ 13709
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 32a81621-6d75-432a-a48e-0fa68bf9c5f2
+ - Count
+ - Count
+ - false
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - 1
+
+
+
+
+ -
+ 12983
+ 13719
+ 33
+ 20
+
+ -
+ 13001
+ 13729
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 98be2f6b-4af9-4e29-9c36-c475f903d3e3
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 13046
+ 13679
+ 34
+ 60
+
+ -
+ 13064.5
+ 13709
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 684f5a7a-2f03-46d6-a594-682e524e0f68
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12967
+ 14528
+ 150
+ 20
+
+ -
+ 12967.08
+ 14528.52
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 44d150f7-853c-4c6a-b89d-7b5e1cafb1f8
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 12970
+ 13894
+ 120
+ 28
+
+ -
+ 13031
+ 13908
+
+
+
+
+
+ - Angle in degrees
+ - 78c3dfef-8f84-4da0-bb31-5fa61cec6042
+ - Degrees
+ - Degrees
+ - false
+ - 51fb46f4-8bcd-456d-a842-67167d645345
+ - 1
+
+
+
+
+ -
+ 12972
+ 13896
+ 44
+ 24
+
+ -
+ 12995.5
+ 13908
+
+
+
+
+
+
+
+ - Angle in radians
+ - 44c8431b-375d-4ef1-a714-25316eb80b9d
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 13046
+ 13896
+ 42
+ 24
+
+ -
+ 13068.5
+ 13908
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 6860470d-e422-488a-9a4e-717f9040fa82
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 12907
+ 14203
+ 251
+ 20
+
+ -
+ 12907.79
+ 14203.79
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - ca997e41-79d8-4e43-be24-c7b4c29481db
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 12956
+ 11655
+ 144
+ 84
+
+ -
+ 13042
+ 11697
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 23e6a9a7-30af-407c-a61f-38ebfff57a34
+ - Vertices
+ - Vertices
+ - false
+ - eb58ff90-1679-4c1c-9aae-21704022ebf7
+ - 1
+
+
+
+
+ -
+ 12958
+ 11657
+ 69
+ 20
+
+ -
+ 12994
+ 11667
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 503bdd70-d1a2-42cf-8f1e-a9d96d708e2c
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11677
+ 69
+ 20
+
+ -
+ 12994
+ 11687
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 5ffb5739-82a3-4864-a7f6-f07e9036f88f
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11697
+ 69
+ 20
+
+ -
+ 12994
+ 11707
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - ae4ca890-1a64-4982-9414-681b719b70ce
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11717
+ 69
+ 20
+
+ -
+ 12994
+ 11727
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 3a3ee721-95ca-4efb-a962-55fa8532ee66
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 13057
+ 11657
+ 41
+ 26
+
+ -
+ 13079
+ 11670.33
+
+
+
+
+
+
+
+ - Curve length
+ - 7c227b4a-73d5-435c-92e1-ad072b8582a9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13057
+ 11683
+ 41
+ 27
+
+ -
+ 13079
+ 11697
+
+
+
+
+
+
+
+ - Curve domain
+ - 158ea267-9386-4068-9931-002185bc0bbd
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13057
+ 11710
+ 41
+ 27
+
+ -
+ 13079
+ 11723.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5e828d95-2fec-4583-aa06-a540b9e69323
+ - 915c57bd-c5d4-409f-8a53-59251156111f
+ - c224342c-801f-4459-9224-44879ddf539f
+ - cb4cf7f1-0485-4abd-9d98-0d91e11a6dc0
+ - 684f5a7a-2f03-46d6-a594-682e524e0f68
+ - 44d150f7-853c-4c6a-b89d-7b5e1cafb1f8
+ - 6860470d-e422-488a-9a4e-717f9040fa82
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - b3593429-13b3-486e-92c0-19c2f2f74760
+ - b42663bb-8528-4524-acb7-8ce856e76743
+ - 8a6b5972-ad07-4ee8-9661-d79409b7ca0c
+ - 144184ab-677d-47bc-a4a6-010cda1cf2cf
+ - 5aeed1da-374b-4672-97ff-7c101c45c07b
+ - 3cfc6172-94c3-4f48-80d3-443b91211fe6
+ - 14
+ - 40e37398-63c4-4a61-8694-7bd0ef83882c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3efab561-d7ca-4b3f-8baa-e5c5274c459a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 12956
+ 11487
+ 144
+ 64
+
+ -
+ 13030
+ 11519
+
+
+
+
+
+ - Curve to evaluate
+ - d2477878-81ef-4d37-baaa-7d5cf23b6da1
+ - Curve
+ - Curve
+ - false
+ - 3a3ee721-95ca-4efb-a962-55fa8532ee66
+ - 1
+
+
+
+
+ -
+ 12958
+ 11489
+ 57
+ 20
+
+ -
+ 12988
+ 11499
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 7ed5afea-433c-40eb-bcc6-b5d581843d06
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11509
+ 57
+ 20
+
+ -
+ 12988
+ 11519
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 7201e51f-b26e-423f-9fba-73ec4ae70e6c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11529
+ 57
+ 20
+
+ -
+ 12988
+ 11539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 758debfa-fe92-41da-a901-79a73078298b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11489
+ 53
+ 20
+
+ -
+ 13073
+ 11499
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 1852cc4b-9d66-40bc-95bc-86a6cefddca9
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11509
+ 53
+ 20
+
+ -
+ 13073
+ 11519
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b6879775-27c3-4466-bd13-323abcc3ebbd
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11529
+ 53
+ 20
+
+ -
+ 13073
+ 11539
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 162dd3b1-5741-4663-a444-3fa31148c1ee
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 12959
+ 11425
+ 138
+ 44
+
+ -
+ 13027
+ 11447
+
+
+
+
+
+ - Base geometry
+ - e44a26a7-33d5-44f1-91e8-0dc8c5bf82de
+ - Geometry
+ - Geometry
+ - true
+ - 3a3ee721-95ca-4efb-a962-55fa8532ee66
+ - 1
+
+
+
+
+ -
+ 12961
+ 11427
+ 51
+ 20
+
+ -
+ 12988
+ 11437
+
+
+
+
+
+
+
+ - Mirror plane
+ - 894ed388-d662-4d2d-903c-a5663d446167
+ - Plane
+ - Plane
+ - false
+ - 8c9840aa-59e7-4981-bd26-0f71ea929815
+ - 1
+
+
+
+
+ -
+ 12961
+ 11447
+ 51
+ 20
+
+ -
+ 12988
+ 11457
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 10573088-5312-4ed2-9e0a-1ddee1cfcb60
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11427
+ 53
+ 20
+
+ -
+ 13070
+ 11437
+
+
+
+
+
+
+
+ - Transformation data
+ - f8d8c15e-e22c-4f61-a460-61a9c4b3a191
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11447
+ 53
+ 20
+
+ -
+ 13070
+ 11457
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 3aca04d1-98fe-4378-828f-c99301545001
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 12975
+ 11571
+ 106
+ 64
+
+ -
+ 13039
+ 11603
+
+
+
+
+
+ - Line start point
+ - cca9d8b5-256a-4d58-84ed-8404b3d5f2a9
+ - Start
+ - Start
+ - false
+ - 758debfa-fe92-41da-a901-79a73078298b
+ - 1
+
+
+
+
+ -
+ 12977
+ 11573
+ 47
+ 20
+
+ -
+ 13002
+ 11583
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 7d47557b-7875-4150-938e-e26318b0555e
+ - Direction
+ - Direction
+ - false
+ - 1852cc4b-9d66-40bc-95bc-86a6cefddca9
+ - 1
+
+
+
+
+ -
+ 12977
+ 11593
+ 47
+ 20
+
+ -
+ 13002
+ 11603
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0e720524-d593-4583-a3d2-a0b9cbf1c95b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12977
+ 11613
+ 47
+ 20
+
+ -
+ 13002
+ 11623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 8c9840aa-59e7-4981-bd26-0f71ea929815
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 13054
+ 11573
+ 25
+ 60
+
+ -
+ 13068
+ 11603
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - e67b0b22-5a9d-4a3c-a163-a804cde0e427
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 12969
+ 11363
+ 118
+ 44
+
+ -
+ 13032
+ 11385
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 6809fdce-e949-4d56-8d22-c02db78b9f74
+ - Curves
+ - Curves
+ - false
+ - 3a3ee721-95ca-4efb-a962-55fa8532ee66
+ - 10573088-5312-4ed2-9e0a-1ddee1cfcb60
+ - 2
+
+
+
+
+ -
+ 12971
+ 11365
+ 46
+ 20
+
+ -
+ 12995.5
+ 11375
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 549ef6ba-1e6a-4a71-b8b5-2951147d0334
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 12971
+ 11385
+ 46
+ 20
+
+ -
+ 12995.5
+ 11395
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - b8d28eb9-5e2d-4c20-a201-0922264cabdb
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13047
+ 11365
+ 38
+ 40
+
+ -
+ 13067.5
+ 11385
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 2a4d5012-04cc-4247-915e-1cbb81186d49
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 12956
+ 11279
+ 144
+ 64
+
+ -
+ 13030
+ 11311
+
+
+
+
+
+ - Curve to evaluate
+ - 775abe75-fef3-49f5-a175-af17e68c65f7
+ - Curve
+ - Curve
+ - false
+ - b8d28eb9-5e2d-4c20-a201-0922264cabdb
+ - 1
+
+
+
+
+ -
+ 12958
+ 11281
+ 57
+ 20
+
+ -
+ 12988
+ 11291
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6fbe65da-8c89-49d0-907d-3bc03de64fa3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11301
+ 57
+ 20
+
+ -
+ 12988
+ 11311
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 27dbc873-888b-416d-bdf0-07300dee60e0
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11321
+ 57
+ 20
+
+ -
+ 12988
+ 11331
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4b5ad99a-cac6-4c83-990e-81e53e373ef5
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11281
+ 53
+ 20
+
+ -
+ 13073
+ 11291
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 31e03db0-1f3b-4b17-93bb-4a2197d8c5fc
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11301
+ 53
+ 20
+
+ -
+ 13073
+ 11311
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 27483c7f-a0cd-4267-8d77-4a24c3452651
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11321
+ 53
+ 20
+
+ -
+ 13073
+ 11331
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 8fa6f59b-258e-48ca-b17f-63e7e3b21bde
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 12959
+ 11196
+ 138
+ 64
+
+ -
+ 13027
+ 11228
+
+
+
+
+
+ - Base geometry
+ - ae08b325-9e4c-4d61-a92c-1e1c3cccd173
+ - Geometry
+ - Geometry
+ - true
+ - b8d28eb9-5e2d-4c20-a201-0922264cabdb
+ - 1
+
+
+
+
+ -
+ 12961
+ 11198
+ 51
+ 20
+
+ -
+ 12988
+ 11208
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - bd980afc-cbb2-4120-a4a8-f5e3775c1a1f
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 12961
+ 11218
+ 51
+ 20
+
+ -
+ 12988
+ 11228
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 8d62c37f-d323-463c-9e42-17446fe6d82b
+ - Plane
+ - Plane
+ - false
+ - 4b5ad99a-cac6-4c83-990e-81e53e373ef5
+ - 1
+
+
+
+
+ -
+ 12961
+ 11238
+ 51
+ 20
+
+ -
+ 12988
+ 11248
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 3736436a-e189-4cc2-a479-2bca159b09e3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11198
+ 53
+ 30
+
+ -
+ 13070
+ 11213
+
+
+
+
+
+
+
+ - Transformation data
+ - a940d540-b7b2-4d4b-8411-5a1a9238e3f2
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13042
+ 11228
+ 53
+ 30
+
+ -
+ 13070
+ 11243
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 901e65d6-0c60-4242-bf8e-30887721e972
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 12969
+ 11133
+ 118
+ 44
+
+ -
+ 13032
+ 11155
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 07438174-d3d1-43b3-b5c2-8a5207e492a4
+ - Curves
+ - Curves
+ - false
+ - b8d28eb9-5e2d-4c20-a201-0922264cabdb
+ - 3736436a-e189-4cc2-a479-2bca159b09e3
+ - 2
+
+
+
+
+ -
+ 12971
+ 11135
+ 46
+ 20
+
+ -
+ 12995.5
+ 11145
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 502ede0f-9893-4424-a570-00cbfec07094
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 12971
+ 11155
+ 46
+ 20
+
+ -
+ 12995.5
+ 11165
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 150163ee-a573-4863-a15e-d9bc2329fa38
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 13047
+ 11135
+ 38
+ 40
+
+ -
+ 13067.5
+ 11155
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ca997e41-79d8-4e43-be24-c7b4c29481db
+ - 3efab561-d7ca-4b3f-8baa-e5c5274c459a
+ - 162dd3b1-5741-4663-a444-3fa31148c1ee
+ - 3aca04d1-98fe-4378-828f-c99301545001
+ - e67b0b22-5a9d-4a3c-a163-a804cde0e427
+ - 2a4d5012-04cc-4247-915e-1cbb81186d49
+ - 8fa6f59b-258e-48ca-b17f-63e7e3b21bde
+ - 901e65d6-0c60-4242-bf8e-30887721e972
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - 0578316c-418c-4e89-95a7-dc9ddb5ba462
+ - 8f66ad49-6028-4a1b-8324-63844d87d550
+ - eb58ff90-1679-4c1c-9aae-21704022ebf7
+ - 5c8b78b1-f658-485c-9d77-edfdca1b886d
+ - 075789cc-fd97-4a29-a0a4-8c0e2f794e3d
+ - 168c86e3-663d-475f-a603-92ce0e6c763d
+ - 15
+ - 8901b2a5-394d-440a-854c-9cfa8fe88dd9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 52850b18-b739-4fe3-b12a-324e456a1b0b
+ - Panel
+
+ - false
+ - 0
+ - 7e1231bb-6067-4c0c-8c9e-00b69d5bfb71
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12960
+ 13770
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12960.82
+ 13770.01
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - Curve
+ - Curve
+ - false
+ - 150163ee-a573-4863-a15e-d9bc2329fa38
+ - 1
+
+
+
+
+ -
+ 13009
+ 11097
+ 50
+ 24
+
+ -
+ 13034.4
+ 11109.59
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - 1
+ - 8f5d54fc-e807-440d-a8ba-0e136be67037
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b42663bb-8528-4524-acb7-8ce856e76743
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 12814
+ 13978
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12814.38
+ 13978.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8a1219da-7568-4bee-a1d1-489d4d064c6c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 12956
+ 11007
+ 144
+ 64
+
+ -
+ 13030
+ 11039
+
+
+
+
+
+ - Curve to evaluate
+ - 92d44959-bc71-4fbe-9ede-87e14178003a
+ - Curve
+ - Curve
+ - false
+ - 150163ee-a573-4863-a15e-d9bc2329fa38
+ - 1
+
+
+
+
+ -
+ 12958
+ 11009
+ 57
+ 20
+
+ -
+ 12988
+ 11019
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6eabb20f-922f-416f-91d1-5ee044d75abf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11029
+ 57
+ 20
+
+ -
+ 12988
+ 11039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - d37207f7-c60c-405b-bac2-bab0dcf75e92
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 11049
+ 57
+ 20
+
+ -
+ 12988
+ 11059
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 715d3228-557a-47d7-ac3b-0fdca9781950
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11009
+ 53
+ 20
+
+ -
+ 13073
+ 11019
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 4a79a20c-af20-4909-b577-06371b74c968
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11029
+ 53
+ 20
+
+ -
+ 13073
+ 11039
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 21591b2d-05f9-467a-9470-000d1effa181
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 11049
+ 53
+ 20
+
+ -
+ 13073
+ 11059
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6b22260c-9522-4182-aec8-00efe0989f78
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10785
+ 194
+ 28
+
+ -
+ 13031
+ 10799
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 50d5f3c6-77d7-4801-a27c-888dddfbe5c9
+ - Variable O
+ - O
+ - true
+ - 8fe7987c-d7bd-4159-826a-37cf4a5c75a1
+ - 1
+
+
+
+
+ -
+ 12933
+ 10787
+ 14
+ 24
+
+ -
+ 12941.5
+ 10799
+
+
+
+
+
+
+
+ - Result of expression
+ - 3f710ea6-bcf4-4622-b73a-df8a80b5ad8c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10787
+ 9
+ 24
+
+ -
+ 13120
+ 10799
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - def5db13-812d-4a84-8f70-2fee3b6ea2e9
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 12962
+ 10919
+ 132
+ 64
+
+ -
+ 13009
+ 10951
+
+
+
+
+
+ - Input point
+ - 4752f94f-cf52-4ba9-8a23-256842dde942
+ - Point
+ - Point
+ - false
+ - 715d3228-557a-47d7-ac3b-0fdca9781950
+ - 1
+
+
+
+
+ -
+ 12964
+ 10921
+ 30
+ 60
+
+ -
+ 12980.5
+ 10951
+
+
+
+
+
+
+
+ - Point {x} component
+ - 8fe7987c-d7bd-4159-826a-37cf4a5c75a1
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 10921
+ 68
+ 20
+
+ -
+ 13059.5
+ 10931
+
+
+
+
+
+
+
+ - Point {y} component
+ - b5ad2314-7b8e-4475-b419-38a96c6f62f1
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 10941
+ 68
+ 20
+
+ -
+ 13059.5
+ 10951
+
+
+
+
+
+
+
+ - Point {z} component
+ - 520abc33-a013-47ff-8b6e-5b5a88804d59
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 10961
+ 68
+ 20
+
+ -
+ 13059.5
+ 10971
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cd7bd7ef-5792-4acf-ac07-684674ce7147
+ - Panel
+
+ - false
+ - 0
+ - 3f710ea6-bcf4-4622-b73a-df8a80b5ad8c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 10763
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.17
+ 10763.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 73efbebe-da42-4797-91d5-a45230a418ca
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10699
+ 194
+ 28
+
+ -
+ 13031
+ 10713
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 71febe23-baa4-4e14-9826-3901f5e01a33
+ - Variable O
+ - O
+ - true
+ - b5ad2314-7b8e-4475-b419-38a96c6f62f1
+ - 1
+
+
+
+
+ -
+ 12933
+ 10701
+ 14
+ 24
+
+ -
+ 12941.5
+ 10713
+
+
+
+
+
+
+
+ - Result of expression
+ - 7adf1ac7-1db3-4ff8-bc2f-7412a52fc615
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10701
+ 9
+ 24
+
+ -
+ 13120
+ 10713
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f2a0f7a2-f430-40a1-926c-4afb69938381
+ - Panel
+
+ - false
+ - 0
+ - 7adf1ac7-1db3-4ff8-bc2f-7412a52fc615
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 10674
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.17
+ 10674.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 9a36eaef-3e40-4f52-ac71-623ea3dd3e3d
+ - Division
+ - Division
+
+
+
+
+ -
+ 12987
+ 10597
+ 82
+ 44
+
+ -
+ 13018
+ 10619
+
+
+
+
+
+ - Item to divide (dividend)
+ - c9db6ae2-5901-4366-858e-b35c9bf6cea5
+ - A
+ - A
+ - false
+ - cd7bd7ef-5792-4acf-ac07-684674ce7147
+ - 1
+
+
+
+
+ -
+ 12989
+ 10599
+ 14
+ 20
+
+ -
+ 12997.5
+ 10609
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 265eca45-c17f-4e71-8a16-5762218afba0
+ - B
+ - B
+ - false
+ - f2a0f7a2-f430-40a1-926c-4afb69938381
+ - 1
+
+
+
+
+ -
+ 12989
+ 10619
+ 14
+ 20
+
+ -
+ 12997.5
+ 10629
+
+
+
+
+
+
+
+ - The result of the Division
+ - 956be425-65f3-4c07-8bbd-8e4c895ff4fc
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13033
+ 10599
+ 34
+ 40
+
+ -
+ 13051.5
+ 10619
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bfb59471-3c40-4fc4-9451-b25199c0640b
+ - Panel
+
+ - false
+ - 0
+ - 7e1231bb-6067-4c0c-8c9e-00b69d5bfb71
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 10527
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.41
+ 10527.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 97373ad8-d4a7-40e1-b86f-3a8c7943c731
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10550
+ 194
+ 28
+
+ -
+ 13031
+ 10564
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e2614ba1-8eaf-4a93-8082-9c19bbbbece1
+ - Variable O
+ - O
+ - true
+ - 956be425-65f3-4c07-8bbd-8e4c895ff4fc
+ - 1
+
+
+
+
+ -
+ 12933
+ 10552
+ 14
+ 24
+
+ -
+ 12941.5
+ 10564
+
+
+
+
+
+
+
+ - Result of expression
+ - bb3d53e4-9d35-4bb9-9aa0-c9ae07dd7e8f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10552
+ 9
+ 24
+
+ -
+ 13120
+ 10564
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7e1231bb-6067-4c0c-8c9e-00b69d5bfb71
+ - Relay
+
+ - false
+ - bb3d53e4-9d35-4bb9-9aa0-c9ae07dd7e8f
+ - 1
+
+
+
+
+ -
+ 13008
+ 10475
+ 40
+ 16
+
+ -
+ 13028
+ 10483
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - b1c735ca-5069-476f-82db-a61298330b88
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 12987
+ 10412
+ 82
+ 44
+
+ -
+ 13018
+ 10434
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 93867321-205d-454b-9dc2-5fe472b7c788
+ - A
+ - A
+ - true
+ - f2a0f7a2-f430-40a1-926c-4afb69938381
+ - 1
+
+
+
+
+ -
+ 12989
+ 10414
+ 14
+ 20
+
+ -
+ 12997.5
+ 10424
+
+
+
+
+
+
+
+ - Second item for addition
+ - 2f0d7698-26d2-4924-9a9b-51a8150ed2b7
+ - B
+ - B
+ - true
+ - cd7bd7ef-5792-4acf-ac07-684674ce7147
+ - 1
+
+
+
+
+ -
+ 12989
+ 10434
+ 14
+ 20
+
+ -
+ 12997.5
+ 10444
+
+
+
+
+
+
+
+ - Result of addition
+ - d49965a1-c8f3-47b1-9120-607fccae8e2a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13033
+ 10414
+ 34
+ 40
+
+ -
+ 13051.5
+ 10434
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 303287e2-db47-42d8-ab9a-cdb1cee3814b
+ - Division
+ - Division
+
+
+
+
+ -
+ 12987
+ 10262
+ 82
+ 44
+
+ -
+ 13018
+ 10284
+
+
+
+
+
+ - Item to divide (dividend)
+ - f4c7c5d0-4ef1-4875-986f-5be9362db6ff
+ - A
+ - A
+ - false
+ - a56987c9-5a0c-4c41-973e-58b2ff77fffc
+ - 1
+
+
+
+
+ -
+ 12989
+ 10264
+ 14
+ 20
+
+ -
+ 12997.5
+ 10274
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 98ad531e-020b-4c3a-9987-e936a76b9f47
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 12989
+ 10284
+ 14
+ 20
+
+ -
+ 12997.5
+ 10294
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - c16878d3-e56e-4251-a868-a8b484184ed1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 13033
+ 10264
+ 34
+ 40
+
+ -
+ 13051.5
+ 10284
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7f194e45-9fbb-4b38-aaab-583c59ceedee
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10214
+ 194
+ 28
+
+ -
+ 13031
+ 10228
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 03b5db73-054f-4b85-a5ac-03c865422ba3
+ - Variable O
+ - O
+ - true
+ - c16878d3-e56e-4251-a868-a8b484184ed1
+ - 1
+
+
+
+
+ -
+ 12933
+ 10216
+ 14
+ 24
+
+ -
+ 12941.5
+ 10228
+
+
+
+
+
+
+
+ - Result of expression
+ - 1775e30a-c9c5-4710-8acf-5dcff6d23ec2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10216
+ 9
+ 24
+
+ -
+ 13120
+ 10228
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 327f272f-5bf3-4638-9fd6-29b2a9e888a4
+ - Panel
+
+ - false
+ - 0
+ - 1775e30a-c9c5-4710-8acf-5dcff6d23ec2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 10191
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.17
+ 10191.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a56987c9-5a0c-4c41-973e-58b2ff77fffc
+ - Panel
+
+ - false
+ - 0
+ - d5c4e6ab-45a8-4840-b839-07156ae94256
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 10343
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.17
+ 10343
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0b39b96b-83c9-44e7-9f1c-de7fc93311be
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10365
+ 194
+ 28
+
+ -
+ 13031
+ 10379
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6f4e7cd2-639b-47be-b218-d6a099329782
+ - Variable O
+ - O
+ - true
+ - d49965a1-c8f3-47b1-9120-607fccae8e2a
+ - 1
+
+
+
+
+ -
+ 12933
+ 10367
+ 14
+ 24
+
+ -
+ 12941.5
+ 10379
+
+
+
+
+
+
+
+ - Result of expression
+ - d5c4e6ab-45a8-4840-b839-07156ae94256
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10367
+ 9
+ 24
+
+ -
+ 13120
+ 10379
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 4a8fc40f-d5bb-4256-90c9-d8031661ab5c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12951
+ 10091
+ 154
+ 64
+
+ -
+ 13035
+ 10123
+
+
+
+
+
+ - Base geometry
+ - 7b12511b-5e0b-4065-9c61-db0a2be5d2a9
+ - Geometry
+ - Geometry
+ - true
+ - de53a182-560f-41aa-841e-a01c2e117edd
+ - 1
+
+
+
+
+ -
+ 12953
+ 10093
+ 67
+ 20
+
+ -
+ 12996
+ 10103
+
+
+
+
+
+
+
+ - Center of scaling
+ - 0dcb39c9-84ce-4eca-8404-273701f1ff83
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12953
+ 10113
+ 67
+ 20
+
+ -
+ 12996
+ 10123
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2872bc84-ab45-44e6-83de-f83ffb72a08c
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 327f272f-5bf3-4638-9fd6-29b2a9e888a4
+ - 1
+
+
+
+
+ -
+ 12953
+ 10133
+ 67
+ 20
+
+ -
+ 12996
+ 10143
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 077a50c5-4230-4e9d-88e4-e384003c5ace
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13050
+ 10093
+ 53
+ 30
+
+ -
+ 13078
+ 10108
+
+
+
+
+
+
+
+ - Transformation data
+ - 08a246e1-8400-4e1a-8550-f8b7850481a1
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13050
+ 10123
+ 53
+ 30
+
+ -
+ 13078
+ 10138
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - Curve
+ - Curve
+ - false
+ - 077a50c5-4230-4e9d-88e4-e384003c5ace
+ - 1
+
+
+
+
+ -
+ 13007
+ 9496
+ 50
+ 24
+
+ -
+ 13032.15
+ 9508.595
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 914c2f95-f40f-4ec9-92ad-a19618256d32
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 10872
+ 194
+ 28
+
+ -
+ 13031
+ 10886
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 71787e88-c0ba-46bc-856a-d53b8248c2c1
+ - Variable O
+ - O
+ - true
+ - 520abc33-a013-47ff-8b6e-5b5a88804d59
+ - 1
+
+
+
+
+ -
+ 12933
+ 10874
+ 14
+ 24
+
+ -
+ 12941.5
+ 10886
+
+
+
+
+
+
+
+ - Result of expression
+ - 72601e6b-5f67-4904-97c5-3fded82a6c38
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 10874
+ 9
+ 24
+
+ -
+ 13120
+ 10886
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - efe35352-6dd4-4382-bc7d-4163c1e963ab
+ - Panel
+
+ - false
+ - 0
+ - 72601e6b-5f67-4904-97c5-3fded82a6c38
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12954
+ 10848
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12954.04
+ 10848.94
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 040ab894-16a7-4940-82e1-b350e4dada1e
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 12956
+ 9881
+ 144
+ 64
+
+ -
+ 13030
+ 9913
+
+
+
+
+
+ - Curve to evaluate
+ - fe1f1e92-78c7-4aec-9c8d-0d84bc10a616
+ - Curve
+ - Curve
+ - false
+ - 077a50c5-4230-4e9d-88e4-e384003c5ace
+ - 1
+
+
+
+
+ -
+ 12958
+ 9883
+ 57
+ 20
+
+ -
+ 12988
+ 9893
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 48a8f31f-819c-4e7e-9876-4bc76d3cdcf5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 9903
+ 57
+ 20
+
+ -
+ 12988
+ 9913
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 19f1a357-d0d7-47b1-b70f-288fc63b075a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 12958
+ 9923
+ 57
+ 20
+
+ -
+ 12988
+ 9933
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8ea6c37b-ebca-47a5-81d3-d9112b152f94
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 9883
+ 53
+ 20
+
+ -
+ 13073
+ 9893
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - baf59b17-4e50-4dc7-896d-2d351aa7c3de
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 9903
+ 53
+ 20
+
+ -
+ 13073
+ 9913
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 45140397-bf48-487a-af15-b64fbf8147c4
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 9923
+ 53
+ 20
+
+ -
+ 13073
+ 9933
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1d37bbe6-c3d7-4338-8012-3e3131f52e93
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 9664
+ 194
+ 28
+
+ -
+ 13031
+ 9678
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 07efa00c-d36a-4c23-b1b7-49e32afac917
+ - Variable O
+ - O
+ - true
+ - aae1a44b-611d-4e45-a51c-14913f4e033e
+ - 1
+
+
+
+
+ -
+ 12933
+ 9666
+ 14
+ 24
+
+ -
+ 12941.5
+ 9678
+
+
+
+
+
+
+
+ - Result of expression
+ - eadfccdd-a030-46b9-8508-0eb804259e45
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 9666
+ 9
+ 24
+
+ -
+ 13120
+ 9678
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - e6f0628a-91eb-498b-9037-e1eda68231cf
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 12962
+ 9798
+ 132
+ 64
+
+ -
+ 13009
+ 9830
+
+
+
+
+
+ - Input point
+ - 9597bb42-c042-4cbc-94c2-00d76d742c82
+ - Point
+ - Point
+ - false
+ - 8ea6c37b-ebca-47a5-81d3-d9112b152f94
+ - 1
+
+
+
+
+ -
+ 12964
+ 9800
+ 30
+ 60
+
+ -
+ 12980.5
+ 9830
+
+
+
+
+
+
+
+ - Point {x} component
+ - aae1a44b-611d-4e45-a51c-14913f4e033e
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 9800
+ 68
+ 20
+
+ -
+ 13059.5
+ 9810
+
+
+
+
+
+
+
+ - Point {y} component
+ - dca7155e-ff8e-4ea6-afd4-b82528685abc
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 9820
+ 68
+ 20
+
+ -
+ 13059.5
+ 9830
+
+
+
+
+
+
+
+ - Point {z} component
+ - 26c55cc9-9452-4f22-b056-70d7ed6a2056
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13024
+ 9840
+ 68
+ 20
+
+ -
+ 13059.5
+ 9850
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4b56d016-6f27-482a-b82d-25e4243c057c
+ - Panel
+
+ - false
+ - 0
+ - eadfccdd-a030-46b9-8508-0eb804259e45
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 9636
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.42
+ 9636.515
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d46a4d3a-f49c-4ddb-a9e2-bef53b448819
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 9578
+ 194
+ 28
+
+ -
+ 13031
+ 9592
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 741633ae-5b83-4e17-a86d-4d489c57326a
+ - Variable O
+ - O
+ - true
+ - dca7155e-ff8e-4ea6-afd4-b82528685abc
+ - 1
+
+
+
+
+ -
+ 12933
+ 9580
+ 14
+ 24
+
+ -
+ 12941.5
+ 9592
+
+
+
+
+
+
+
+ - Result of expression
+ - 65249239-7981-494a-9736-325a91f60c37
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 9580
+ 9
+ 24
+
+ -
+ 13120
+ 9592
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7617170b-b3ea-4adf-ad17-80da8e4e2314
+ - Panel
+
+ - false
+ - 0
+ - 65249239-7981-494a-9736-325a91f60c37
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 9550
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.43
+ 9550.886
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3776ba36-dc6a-43e9-921c-90277b55795c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 9750
+ 194
+ 28
+
+ -
+ 13031
+ 9764
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d066fed2-7520-461a-b2ac-63ac842c6cd6
+ - Variable O
+ - O
+ - true
+ - 26c55cc9-9452-4f22-b056-70d7ed6a2056
+ - 1
+
+
+
+
+ -
+ 12933
+ 9752
+ 14
+ 24
+
+ -
+ 12941.5
+ 9764
+
+
+
+
+
+
+
+ - Result of expression
+ - 534b85bd-7d4a-4962-ab07-c330e7c72309
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 9752
+ 9
+ 24
+
+ -
+ 13120
+ 9764
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1fa63778-59d4-4004-a25a-c4b5189f889b
+ - Panel
+
+ - false
+ - 0
+ - 534b85bd-7d4a-4962-ab07-c330e7c72309
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12953
+ 9722
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12953.17
+ 9722.726
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8a6b5972-ad07-4ee8-9661-d79409b7ca0c
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 12851
+ 14057
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 12851.82
+ 14057.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f5daa0a5-064f-48e0-9aea-0037c20fcd07
+ - Panel
+
+ - false
+ - 0
+ - 04ab288d-4bc3-45cc-811c-d34b82758547
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12865
+ 12086
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 12865.36
+ 12086.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 91586ac2-1724-49d2-9bce-dcebd4685515
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 12372
+ 194
+ 28
+
+ -
+ 13031
+ 12386
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5f1b1897-931b-483b-8234-360fc55eaae5
+ - Variable O
+ - O
+ - true
+ - 289c80b2-fb40-41f0-a44a-49aa726014ee
+ - 1
+
+
+
+
+ -
+ 12933
+ 12374
+ 14
+ 24
+
+ -
+ 12941.5
+ 12386
+
+
+
+
+
+
+
+ - Result of expression
+ - 04ab288d-4bc3-45cc-811c-d34b82758547
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 12374
+ 9
+ 24
+
+ -
+ 13120
+ 12386
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 13017
+ 14486
+ 50
+ 24
+
+ -
+ 13042.13
+ 14498.81
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 8b503ea6-0c14-46fc-ae0b-7ae4ce6243b8
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 12859
+ 12654
+ 160
+ 224
+
+ -
+ 12927
+ 12766
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 4fa2478f-9a4b-4db6-a9c5-6c966e7c1b99
+ - true
+ - Curves
+ - Curves
+ - false
+ - 3027a71a-4635-4cc1-9aba-822a13b39df3
+ - 1
+
+
+
+
+ -
+ 12861
+ 12656
+ 51
+ 27
+
+ -
+ 12888
+ 12669.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 3618134e-6ba7-4135-8fa9-d436948736c1
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 68944cdf-1812-46bf-be46-c932116d0309
+ - 1
+
+
+
+
+ -
+ 12861
+ 12683
+ 51
+ 28
+
+ -
+ 12888
+ 12697.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 9126aadf-36f9-4561-8d65-d475abea382e
+ - true
+ - Values
+ - Values
+ - false
+ - 98be2f6b-4af9-4e29-9c36-c475f903d3e3
+ - 1
+
+
+
+
+ -
+ 12861
+ 12711
+ 51
+ 27
+
+ -
+ 12888
+ 12724.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 36539248-d205-4d9b-a7c3-625f5c3fa7bc
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 12861
+ 12738
+ 51
+ 28
+
+ -
+ 12888
+ 12752.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 41a698ce-1495-4ffd-8c5e-a916b63d54b5
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 12861
+ 12766
+ 51
+ 27
+
+ -
+ 12888
+ 12779.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 562b20f7-852f-4e99-ab09-2f2502382860
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 12861
+ 12793
+ 51
+ 28
+
+ -
+ 12888
+ 12807.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 33486982-4fe0-4253-8a92-0527cea238f1
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 12861
+ 12821
+ 51
+ 27
+
+ -
+ 12888
+ 12834.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - bf67c405-eeed-4f32-8536-364fb03db725
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 12861
+ 12848
+ 51
+ 28
+
+ -
+ 12888
+ 12862.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 518cbf2e-6b9d-4f2d-a75e-28adad0f2df6
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12656
+ 75
+ 20
+
+ -
+ 12981
+ 12666
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - e8affc17-f22b-40ce-8576-8a5a594267cf
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12676
+ 75
+ 20
+
+ -
+ 12981
+ 12686
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - cc7226a1-29c8-4de8-8333-80bbb138e0ff
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12696
+ 75
+ 20
+
+ -
+ 12981
+ 12706
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 866a9ee6-6317-4d70-96d9-e90b45017f6f
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12716
+ 75
+ 20
+
+ -
+ 12981
+ 12726
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - cdaea439-a304-4d90-a26a-4f6980e63010
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12736
+ 75
+ 20
+
+ -
+ 12981
+ 12746
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 0d61d1d2-95cb-4845-b017-5bfbed6f57c7
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12756
+ 75
+ 20
+
+ -
+ 12981
+ 12766
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 4bcfb30d-a242-4a55-8df2-eb08fbae1459
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12776
+ 75
+ 20
+
+ -
+ 12981
+ 12786
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - dada0a1b-08ff-49d1-b385-8db382e67aea
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12796
+ 75
+ 20
+
+ -
+ 12981
+ 12806
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - ecf6f6ee-1e26-486e-b690-693b18a49777
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12816
+ 75
+ 20
+
+ -
+ 12981
+ 12826
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - d3ad9950-3376-4d36-80c2-3b2264aa5310
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12836
+ 75
+ 20
+
+ -
+ 12981
+ 12846
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 90c1f607-9c53-4da6-9ee7-0469533595c9
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 12942
+ 12856
+ 75
+ 20
+
+ -
+ 12981
+ 12866
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 4c64635c-1880-4b55-b09b-268462bf0344
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 12980
+ 13079
+ 96
+ 44
+
+ -
+ 13030
+ 13101
+
+
+
+
+
+ - Curve to evaluate
+ - 95f50488-10f7-484e-a0b5-579560c31b6d
+ - Curve
+ - Curve
+ - false
+ - 3027a71a-4635-4cc1-9aba-822a13b39df3
+ - 1
+
+
+
+
+ -
+ 12982
+ 13081
+ 33
+ 40
+
+ -
+ 13000
+ 13101
+
+
+
+
+
+
+
+ - Curve start point
+ - e11c1020-6f9c-4b4b-b32a-4e7432b556cf
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 13081
+ 29
+ 20
+
+ -
+ 13061
+ 13091
+
+
+
+
+
+
+
+ - Curve end point
+ - 2c689e04-8b3e-4699-8fea-3eb858e728bf
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13045
+ 13101
+ 29
+ 20
+
+ -
+ 13061
+ 13111
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 9b61b62d-1781-425b-8b1f-b7e73ef765da
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 12965
+ 12977
+ 126
+ 84
+
+ -
+ 13023
+ 13019
+
+
+
+
+
+ - Rectangle base plane
+ - 982cf8c4-70ac-40db-89f3-2daa0d84d1ab
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 12967
+ 12979
+ 41
+ 20
+
+ -
+ 12989
+ 12989
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - f8ca0306-4b17-4e0d-9697-9012293db9f6
+ - Point A
+ - Point A
+ - false
+ - e11c1020-6f9c-4b4b-b32a-4e7432b556cf
+ - 1
+
+
+
+
+ -
+ 12967
+ 12999
+ 41
+ 20
+
+ -
+ 12989
+ 13009
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - d3c6c181-fc2a-4099-9f2a-d101aaa517a2
+ - Point B
+ - Point B
+ - false
+ - 2c689e04-8b3e-4699-8fea-3eb858e728bf
+ - 1
+
+
+
+
+ -
+ 12967
+ 13019
+ 41
+ 20
+
+ -
+ 12989
+ 13029
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - a6e773b1-e585-41a8-b6b1-ea7c545e47d6
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 12967
+ 13039
+ 41
+ 20
+
+ -
+ 12989
+ 13049
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 68944cdf-1812-46bf-be46-c932116d0309
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 13038
+ 12979
+ 51
+ 40
+
+ -
+ 13065
+ 12999
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - d7eee376-4b6d-4ae4-bd06-cbf1701d31bd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13038
+ 13019
+ 51
+ 40
+
+ -
+ 13065
+ 13039
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 1ea137c4-3571-4d3f-8ceb-c0cae1c5bf1e
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 13019
+ 12774
+ 126
+ 104
+
+ -
+ 13086
+ 12826
+
+
+
+
+
+ - External curve as a graph
+ - 727ae7bf-1ec1-4fa3-af7b-826a268bfc10
+ - Curve
+ - Curve
+ - false
+ - 3027a71a-4635-4cc1-9aba-822a13b39df3
+ - 1
+
+
+
+
+ -
+ 13021
+ 12776
+ 50
+ 20
+
+ -
+ 13047.5
+ 12786
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 0a48afc8-ba4a-442b-beed-57dc057b2657
+ - Boundary
+ - Boundary
+ - true
+ - 68944cdf-1812-46bf-be46-c932116d0309
+ - 1
+
+
+
+
+ -
+ 13021
+ 12796
+ 50
+ 20
+
+ -
+ 13047.5
+ 12806
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 4f3be92b-5577-4566-91cc-27bde2850f1c
+ - Numbers
+ - Numbers
+ - false
+ - 98be2f6b-4af9-4e29-9c36-c475f903d3e3
+ - 1
+
+
+
+
+ -
+ 13021
+ 12816
+ 50
+ 20
+
+ -
+ 13047.5
+ 12826
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - dcda5c9c-309a-4247-aff2-4ae45831d040
+ - Input
+ - Input
+ - true
+ - 5edc401f-3895-4945-8c2d-f590f40a1157
+ - 1
+
+
+
+
+ -
+ 13021
+ 12836
+ 50
+ 20
+
+ -
+ 13047.5
+ 12846
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - d0fd23bb-d708-4073-a255-18d81d1c881d
+ - Output
+ - Output
+ - true
+ - 5edc401f-3895-4945-8c2d-f590f40a1157
+ - 1
+
+
+
+
+ -
+ 13021
+ 12856
+ 50
+ 20
+
+ -
+ 13047.5
+ 12866
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 7d7aedd9-db8c-4bd5-a81a-047f433df72b
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 13101
+ 12776
+ 42
+ 100
+
+ -
+ 13123.5
+ 12826
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 768840f7-01a4-42a5-840c-7347ebd0d7e0
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 12994
+ 12571
+ 89
+ 64
+
+ -
+ 13039
+ 12603
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 6166dc6f-defd-43f7-a6e8-44add2a6f2fb
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 12996
+ 12573
+ 28
+ 20
+
+ -
+ 13011.5
+ 12583
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - f801da7c-5486-4556-8b59-d119b984defe
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 518cbf2e-6b9d-4f2d-a75e-28adad0f2df6
+ - 1
+
+
+
+
+ -
+ 12996
+ 12593
+ 28
+ 20
+
+ -
+ 13011.5
+ 12603
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - df064dba-cba1-43ef-bf05-e7111d9d3d52
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 7d7aedd9-db8c-4bd5-a81a-047f433df72b
+ - 1
+
+
+
+
+ -
+ 12996
+ 12613
+ 28
+ 20
+
+ -
+ 13011.5
+ 12623
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 6189ad75-b660-4906-90f1-9c39628bb5af
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 13054
+ 12573
+ 27
+ 60
+
+ -
+ 13069
+ 12603
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 51067a14-7237-490f-9fc3-040d29b665b0
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 12963
+ 12498
+ 150
+ 20
+
+ -
+ 12963.79
+ 12498.11
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 144184ab-677d-47bc-a4a6-010cda1cf2cf
+ - Panel
+
+ - false
+ - 1
+ - 5271eaec-cd7c-467a-8c30-e25fb7c6c83b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12943
+ 13273
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 12943.86
+ 13273.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - b3593429-13b3-486e-92c0-19c2f2f74760
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 12969
+ 13218
+ 122
+ 28
+
+ -
+ 13033
+ 13232
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 0015b70c-dfd4-468d-87fb-99e014ee25cd
+ - Numbers
+ - Numbers
+ - false
+ - 98be2f6b-4af9-4e29-9c36-c475f903d3e3
+ - 1
+
+
+
+
+ -
+ 12971
+ 13220
+ 47
+ 24
+
+ -
+ 12996
+ 13232
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 5edc401f-3895-4945-8c2d-f590f40a1157
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 13048
+ 13220
+ 41
+ 24
+
+ -
+ 13070
+ 13232
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5aeed1da-374b-4672-97ff-7c101c45c07b
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12931
+ 13632
+ 194
+ 28
+
+ -
+ 13031
+ 13646
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9010cb48-bd4e-4a63-b04d-a245bcfe5d68
+ - true
+ - Variable O
+ - O
+ - true
+ - 98be2f6b-4af9-4e29-9c36-c475f903d3e3
+ - 1
+
+
+
+
+ -
+ 12933
+ 13634
+ 14
+ 24
+
+ -
+ 12941.5
+ 13646
+
+
+
+
+
+
+
+ - Result of expression
+ - 5271eaec-cd7c-467a-8c30-e25fb7c6c83b
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13114
+ 13634
+ 9
+ 24
+
+ -
+ 13120
+ 13646
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 23855da3-6d8e-4093-a346-2efc4f3152ba
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 12845
+ 13846
+ 367
+ 28
+
+ -
+ 13031
+ 13860
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3490f8c4-21a5-4afc-9b8f-38a1eb01d3f8
+ - Variable O
+ - O
+ - true
+ - 44c8431b-375d-4ef1-a714-25316eb80b9d
+ - 1
+
+
+
+
+ -
+ 12847
+ 13848
+ 14
+ 24
+
+ -
+ 12855.5
+ 13860
+
+
+
+
+
+
+
+ - Result of expression
+ - bfc88b33-1d04-47f5-9143-8f3eff449d38
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 13201
+ 13848
+ 9
+ 24
+
+ -
+ 13207
+ 13860
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a90efd40-4b05-4533-9ad7-0796e67982a3
+ - Panel
+
+ - false
+ - 0
+ - bfc88b33-1d04-47f5-9143-8f3eff449d38
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12944
+ 13810
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12944
+ 13810.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+ - 312d6dd1-da67-4e61-a386-22acf74b4c94
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 9b6b10be-ffa4-4ec6-aca8-19b2c677acf8
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12951
+ 10006
+ 154
+ 64
+
+ -
+ 13035
+ 10038
+
+
+
+
+
+ - Base geometry
+ - 151d7a80-24c3-4048-aaff-b2b431f2f260
+ - Geometry
+ - Geometry
+ - true
+ - eb58ff90-1679-4c1c-9aae-21704022ebf7
+ - 1
+
+
+
+
+ -
+ 12953
+ 10008
+ 67
+ 20
+
+ -
+ 12996
+ 10018
+
+
+
+
+
+
+
+ - Center of scaling
+ - fb3bfa56-e1df-4bec-a349-63e71237122b
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12953
+ 10028
+ 67
+ 20
+
+ -
+ 12996
+ 10038
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 762b0b43-6a37-48c9-9c3b-7084c65d47c4
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 327f272f-5bf3-4638-9fd6-29b2a9e888a4
+ - 1
+
+
+
+
+ -
+ 12953
+ 10048
+ 67
+ 20
+
+ -
+ 12996
+ 10058
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 232f379d-252f-43e7-8245-c76be464da39
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13050
+ 10008
+ 53
+ 30
+
+ -
+ 13078
+ 10023
+
+
+
+
+
+
+
+ - Transformation data
+ - a8d3607a-e20a-43d8-9b74-1234afcc0721
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13050
+ 10038
+ 53
+ 30
+
+ -
+ 13078
+ 10053
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - e1daa472-99c5-415c-bbc5-9bbba42f5076
+ - Point
+ - Point
+ - false
+ - 232f379d-252f-43e7-8245-c76be464da39
+ - 1
+
+
+
+
+ -
+ 13008
+ 9974
+ 50
+ 24
+
+ -
+ 13033.15
+ 9986.765
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 97652b8e-75f7-4d43-9462-ada2217bdd58
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 12973
+ 9366
+ 138
+ 44
+
+ -
+ 13041
+ 9388
+
+
+
+
+
+ - Base geometry
+ - f903c06a-5a71-4ce6-b138-0714a8d77d1b
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+
+
+
+
+ -
+ 12975
+ 9368
+ 51
+ 20
+
+ -
+ 13002
+ 9378
+
+
+
+
+
+
+
+ - Mirror plane
+ - 4880345a-79b2-4766-b881-912a835b3dd5
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 12975
+ 9388
+ 51
+ 20
+
+ -
+ 13002
+ 9398
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 05f9e61f-ab36-4bed-901c-3dcb092b801f
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13056
+ 9368
+ 53
+ 20
+
+ -
+ 13084
+ 9378
+
+
+
+
+
+
+
+ - Transformation data
+ - ef4a0067-2b47-4214-b794-d1fb39d784d6
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13056
+ 9388
+ 53
+ 20
+
+ -
+ 13084
+ 9398
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 747334ba-25b6-4ffe-903e-79ffdb0809f9
+ - Curve
+ - Curve
+ - false
+ - abd700e0-7272-4b12-b976-f23f6bdd2508
+ - 1
+
+
+
+
+ -
+ 13015
+ 9266
+ 50
+ 24
+
+ -
+ 13040.4
+ 9278.774
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3027a71a-4635-4cc1-9aba-822a13b39df3
+ - Relay
+
+ - false
+ - fa545612-c892-4dae-8055-7d5d9ab87323
+ - 1
+
+
+
+
+ -
+ 13010
+ 13146
+ 40
+ 16
+
+ -
+ 13030
+ 13154
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - aa106f7a-3487-4f92-8b56-9d1b2d731d37
+ - Curve
+ - Curve
+ - false
+ - 4a97c3c7-cd33-4f5e-9662-be9289e039f1
+ - 1
+
+
+
+
+ -
+ 12577
+ 13542
+ 50
+ 24
+
+ -
+ 12602.9
+ 13554.23
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - fa545612-c892-4dae-8055-7d5d9ab87323
+ - Curve
+ - Curve
+ - false
+ - c5102d30-88f0-494f-bc0d-055251f20f9e
+ - 1
+
+
+
+
+ -
+ 12576
+ 13252
+ 50
+ 24
+
+ -
+ 12601.99
+ 13264.38
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 644c7fe6-867c-44c2-a4cd-9a264adfb17a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12520
+ 13285
+ 154
+ 64
+
+ -
+ 12604
+ 13317
+
+
+
+
+
+ - Base geometry
+ - 3aa5f8d6-fb60-4c88-821e-8a448ca812ec
+ - Geometry
+ - Geometry
+ - true
+ - aa106f7a-3487-4f92-8b56-9d1b2d731d37
+ - 1
+
+
+
+
+ -
+ 12522
+ 13287
+ 67
+ 20
+
+ -
+ 12565
+ 13297
+
+
+
+
+
+
+
+ - Center of scaling
+ - 85e4680e-9ecb-479f-8f5c-4c12b5b07b86
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12522
+ 13307
+ 67
+ 20
+
+ -
+ 12565
+ 13317
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 45337971-a0e9-43c0-86a5-4a629481b09c
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 46863f08-1441-425a-b843-5656270cea96
+ - 1
+
+
+
+
+ -
+ 12522
+ 13327
+ 67
+ 20
+
+ -
+ 12565
+ 13337
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c5102d30-88f0-494f-bc0d-055251f20f9e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 12619
+ 13287
+ 53
+ 30
+
+ -
+ 12647
+ 13302
+
+
+
+
+
+
+
+ - Transformation data
+ - 4ea7fb01-d083-41b4-b9e0-8c54ef6353a3
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 12619
+ 13317
+ 53
+ 30
+
+ -
+ 12647
+ 13332
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - aa106f7a-3487-4f92-8b56-9d1b2d731d37
+ - fa545612-c892-4dae-8055-7d5d9ab87323
+ - 644c7fe6-867c-44c2-a4cd-9a264adfb17a
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - cc7b31a5-0379-447c-8885-33d3b801e4fa
+ - 99ef6a4a-9efd-4801-aafd-77544814a52a
+ - 78283bb6-5ad0-4b08-b77f-6203ce2f82c7
+ - b73a0dce-7bd8-477e-bf1d-e09a65723038
+ - 46863f08-1441-425a-b843-5656270cea96
+ - 82d97c41-4d45-4a35-bf34-867ab61335e2
+ - a0c8b687-11e0-4ade-8843-7ea40892af01
+ - 11
+ - a1747f74-e54a-46ee-bcfe-18698c9d98c9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 8d228938-b7a0-485e-b640-49199a3a4d21
+ - Move
+ - Move
+
+
+
+
+ -
+ 12973
+ 9302
+ 138
+ 44
+
+ -
+ 13041
+ 9324
+
+
+
+
+
+ - Base geometry
+ - 6c9fd734-53d4-4db9-9f91-2a14aff09f43
+ - Geometry
+ - Geometry
+ - true
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+
+
+
+
+ -
+ 12975
+ 9304
+ 51
+ 20
+
+ -
+ 13002
+ 9314
+
+
+
+
+
+
+
+ - Translation vector
+ - 4e80f37a-6bb2-49da-8246-ec6315413ac0
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 12975
+ 9324
+ 51
+ 20
+
+ -
+ 13002
+ 9334
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 15
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - abd700e0-7272-4b12-b976-f23f6bdd2508
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13056
+ 9304
+ 53
+ 20
+
+ -
+ 13084
+ 9314
+
+
+
+
+
+
+
+ - Transformation data
+ - 0fa38cb0-8754-4806-92c6-a44649d55bc9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13056
+ 9324
+ 53
+ 20
+
+ -
+ 13084
+ 9334
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - cc7b31a5-0379-447c-8885-33d3b801e4fa
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 12474
+ 13498
+ 250
+ 20
+
+ -
+ 12474.72
+ 13498.61
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 99ef6a4a-9efd-4801-aafd-77544814a52a
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 12534
+ 13377
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12534.46
+ 13377.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 78283bb6-5ad0-4b08-b77f-6203ce2f82c7
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 12576
+ 13209
+ 50
+ 24
+
+ -
+ 12601.99
+ 13221.38
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b73a0dce-7bd8-477e-bf1d-e09a65723038
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 12580
+ 13679
+ 50
+ 24
+
+ -
+ 12605.49
+ 13691.33
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b3bb8380-0f13-4616-b698-7ff28b0c2cbf
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 12814
+ 14020
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12814.38
+ 14020.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 5d45b645-ad94-471b-acde-1fa0834367da
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 13398
+ 9997
+ 96
+ 44
+
+ -
+ 13448
+ 10019
+
+
+
+
+
+ - Curve to evaluate
+ - bea86491-d999-44e0-82c5-70899a785d68
+ - Curve
+ - Curve
+ - false
+ - 0941d520-fa4e-4f2a-883b-2b04f88285ca
+ - 1
+
+
+
+
+ -
+ 13400
+ 9999
+ 33
+ 40
+
+ -
+ 13418
+ 10019
+
+
+
+
+
+
+
+ - Curve start point
+ - 7bcd5a1b-72e3-4eaa-a089-2bb140a5a2c6
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13463
+ 9999
+ 29
+ 20
+
+ -
+ 13479
+ 10009
+
+
+
+
+
+
+
+ - Curve end point
+ - acfea654-9953-45fb-bb89-52d91f8fd827
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13463
+ 10019
+ 29
+ 20
+
+ -
+ 13479
+ 10029
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 83c93570-6862-4d5e-b9ce-88d9d5dc5e5a
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 13383
+ 9894
+ 126
+ 84
+
+ -
+ 13441
+ 9936
+
+
+
+
+
+ - Rectangle base plane
+ - d7b0de37-a805-4cda-b55d-9ca2085f2d6c
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13385
+ 9896
+ 41
+ 20
+
+ -
+ 13407
+ 9906
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 8c4ba4bb-c076-4849-8cf5-b0dab35c4e32
+ - Point A
+ - Point A
+ - false
+ - 7bcd5a1b-72e3-4eaa-a089-2bb140a5a2c6
+ - 1
+
+
+
+
+ -
+ 13385
+ 9916
+ 41
+ 20
+
+ -
+ 13407
+ 9926
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 47b191da-1329-408c-9609-3c085b8a0469
+ - Point B
+ - Point B
+ - false
+ - acfea654-9953-45fb-bb89-52d91f8fd827
+ - 1
+
+
+
+
+ -
+ 13385
+ 9936
+ 41
+ 20
+
+ -
+ 13407
+ 9946
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 74603bcc-7055-4910-9b35-a68d5977884c
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 13385
+ 9956
+ 41
+ 20
+
+ -
+ 13407
+ 9966
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - e68c2971-d028-4718-b084-023097ddcddd
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 13456
+ 9896
+ 51
+ 40
+
+ -
+ 13483
+ 9916
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 26a52d53-98da-47bc-84f0-c470a5ce3f17
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13456
+ 9936
+ 51
+ 40
+
+ -
+ 13483
+ 9956
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - 75e8872e-b767-4df3-969c-d8d681c63c48
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 13375
+ 9811
+ 142
+ 64
+
+ -
+ 13443
+ 9843
+
+
+
+
+
+ - Rectangle to deconstruct
+ - 2e4b28d2-d659-4360-8273-1a2cba5c60b0
+ - Rectangle
+ - Rectangle
+ - false
+ - e68c2971-d028-4718-b084-023097ddcddd
+ - 1
+
+
+
+
+ -
+ 13377
+ 9813
+ 51
+ 60
+
+ -
+ 13404
+ 9843
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - ef2d379f-46cc-496b-b054-a8257a497987
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13458
+ 9813
+ 57
+ 20
+
+ -
+ 13488
+ 9823
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - 017a319a-e7f1-4d8c-882a-e80db6229d47
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 13458
+ 9833
+ 57
+ 20
+
+ -
+ 13488
+ 9843
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - fb8bbb70-8d0e-4604-8af7-de0d83a01b81
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 13458
+ 9853
+ 57
+ 20
+
+ -
+ 13488
+ 9863
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 2531dcc1-1359-441d-bb5b-d61d41f0a1cd
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 13394
+ 9684
+ 104
+ 44
+
+ -
+ 13452
+ 9706
+
+
+
+
+
+ - Base domain
+ - a34a2ee9-76d5-48d0-a24d-8887ec332439
+ - Domain
+ - Domain
+ - false
+ - fb8bbb70-8d0e-4604-8af7-de0d83a01b81
+ - 1
+
+
+
+
+ -
+ 13396
+ 9686
+ 41
+ 40
+
+ -
+ 13418
+ 9706
+
+
+
+
+
+
+
+ - Start of domain
+ - c4b60deb-578a-44bf-a5dd-4270e879a1d6
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13467
+ 9686
+ 29
+ 20
+
+ -
+ 13483
+ 9696
+
+
+
+
+
+
+
+ - End of domain
+ - 94ba97e8-38eb-4947-b1e0-9679a0be2d38
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13467
+ 9706
+ 29
+ 20
+
+ -
+ 13483
+ 9716
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 79ebff82-d12e-47e6-b942-5f8f29902a76
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 13394
+ 9746
+ 104
+ 44
+
+ -
+ 13452
+ 9768
+
+
+
+
+
+ - Base domain
+ - 6ce14d8a-5956-41f7-8e23-600b4c8f7926
+ - Domain
+ - Domain
+ - false
+ - 017a319a-e7f1-4d8c-882a-e80db6229d47
+ - 1
+
+
+
+
+ -
+ 13396
+ 9748
+ 41
+ 40
+
+ -
+ 13418
+ 9768
+
+
+
+
+
+
+
+ - Start of domain
+ - c6664468-67db-4a0e-895a-653f70323b02
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 13467
+ 9748
+ 29
+ 20
+
+ -
+ 13483
+ 9758
+
+
+
+
+
+
+
+ - End of domain
+ - 5420f6ff-e48a-46c6-aadb-68801a9bd30b
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 13467
+ 9768
+ 29
+ 20
+
+ -
+ 13483
+ 9778
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - 2175c2eb-8418-4d8e-b6f0-9592ea83f481
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 13369
+ 9561
+ 154
+ 104
+
+ -
+ 13453
+ 9613
+
+
+
+
+
+ - Base geometry
+ - 0f301306-541b-4b30-b7de-6e2d368eea73
+ - Geometry
+ - Geometry
+ - true
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+
+
+
+
+ -
+ 13371
+ 9563
+ 67
+ 20
+
+ -
+ 13414
+ 9573
+
+
+
+
+
+
+
+ - Base plane
+ - 3d8f26c1-6dd7-4cdc-93bb-314fa972e30d
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 13371
+ 9583
+ 67
+ 20
+
+ -
+ 13414
+ 9593
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 0111317e-9c0c-4b0a-aba2-8d513f1bc969
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - 5420f6ff-e48a-46c6-aadb-68801a9bd30b
+ - 1
+
+
+
+
+ -
+ 13371
+ 9603
+ 67
+ 20
+
+ -
+ 13414
+ 9613
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - 06c60144-0dd1-4895-a6a6-2b7b1c80cdd5
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 94ba97e8-38eb-4947-b1e0-9679a0be2d38
+ - 1
+
+
+
+
+ -
+ 13371
+ 9623
+ 67
+ 20
+
+ -
+ 13414
+ 9633
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - ed4dc966-100b-4784-ae15-68391a3de3a3
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 13371
+ 9643
+ 67
+ 20
+
+ -
+ 13414
+ 9653
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 1954d808-6d58-46b1-8535-bf85ef84a145
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13468
+ 9563
+ 53
+ 50
+
+ -
+ 13496
+ 9588
+
+
+
+
+
+
+
+ - Transformation data
+ - 28e6c0b7-12ff-499a-af5c-8bfa65081c4e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13468
+ 9613
+ 53
+ 50
+
+ -
+ 13496
+ 9638
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5d45b645-ad94-471b-acde-1fa0834367da
+ - 83c93570-6862-4d5e-b9ce-88d9d5dc5e5a
+ - 75e8872e-b767-4df3-969c-d8d681c63c48
+ - 2531dcc1-1359-441d-bb5b-d61d41f0a1cd
+ - 79ebff82-d12e-47e6-b942-5f8f29902a76
+ - 2175c2eb-8418-4d8e-b6f0-9592ea83f481
+ - 0941d520-fa4e-4f2a-883b-2b04f88285ca
+ - 671e2d5b-7a1b-4857-abe3-e22c81a1e82b
+ - 4d2995ec-f517-4033-9ba5-874c44f3de88
+ - 03630ecd-8960-4a8e-b53c-5a4eb650a12c
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - db0e5084-e41c-47ef-a124-40b8b11485f0
+ - 12
+ - 90333eee-8a77-4cc3-b90a-5c4f8fac5cd7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 0941d520-fa4e-4f2a-883b-2b04f88285ca
+ - Curve
+ - Curve
+ - false
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+
+
+
+
+ -
+ 13426
+ 10071
+ 50
+ 24
+
+ -
+ 13451.04
+ 10083.98
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 671e2d5b-7a1b-4857-abe3-e22c81a1e82b
+ - Curve
+ - Curve
+ - false
+ - 1954d808-6d58-46b1-8535-bf85ef84a145
+ - 1
+
+
+
+
+ -
+ 13422
+ 9520
+ 50
+ 24
+
+ -
+ 13447.82
+ 9532.23
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 4d2995ec-f517-4033-9ba5-874c44f3de88
+ - Move
+ - Move
+
+
+
+
+ -
+ 13375
+ 9308
+ 138
+ 44
+
+ -
+ 13443
+ 9330
+
+
+
+
+
+ - Base geometry
+ - 6b550049-4a33-4f5f-a95f-2da7cf3604fc
+ - Geometry
+ - Geometry
+ - true
+ - 671e2d5b-7a1b-4857-abe3-e22c81a1e82b
+ - 1
+
+
+
+
+ -
+ 13377
+ 9310
+ 51
+ 20
+
+ -
+ 13404
+ 9320
+
+
+
+
+
+
+
+ - Translation vector
+ - c32c916a-86a8-4761-b919-7971eabaf253
+ - Motion
+ - Motion
+ - false
+ - 75fa1694-2418-4355-bd94-daa9c1c93502
+ - 1
+
+
+
+
+ -
+ 13377
+ 9330
+ 51
+ 20
+
+ -
+ 13404
+ 9340
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 88effb8b-28ee-43f0-9fe9-eb5ae117b933
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13458
+ 9310
+ 53
+ 20
+
+ -
+ 13486
+ 9320
+
+
+
+
+
+
+
+ - Transformation data
+ - ed196765-c548-443d-8ea7-f26e0560b3a4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13458
+ 9330
+ 53
+ 20
+
+ -
+ 13486
+ 9340
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 03630ecd-8960-4a8e-b53c-5a4eb650a12c
+ - Curve
+ - Curve
+ - false
+ - 88effb8b-28ee-43f0-9fe9-eb5ae117b933
+ - 1
+
+
+
+
+ -
+ 13423
+ 9266
+ 50
+ 24
+
+ -
+ 13448.15
+ 9278.443
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e116f652-78b8-4735-8f71-f6f1873d88b9
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 12814
+ 14181
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 12814.68
+ 14181.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 21638327-81a0-4d48-9669-827f5c814dcd
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 12907
+ 14332
+ 251
+ 20
+
+ -
+ 12907.29
+ 14332.06
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c710e993-fc29-41c9-b745-41d336c03101
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 12814
+ 14240
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12814.13
+ 14240.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 3cfc6172-94c3-4f48-80d3-443b91211fe6
+ - Expression
+
+
+
+
+
+ -
+ 12996
+ 14428
+ 79
+ 28
+
+ -
+ 13038
+ 14442
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 040ef7fe-0aa1-4d4c-9b7b-b43a1ede4833
+ - Variable X
+ - X
+ - true
+ - e1807893-da4a-4101-ac40-63126ea670f6
+ - 1
+
+
+
+
+ -
+ 12998
+ 14430
+ 14
+ 24
+
+ -
+ 13006.5
+ 14442
+
+
+
+
+
+
+
+ - Result of expression
+ - 1ed23266-44be-4f2c-ab56-029d13fee712
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 13064
+ 14430
+ 9
+ 24
+
+ -
+ 13070
+ 14442
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 0578316c-418c-4e89-95a7-dc9ddb5ba462
+ - Point
+ - Point
+ - false
+ - 8f66ad49-6028-4a1b-8324-63844d87d550
+ - 1
+
+
+
+
+ -
+ 13030
+ 11956
+ 50
+ 24
+
+ -
+ 13055.1
+ 11968.79
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8f66ad49-6028-4a1b-8324-63844d87d550
+ - Relay
+
+ - false
+ - 289c80b2-fb40-41f0-a44a-49aa726014ee
+ - 1
+
+
+
+
+ -
+ 13032
+ 12002
+ 40
+ 16
+
+ -
+ 13052
+ 12010
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - eb58ff90-1679-4c1c-9aae-21704022ebf7
+ - Relay
+
+ - false
+ - 154d3592-0b64-4bd2-bebb-2990c542e296
+ - 1
+
+
+
+
+ -
+ 13032
+ 11779
+ 40
+ 16
+
+ -
+ 13052
+ 11787
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 5c8b78b1-f658-485c-9d77-edfdca1b886d
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 12975
+ 11815
+ 154
+ 64
+
+ -
+ 13059
+ 11847
+
+
+
+
+
+ - Base geometry
+ - 29ec7256-9f87-44f9-90c1-3c9c3dc6c30d
+ - Geometry
+ - Geometry
+ - true
+ - 0578316c-418c-4e89-95a7-dc9ddb5ba462
+ - 1
+
+
+
+
+ -
+ 12977
+ 11817
+ 67
+ 20
+
+ -
+ 13020
+ 11827
+
+
+
+
+
+
+
+ - Center of scaling
+ - 29e0f51a-a146-49e2-8cb6-4eea176bcf53
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 12977
+ 11837
+ 67
+ 20
+
+ -
+ 13020
+ 11847
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 8510b34c-ea08-44b7-8f15-7a44c2aca97d
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 168c86e3-663d-475f-a603-92ce0e6c763d
+ - 1
+
+
+
+
+ -
+ 12977
+ 11857
+ 67
+ 20
+
+ -
+ 13020
+ 11867
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 154d3592-0b64-4bd2-bebb-2990c542e296
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 13074
+ 11817
+ 53
+ 30
+
+ -
+ 13102
+ 11832
+
+
+
+
+
+
+
+ - Transformation data
+ - ca8ce563-2e65-4512-a5b2-b308a467d7cd
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 13074
+ 11847
+ 53
+ 30
+
+ -
+ 13102
+ 11862
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 168c86e3-663d-475f-a603-92ce0e6c763d
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 12934
+ 11901
+ 250
+ 20
+
+ -
+ 12934.88
+ 11901.15
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0578316c-418c-4e89-95a7-dc9ddb5ba462
+ - 1
+ - 075789cc-fd97-4a29-a0a4-8c0e2f794e3d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 46863f08-1441-425a-b843-5656270cea96
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 12582
+ 13460
+ 40
+ 16
+
+ -
+ 12602
+ 13468
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 82d97c41-4d45-4a35-bf34-867ab61335e2
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 12531
+ 13427
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12531.72
+ 13427.92
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 44461c59-4231-44fb-af41-15485739b0a4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 12907
+ 14283
+ 251
+ 20
+
+ -
+ 12907.29
+ 14283.81
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - db0e5084-e41c-47ef-a124-40b8b11485f0
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 13375
+ 9394
+ 139
+ 64
+
+ -
+ 13460
+ 9426
+
+
+
+
+
+ - Vector {x} component
+ - 44d8e1d4-c30a-4ae3-9947-bb18aa5a074b
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 13377
+ 9396
+ 68
+ 20
+
+ -
+ 13412.5
+ 9406
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 15
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - e1ad2051-fd27-4a5a-bd77-3e5c9b8e1422
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 13377
+ 9416
+ 68
+ 20
+
+ -
+ 13412.5
+ 9426
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 64110c0f-432e-4628-8290-ae0d2f351e2a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 13377
+ 9436
+ 68
+ 20
+
+ -
+ 13412.5
+ 9446
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 75fa1694-2418-4355-bd94-daa9c1c93502
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 13475
+ 9396
+ 37
+ 30
+
+ -
+ 13495
+ 9411
+
+
+
+
+
+
+
+ - Vector length
+ - 343dcf47-3d5a-4447-9be6-b163cb974b1a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 13475
+ 9426
+ 37
+ 30
+
+ -
+ 13495
+ 9441
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 51fb46f4-8bcd-456d-a842-67167d645345
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 13011
+ 13940
+ 40
+ 16
+
+ -
+ 13031
+ 13948
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - a0c8b687-11e0-4ade-8843-7ea40892af01
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 12559
+ 13592
+ 89
+ 64
+
+ -
+ 12604
+ 13624
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 5035d548-b73e-4347-8465-2828fee7cdc5
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 12561
+ 13594
+ 28
+ 20
+
+ -
+ 12576.5
+ 13604
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 322e6766-034b-4bb5-8b6d-6d29acdefc82
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 2dc50ba9-98d4-4298-9c9a-104e3f8814ef
+ - 1
+
+
+
+
+ -
+ 12561
+ 13614
+ 28
+ 20
+
+ -
+ 12576.5
+ 13624
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 9bae5cba-31f0-427a-b3a3-9acf29609e74
+ - false
+ - Stream 1
+ - 1
+ - true
+ - e27f66f6-779d-49ac-8cac-820afea61e6d
+ - 1
+
+
+
+
+ -
+ 12561
+ 13634
+ 28
+ 20
+
+ -
+ 12576.5
+ 13644
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 4a97c3c7-cd33-4f5e-9662-be9289e039f1
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 12619
+ 13594
+ 27
+ 60
+
+ -
+ 12634
+ 13624
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 131ff6e2-f7c7-4eab-b513-44501fc0b6a5
+ - 7553f3fd-a0e1-4ee6-9ccc-33ae6881a31e
+ - f1dc7722-f68a-4e76-a629-9d79f7fa672e
+ - 77c71397-d676-43a5-855e-28a04de20cf2
+ - 3436aa80-e9b3-4e21-b285-fc7f29fd2145
+ - 9856b67b-38f1-47bf-a90e-f1d15176eaba
+ - 6
+ - fdb6fac0-c6e4-4cf3-819d-1f92f07b0f34
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9c50d6d0-1e19-40e3-8dbc-e01c21b81851
+ - b8fd27da-bc6d-4e40-bbb2-1871cd7d2daa
+ - fdb33a3a-2113-40b1-ad49-f5f252ed5ac6
+ - 9ab39316-2409-4104-bdd6-4ba2ce94ba64
+ - b3658bf9-9529-46b5-8d4f-717a295ba18c
+ - 747151c3-da38-4a62-bc4f-33d162225eff
+ - 1521f003-3352-4ede-8959-abd475784a0a
+ - 32908eff-1176-4411-8f52-46144aa86dfe
+ - 006526e6-183e-47bb-a061-5eb50a7adab5
+ - 30a50f70-7130-4fb3-9d08-0582ba85419a
+ - f80376c0-536c-40be-ad10-f46d06389f61
+ - a43c918b-5705-4549-a9e5-dd8e1081058d
+ - ae80dfe3-a313-4a88-92a6-a20ee6daf34f
+ - adb121fb-0265-42e6-af4a-bbacd31ccdcd
+ - c224342c-801f-4459-9224-44879ddf539f
+ - becc2c8d-d4ff-402a-a84d-52b3646340a8
+ - af815646-47d5-42f6-83e4-d86113591719
+ - b2801c2b-375a-4163-b78d-13fa2985f2c7
+ - 4549efe2-6ef9-495b-b73e-d57b1d8658c3
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 154082cc-7a35-4674-b6aa-b500c958394e
+ - aef0bf4e-e25c-416a-8bff-b54952ed560e
+ - 42c88318-5a88-4cc1-ab28-b1d73dd652d7
+ - 4196cce7-460e-4004-a74b-b9b355653474
+ - 80dfd0f0-9792-40d9-85e6-db5ebe0eadf9
+ - dfa591dc-8a9d-4616-9e21-0f4563b802ca
+ - 7344168c-2ee2-44a9-8393-8ce7cc783a0b
+ - a5f32588-ab0c-44eb-ba85-0e5af9e5b1a5
+ - e6f94cd8-4e8c-4079-a97c-93a4146e6a65
+ - c9ada40f-5341-47fb-b6d4-6794a5dca0f2
+ - 52262361-49d9-4469-8e9c-3f68257aa8fc
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - a4271c84-25cd-4656-b57b-6e1b9075a8c3
+ - 48876b36-f626-482f-aaef-f2d6994b6eda
+ - a063af2c-0f6d-470c-a90b-c1c4d076f24c
+ - 344dd78f-bc3b-4f6d-af05-f16bc0412c5a
+ - 473634ed-a08c-4654-828a-ef2745fb8393
+ - b23dda2d-4cf2-4cb6-b260-5f3522944c45
+ - 263a199d-3906-45d1-ac2e-72cea27641d2
+ - 23fe9e65-96db-4c54-ad7a-0de18adbab80
+ - 341fbc99-3289-4790-b610-401be29ac2fc
+ - d93403d2-b922-4f1b-a7a6-577adea13116
+ - 8173c5fe-8e0e-41eb-86ac-aafc074e52c8
+ - 25a69c15-0d48-436c-8d7f-63db8b42c0e5
+ - b45a9237-ddd9-4d64-89db-ebf9da902659
+ - c2f1f768-86d4-4f76-ad79-7f2a0dcabb4e
+ - e337558f-550d-4086-aca1-2c76451a8265
+ - 654488ab-cbd5-4b27-abbc-fae35a1fcba2
+ - 23ef0277-c564-455f-b452-6c0d11eebeb4
+ - 795a343d-f80f-4476-bb42-ab4376f9b364
+ - ebc157b3-3407-4a6d-a9bb-16a4b26b7bd8
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 74b7e1ea-51ea-4a7d-8398-fc7c6c939177
+ - 40c04e3c-10b0-4be2-9dd0-3f635f9f1de3
+ - f85a97dc-e0c1-4b62-95b2-48635a76a174
+ - b86a47c6-d6e0-4be7-a164-efdb7df953fe
+ - 344b3637-27e1-449a-9d39-59102c35d000
+ - 2f4f9882-5af2-4380-85c1-45ca9027d1e7
+ - a401d7aa-70bb-4793-b7e7-19d100ac7774
+ - 30d40215-0eb8-44b6-9b46-d57410a768d6
+ - 2e6664f3-e582-4617-821a-b355f412c58c
+ - ffb917a4-f88a-44d8-8873-e633c1b77f79
+ - d7d14ac5-f97b-49bc-b1c5-f762228131a0
+ - b7a4989e-d29c-4763-b390-a6211a60c766
+ - 884d7e27-d1d4-4c46-9811-b5a25cb04385
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - 437d0179-cf59-4b71-b44c-2f0819520383
+ - 97f21de3-e5ca-44d8-b46b-64b07047104c
+ - 253cf695-782b-4de5-9fbb-cabcf3a053b2
+ - 97691683-4494-42b5-bac4-02ec9576c740
+ - df89b0dd-b37d-4dd1-b093-cce1b1dca103
+ - ff43fc76-5f3f-4cc4-84fb-7a68f99e8220
+ - 71563604-0f17-46fb-8b7b-3fdd0433bc46
+ - 41cbdf17-5670-4397-882a-c79b5a46405e
+ - 3566668c-48cb-416c-9081-8c205676cb55
+ - 829f9269-b7d0-4fae-911e-33607d6d8974
+ - 13ee932b-d7c2-4da3-a838-3c1d3a1bf1d3
+ - 0153e69e-17b6-46d3-aabe-eea050991035
+ - 692b3785-26a1-4388-8495-da08f520e287
+ - bc35ec24-ae25-4161-a748-94c38b2e5b2f
+ - 1e7adb91-c83d-4184-b2d9-5c5c37b7cd2f
+ - e464e48a-068a-4ad2-882b-5575331b82f3
+ - 72156254-a964-41b6-b774-888d3598d1fa
+ - 83
+ - b0fc41c7-9542-4a68-8869-bb215f97be67
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b8fd27da-bc6d-4e40-bbb2-1871cd7d2daa
+ - fdb33a3a-2113-40b1-ad49-f5f252ed5ac6
+ - 9ab39316-2409-4104-bdd6-4ba2ce94ba64
+ - b3658bf9-9529-46b5-8d4f-717a295ba18c
+ - 747151c3-da38-4a62-bc4f-33d162225eff
+ - 1521f003-3352-4ede-8959-abd475784a0a
+ - 32908eff-1176-4411-8f52-46144aa86dfe
+ - 006526e6-183e-47bb-a061-5eb50a7adab5
+ - 30a50f70-7130-4fb3-9d08-0582ba85419a
+ - f80376c0-536c-40be-ad10-f46d06389f61
+ - a43c918b-5705-4549-a9e5-dd8e1081058d
+ - ae80dfe3-a313-4a88-92a6-a20ee6daf34f
+ - adb121fb-0265-42e6-af4a-bbacd31ccdcd
+ - c224342c-801f-4459-9224-44879ddf539f
+ - becc2c8d-d4ff-402a-a84d-52b3646340a8
+ - af815646-47d5-42f6-83e4-d86113591719
+ - b2801c2b-375a-4163-b78d-13fa2985f2c7
+ - 4549efe2-6ef9-495b-b73e-d57b1d8658c3
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 154082cc-7a35-4674-b6aa-b500c958394e
+ - aef0bf4e-e25c-416a-8bff-b54952ed560e
+ - 42c88318-5a88-4cc1-ab28-b1d73dd652d7
+ - 4196cce7-460e-4004-a74b-b9b355653474
+ - 80dfd0f0-9792-40d9-85e6-db5ebe0eadf9
+ - dfa591dc-8a9d-4616-9e21-0f4563b802ca
+ - 7344168c-2ee2-44a9-8393-8ce7cc783a0b
+ - a5f32588-ab0c-44eb-ba85-0e5af9e5b1a5
+ - e6f94cd8-4e8c-4079-a97c-93a4146e6a65
+ - c9ada40f-5341-47fb-b6d4-6794a5dca0f2
+ - 52262361-49d9-4469-8e9c-3f68257aa8fc
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - a4271c84-25cd-4656-b57b-6e1b9075a8c3
+ - 48876b36-f626-482f-aaef-f2d6994b6eda
+ - a063af2c-0f6d-470c-a90b-c1c4d076f24c
+ - 344dd78f-bc3b-4f6d-af05-f16bc0412c5a
+ - 473634ed-a08c-4654-828a-ef2745fb8393
+ - b23dda2d-4cf2-4cb6-b260-5f3522944c45
+ - 263a199d-3906-45d1-ac2e-72cea27641d2
+ - 23fe9e65-96db-4c54-ad7a-0de18adbab80
+ - 341fbc99-3289-4790-b610-401be29ac2fc
+ - d93403d2-b922-4f1b-a7a6-577adea13116
+ - 8173c5fe-8e0e-41eb-86ac-aafc074e52c8
+ - 25a69c15-0d48-436c-8d7f-63db8b42c0e5
+ - b45a9237-ddd9-4d64-89db-ebf9da902659
+ - c2f1f768-86d4-4f76-ad79-7f2a0dcabb4e
+ - e337558f-550d-4086-aca1-2c76451a8265
+ - 654488ab-cbd5-4b27-abbc-fae35a1fcba2
+ - 23ef0277-c564-455f-b452-6c0d11eebeb4
+ - 795a343d-f80f-4476-bb42-ab4376f9b364
+ - ebc157b3-3407-4a6d-a9bb-16a4b26b7bd8
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 74b7e1ea-51ea-4a7d-8398-fc7c6c939177
+ - 40c04e3c-10b0-4be2-9dd0-3f635f9f1de3
+ - f85a97dc-e0c1-4b62-95b2-48635a76a174
+ - b86a47c6-d6e0-4be7-a164-efdb7df953fe
+ - 344b3637-27e1-449a-9d39-59102c35d000
+ - 2f4f9882-5af2-4380-85c1-45ca9027d1e7
+ - a401d7aa-70bb-4793-b7e7-19d100ac7774
+ - 30d40215-0eb8-44b6-9b46-d57410a768d6
+ - 2e6664f3-e582-4617-821a-b355f412c58c
+ - ffb917a4-f88a-44d8-8873-e633c1b77f79
+ - d7d14ac5-f97b-49bc-b1c5-f762228131a0
+ - b7a4989e-d29c-4763-b390-a6211a60c766
+ - 884d7e27-d1d4-4c46-9811-b5a25cb04385
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - 437d0179-cf59-4b71-b44c-2f0819520383
+ - 97f21de3-e5ca-44d8-b46b-64b07047104c
+ - 253cf695-782b-4de5-9fbb-cabcf3a053b2
+ - 97691683-4494-42b5-bac4-02ec9576c740
+ - df89b0dd-b37d-4dd1-b093-cce1b1dca103
+ - ff43fc76-5f3f-4cc4-84fb-7a68f99e8220
+ - 71563604-0f17-46fb-8b7b-3fdd0433bc46
+ - 41cbdf17-5670-4397-882a-c79b5a46405e
+ - 3566668c-48cb-416c-9081-8c205676cb55
+ - 829f9269-b7d0-4fae-911e-33607d6d8974
+ - 13ee932b-d7c2-4da3-a838-3c1d3a1bf1d3
+ - 0153e69e-17b6-46d3-aabe-eea050991035
+ - 692b3785-26a1-4388-8495-da08f520e287
+ - bc35ec24-ae25-4161-a748-94c38b2e5b2f
+ - 79
+ - 9c50d6d0-1e19-40e3-8dbc-e01c21b81851
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0153e69e-17b6-46d3-aabe-eea050991035
+ - 1
+ - b8fd27da-bc6d-4e40-bbb2-1871cd7d2daa
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9ab39316-2409-4104-bdd6-4ba2ce94ba64
+ - 1
+ - fdb33a3a-2113-40b1-ad49-f5f252ed5ac6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b3658bf9-9529-46b5-8d4f-717a295ba18c
+ - 1
+ - 9ab39316-2409-4104-bdd6-4ba2ce94ba64
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 747151c3-da38-4a62-bc4f-33d162225eff
+ - 1
+ - b3658bf9-9529-46b5-8d4f-717a295ba18c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1521f003-3352-4ede-8959-abd475784a0a
+ - 1
+ - 747151c3-da38-4a62-bc4f-33d162225eff
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 32908eff-1176-4411-8f52-46144aa86dfe
+ - 1
+ - 1521f003-3352-4ede-8959-abd475784a0a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 30a50f70-7130-4fb3-9d08-0582ba85419a
+ - 1
+ - 32908eff-1176-4411-8f52-46144aa86dfe
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 006526e6-183e-47bb-a061-5eb50a7adab5
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14879
+ 13154
+ 50
+ 24
+
+ -
+ 14904.4
+ 13166.67
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 006526e6-183e-47bb-a061-5eb50a7adab5
+ - 1
+ - 30a50f70-7130-4fb3-9d08-0582ba85419a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c9ada40f-5341-47fb-b6d4-6794a5dca0f2
+ - 1
+ - f80376c0-536c-40be-ad10-f46d06389f61
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ae80dfe3-a313-4a88-92a6-a20ee6daf34f
+ - adb121fb-0265-42e6-af4a-bbacd31ccdcd
+ - c224342c-801f-4459-9224-44879ddf539f
+ - becc2c8d-d4ff-402a-a84d-52b3646340a8
+ - af815646-47d5-42f6-83e4-d86113591719
+ - b2801c2b-375a-4163-b78d-13fa2985f2c7
+ - 4549efe2-6ef9-495b-b73e-d57b1d8658c3
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - aef0bf4e-e25c-416a-8bff-b54952ed560e
+ - 154082cc-7a35-4674-b6aa-b500c958394e
+ - f80376c0-536c-40be-ad10-f46d06389f61
+ - 30a50f70-7130-4fb3-9d08-0582ba85419a
+ - 437d0179-cf59-4b71-b44c-2f0819520383
+ - 97f21de3-e5ca-44d8-b46b-64b07047104c
+ - 253cf695-782b-4de5-9fbb-cabcf3a053b2
+ - 97691683-4494-42b5-bac4-02ec9576c740
+ - df89b0dd-b37d-4dd1-b093-cce1b1dca103
+ - ff43fc76-5f3f-4cc4-84fb-7a68f99e8220
+ - b7a4989e-d29c-4763-b390-a6211a60c766
+ - 884d7e27-d1d4-4c46-9811-b5a25cb04385
+ - 20
+ - a43c918b-5705-4549-a9e5-dd8e1081058d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - ae80dfe3-a313-4a88-92a6-a20ee6daf34f
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 14854
+ 14318
+ 104
+ 64
+
+ -
+ 14913
+ 14350
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - ff56df39-c0f4-4fe0-bd94-e574973cca5d
+ - Data
+ - Data
+ - false
+ - 9f0aa848-e2c9-40b8-8f03-e94966a7c223
+ - 1
+
+
+
+
+ -
+ 14856
+ 14320
+ 42
+ 20
+
+ -
+ 14878.5
+ 14330
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 81375a2d-e09e-4195-ae81-c196552c9a85
+ - Number
+ - Number
+ - false
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - 1
+
+
+
+
+ -
+ 14856
+ 14340
+ 42
+ 20
+
+ -
+ 14878.5
+ 14350
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 3ff9dcaf-5557-44fe-9703-6cc524b52949
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 14856
+ 14360
+ 42
+ 20
+
+ -
+ 14878.5
+ 14370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - a3a04c49-57ed-4472-9661-4bb034dc3e70
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 14928
+ 14320
+ 28
+ 60
+
+ -
+ 14943.5
+ 14350
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - adb121fb-0265-42e6-af4a-bbacd31ccdcd
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 14840
+ 12390
+ 116
+ 44
+
+ -
+ 14901
+ 12412
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 69a076bb-ad33-4627-92b2-59b6850314e0
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - a3a04c49-57ed-4472-9661-4bb034dc3e70
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 14842
+ 12392
+ 44
+ 20
+
+ -
+ 14865.5
+ 12402
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 3535288e-d0d3-4353-ab12-57d2c3faf192
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 9af3e55d-34ce-45a8-a8db-6eaa07661438
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 14842
+ 12412
+ 44
+ 20
+
+ -
+ 14865.5
+ 12422
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 39bcc335-5d73-44ba-baf2-2cb1d86a18f2
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 14916
+ 12392
+ 38
+ 20
+
+ -
+ 14936.5
+ 12402
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 919d17fe-401d-4453-ae1a-4909779e11cd
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14916
+ 12412
+ 38
+ 20
+
+ -
+ 14936.5
+ 12422
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - becc2c8d-d4ff-402a-a84d-52b3646340a8
+ - Series
+ - Series
+
+
+
+
+ -
+ 14851
+ 13647
+ 101
+ 64
+
+ -
+ 14901
+ 13679
+
+
+
+
+
+ - First number in the series
+ - 6f679c91-49e5-4c7e-8e98-48ec5b608074
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 14853
+ 13649
+ 33
+ 20
+
+ -
+ 14871
+ 13659
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 4a924eb0-7484-4ec3-ad5f-f266d7375d9c
+ - Step
+ - Step
+ - false
+ - 13ee932b-d7c2-4da3-a838-3c1d3a1bf1d3
+ - 1
+
+
+
+
+ -
+ 14853
+ 13669
+ 33
+ 20
+
+ -
+ 14871
+ 13679
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 52969ee4-d7e9-42b8-bd21-5bef06c6a92d
+ - Count
+ - Count
+ - false
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - 1
+
+
+
+
+ -
+ 14853
+ 13689
+ 33
+ 20
+
+ -
+ 14871
+ 13699
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 2a3fb0e2-1b6e-45ee-ac54-fc68cfba59e5
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 14916
+ 13649
+ 34
+ 60
+
+ -
+ 14934.5
+ 13679
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - af815646-47d5-42f6-83e4-d86113591719
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14837
+ 14498
+ 150
+ 20
+
+ -
+ 14837.08
+ 14498.52
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - b2801c2b-375a-4163-b78d-13fa2985f2c7
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 14840
+ 13864
+ 120
+ 28
+
+ -
+ 14901
+ 13878
+
+
+
+
+
+ - Angle in degrees
+ - 92b402f2-e002-45e9-810a-7626997b23e1
+ - Degrees
+ - Degrees
+ - false
+ - f75ec5b3-bb3a-4926-8ec3-92d810a33dfd
+ - 1
+
+
+
+
+ -
+ 14842
+ 13866
+ 44
+ 24
+
+ -
+ 14865.5
+ 13878
+
+
+
+
+
+
+
+ - Angle in radians
+ - edbce4e2-4993-4d29-83d2-ab63c7ae5f03
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 14916
+ 13866
+ 42
+ 24
+
+ -
+ 14938.5
+ 13878
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 4549efe2-6ef9-495b-b73e-d57b1d8658c3
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 14777
+ 14173
+ 251
+ 20
+
+ -
+ 14777.79
+ 14173.79
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 154082cc-7a35-4674-b6aa-b500c958394e
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 14826
+ 11625
+ 144
+ 84
+
+ -
+ 14912
+ 11667
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 085e3c55-9916-4643-b326-6cb8667b9e47
+ - Vertices
+ - Vertices
+ - false
+ - f1dc7722-f68a-4e76-a629-9d79f7fa672e
+ - 1
+
+
+
+
+ -
+ 14828
+ 11627
+ 69
+ 20
+
+ -
+ 14864
+ 11637
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 8db3fd17-eaec-45f0-b573-63fe670a9e68
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11647
+ 69
+ 20
+
+ -
+ 14864
+ 11657
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - b15ea709-c33c-4332-b228-c91dd9a2a4e0
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11667
+ 69
+ 20
+
+ -
+ 14864
+ 11677
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 25fa54c6-e614-4918-b44e-ebc08692e71b
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11687
+ 69
+ 20
+
+ -
+ 14864
+ 11697
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - d88503dc-2c62-4e69-ba78-bfe7342a61a8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14927
+ 11627
+ 41
+ 26
+
+ -
+ 14949
+ 11640.33
+
+
+
+
+
+
+
+ - Curve length
+ - c4907d9d-8775-4b32-a2ce-76123d79df21
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14927
+ 11653
+ 41
+ 27
+
+ -
+ 14949
+ 11667
+
+
+
+
+
+
+
+ - Curve domain
+ - 71f2995a-ce7f-4af1-81b8-73fa005125ec
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 14927
+ 11680
+ 41
+ 27
+
+ -
+ 14949
+ 11693.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ae80dfe3-a313-4a88-92a6-a20ee6daf34f
+ - adb121fb-0265-42e6-af4a-bbacd31ccdcd
+ - c224342c-801f-4459-9224-44879ddf539f
+ - becc2c8d-d4ff-402a-a84d-52b3646340a8
+ - af815646-47d5-42f6-83e4-d86113591719
+ - b2801c2b-375a-4163-b78d-13fa2985f2c7
+ - 4549efe2-6ef9-495b-b73e-d57b1d8658c3
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 41cbdf17-5670-4397-882a-c79b5a46405e
+ - 48876b36-f626-482f-aaef-f2d6994b6eda
+ - d7d14ac5-f97b-49bc-b1c5-f762228131a0
+ - 71563604-0f17-46fb-8b7b-3fdd0433bc46
+ - 3566668c-48cb-416c-9081-8c205676cb55
+ - 02bd4f03-e28f-42f6-b942-16421ebb3bff
+ - 14
+ - aef0bf4e-e25c-416a-8bff-b54952ed560e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 42c88318-5a88-4cc1-ab28-b1d73dd652d7
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 14826
+ 11457
+ 144
+ 64
+
+ -
+ 14900
+ 11489
+
+
+
+
+
+ - Curve to evaluate
+ - 33834da1-79a1-4625-9ee2-434b9837cc8e
+ - Curve
+ - Curve
+ - false
+ - d88503dc-2c62-4e69-ba78-bfe7342a61a8
+ - 1
+
+
+
+
+ -
+ 14828
+ 11459
+ 57
+ 20
+
+ -
+ 14858
+ 11469
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 13819db4-e774-41e8-aea3-31f69fa0763e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11479
+ 57
+ 20
+
+ -
+ 14858
+ 11489
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 23dd6840-78f7-4ead-9d69-9b71c7fefb30
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11499
+ 57
+ 20
+
+ -
+ 14858
+ 11509
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d6d0f16c-54ac-4295-9b0f-a8266e615099
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11459
+ 53
+ 20
+
+ -
+ 14943
+ 11469
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 2ad407a9-024e-4895-aa40-d775a50bb83b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11479
+ 53
+ 20
+
+ -
+ 14943
+ 11489
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 9d363ecb-7b03-42c9-9b02-cc3181eb0e26
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11499
+ 53
+ 20
+
+ -
+ 14943
+ 11509
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 4196cce7-460e-4004-a74b-b9b355653474
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 14829
+ 11395
+ 138
+ 44
+
+ -
+ 14897
+ 11417
+
+
+
+
+
+ - Base geometry
+ - 5bb21746-b4df-477e-a676-ff397612bb3a
+ - Geometry
+ - Geometry
+ - true
+ - d88503dc-2c62-4e69-ba78-bfe7342a61a8
+ - 1
+
+
+
+
+ -
+ 14831
+ 11397
+ 51
+ 20
+
+ -
+ 14858
+ 11407
+
+
+
+
+
+
+
+ - Mirror plane
+ - 77ed8759-61eb-4004-be75-4ccdc65d405c
+ - Plane
+ - Plane
+ - false
+ - bf1fee78-eb88-4160-8a82-9bb93579c084
+ - 1
+
+
+
+
+ -
+ 14831
+ 11417
+ 51
+ 20
+
+ -
+ 14858
+ 11427
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - ed1b0dbf-24bd-4ff7-be7a-d274b307f13c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14912
+ 11397
+ 53
+ 20
+
+ -
+ 14940
+ 11407
+
+
+
+
+
+
+
+ - Transformation data
+ - 31077e74-b262-4964-9a7c-689960ca5f18
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14912
+ 11417
+ 53
+ 20
+
+ -
+ 14940
+ 11427
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 80dfd0f0-9792-40d9-85e6-db5ebe0eadf9
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 14845
+ 11541
+ 106
+ 64
+
+ -
+ 14909
+ 11573
+
+
+
+
+
+ - Line start point
+ - 29623dbf-7241-4bd8-8f70-d96af2dd738b
+ - Start
+ - Start
+ - false
+ - d6d0f16c-54ac-4295-9b0f-a8266e615099
+ - 1
+
+
+
+
+ -
+ 14847
+ 11543
+ 47
+ 20
+
+ -
+ 14872
+ 11553
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8f1b2f1d-da3b-4cfd-8602-da06e5c8228e
+ - Direction
+ - Direction
+ - false
+ - 2ad407a9-024e-4895-aa40-d775a50bb83b
+ - 1
+
+
+
+
+ -
+ 14847
+ 11563
+ 47
+ 20
+
+ -
+ 14872
+ 11573
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 5b3b7c31-b896-4f5d-b437-71dec5618fb0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14847
+ 11583
+ 47
+ 20
+
+ -
+ 14872
+ 11593
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - bf1fee78-eb88-4160-8a82-9bb93579c084
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 14924
+ 11543
+ 25
+ 60
+
+ -
+ 14938
+ 11573
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - dfa591dc-8a9d-4616-9e21-0f4563b802ca
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 14839
+ 11333
+ 118
+ 44
+
+ -
+ 14902
+ 11355
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 77af013e-d83a-4fb0-97fc-faa7334a94a1
+ - Curves
+ - Curves
+ - false
+ - d88503dc-2c62-4e69-ba78-bfe7342a61a8
+ - ed1b0dbf-24bd-4ff7-be7a-d274b307f13c
+ - 2
+
+
+
+
+ -
+ 14841
+ 11335
+ 46
+ 20
+
+ -
+ 14865.5
+ 11345
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 311e7075-f1e3-46d4-bda6-fda956f786d3
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 14841
+ 11355
+ 46
+ 20
+
+ -
+ 14865.5
+ 11365
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 47b67870-e525-4da9-897b-54c917b48e9f
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14917
+ 11335
+ 38
+ 40
+
+ -
+ 14937.5
+ 11355
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 7344168c-2ee2-44a9-8393-8ce7cc783a0b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 14826
+ 11249
+ 144
+ 64
+
+ -
+ 14900
+ 11281
+
+
+
+
+
+ - Curve to evaluate
+ - 5a0c67d5-c964-44a4-8505-1bad1ff54c7c
+ - Curve
+ - Curve
+ - false
+ - 47b67870-e525-4da9-897b-54c917b48e9f
+ - 1
+
+
+
+
+ -
+ 14828
+ 11251
+ 57
+ 20
+
+ -
+ 14858
+ 11261
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d1070862-339a-4899-a8a5-3e1d8b215022
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11271
+ 57
+ 20
+
+ -
+ 14858
+ 11281
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 5e8d2367-9f92-4f0e-a6dd-0b178aa7842c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11291
+ 57
+ 20
+
+ -
+ 14858
+ 11301
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - eba5b44d-c31a-488b-a39f-da838bbae658
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11251
+ 53
+ 20
+
+ -
+ 14943
+ 11261
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - d8a5c4cb-be3d-4378-9e69-68a1e9aed991
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11271
+ 53
+ 20
+
+ -
+ 14943
+ 11281
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - c0f8f4a8-6c43-47dc-8342-8943fd30d622
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11291
+ 53
+ 20
+
+ -
+ 14943
+ 11301
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - a5f32588-ab0c-44eb-ba85-0e5af9e5b1a5
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 14829
+ 11166
+ 138
+ 64
+
+ -
+ 14897
+ 11198
+
+
+
+
+
+ - Base geometry
+ - c31c5198-8d67-4cf3-8204-e7dd8487af42
+ - Geometry
+ - Geometry
+ - true
+ - 47b67870-e525-4da9-897b-54c917b48e9f
+ - 1
+
+
+
+
+ -
+ 14831
+ 11168
+ 51
+ 20
+
+ -
+ 14858
+ 11178
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 7ae0de57-d0da-4430-91e0-90b64394e8ee
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 14831
+ 11188
+ 51
+ 20
+
+ -
+ 14858
+ 11198
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 4bd8f105-113c-492d-874e-6ef6b77ab63a
+ - Plane
+ - Plane
+ - false
+ - eba5b44d-c31a-488b-a39f-da838bbae658
+ - 1
+
+
+
+
+ -
+ 14831
+ 11208
+ 51
+ 20
+
+ -
+ 14858
+ 11218
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 3c6a0a5e-d557-46d7-a37d-6f4a05aaf344
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14912
+ 11168
+ 53
+ 30
+
+ -
+ 14940
+ 11183
+
+
+
+
+
+
+
+ - Transformation data
+ - 1eeeba5c-687e-4375-a8bd-b8e3c7ca7a42
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14912
+ 11198
+ 53
+ 30
+
+ -
+ 14940
+ 11213
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - e6f94cd8-4e8c-4079-a97c-93a4146e6a65
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 14839
+ 11103
+ 118
+ 44
+
+ -
+ 14902
+ 11125
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 7f4f8a8c-0c2d-45c2-a138-33c236f9518e
+ - Curves
+ - Curves
+ - false
+ - 47b67870-e525-4da9-897b-54c917b48e9f
+ - 3c6a0a5e-d557-46d7-a37d-6f4a05aaf344
+ - 2
+
+
+
+
+ -
+ 14841
+ 11105
+ 46
+ 20
+
+ -
+ 14865.5
+ 11115
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 43bd2df2-6a1a-46d6-97f1-a63cc39c765d
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 14841
+ 11125
+ 46
+ 20
+
+ -
+ 14865.5
+ 11135
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 87270a07-9b0e-4060-b369-56cff5f3c0ff
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14917
+ 11105
+ 38
+ 40
+
+ -
+ 14937.5
+ 11125
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 154082cc-7a35-4674-b6aa-b500c958394e
+ - 42c88318-5a88-4cc1-ab28-b1d73dd652d7
+ - 4196cce7-460e-4004-a74b-b9b355653474
+ - 80dfd0f0-9792-40d9-85e6-db5ebe0eadf9
+ - dfa591dc-8a9d-4616-9e21-0f4563b802ca
+ - 7344168c-2ee2-44a9-8393-8ce7cc783a0b
+ - a5f32588-ab0c-44eb-ba85-0e5af9e5b1a5
+ - e6f94cd8-4e8c-4079-a97c-93a4146e6a65
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - 131ff6e2-f7c7-4eab-b513-44501fc0b6a5
+ - 7553f3fd-a0e1-4ee6-9ccc-33ae6881a31e
+ - f1dc7722-f68a-4e76-a629-9d79f7fa672e
+ - 77c71397-d676-43a5-855e-28a04de20cf2
+ - 9856b67b-38f1-47bf-a90e-f1d15176eaba
+ - 3436aa80-e9b3-4e21-b285-fc7f29fd2145
+ - 15
+ - c9ada40f-5341-47fb-b6d4-6794a5dca0f2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 52262361-49d9-4469-8e9c-3f68257aa8fc
+ - Panel
+
+ - false
+ - 0
+ - 25a69c15-0d48-436c-8d7f-63db8b42c0e5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14830
+ 13740
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14830.82
+ 13740.01
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - Curve
+ - Curve
+ - false
+ - 87270a07-9b0e-4060-b369-56cff5f3c0ff
+ - 1
+
+
+
+
+ -
+ 14879
+ 11067
+ 50
+ 24
+
+ -
+ 14904.4
+ 11079.59
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - 1
+ - a4271c84-25cd-4656-b57b-6e1b9075a8c3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 48876b36-f626-482f-aaef-f2d6994b6eda
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 14684
+ 13948
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14684.38
+ 13948.1
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a063af2c-0f6d-470c-a90b-c1c4d076f24c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 14826
+ 10977
+ 144
+ 64
+
+ -
+ 14900
+ 11009
+
+
+
+
+
+ - Curve to evaluate
+ - 51767dcf-d676-42f1-b9c0-d3c9f2a7bda0
+ - Curve
+ - Curve
+ - false
+ - 87270a07-9b0e-4060-b369-56cff5f3c0ff
+ - 1
+
+
+
+
+ -
+ 14828
+ 10979
+ 57
+ 20
+
+ -
+ 14858
+ 10989
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b2c11a07-c2ca-439e-8a1b-e49ed1c18ecd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 10999
+ 57
+ 20
+
+ -
+ 14858
+ 11009
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 2721858a-7863-41ef-a05e-b6f3636b0b4b
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 11019
+ 57
+ 20
+
+ -
+ 14858
+ 11029
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 3f610739-66f6-4133-aa9c-ed9c6305e3f4
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 10979
+ 53
+ 20
+
+ -
+ 14943
+ 10989
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 64f79a76-8a3d-4d8b-be29-9fed7f53e215
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 10999
+ 53
+ 20
+
+ -
+ 14943
+ 11009
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - abcabf8e-24de-45a4-bde5-7bcd371a8b8c
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 11019
+ 53
+ 20
+
+ -
+ 14943
+ 11029
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 344dd78f-bc3b-4f6d-af05-f16bc0412c5a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10755
+ 194
+ 28
+
+ -
+ 14901
+ 10769
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4d535d2c-bbe2-4b57-b7a6-c3954af9f7f1
+ - Variable O
+ - O
+ - true
+ - fe418519-b8ba-4dbb-9e0f-b12fa9206367
+ - 1
+
+
+
+
+ -
+ 14803
+ 10757
+ 14
+ 24
+
+ -
+ 14811.5
+ 10769
+
+
+
+
+
+
+
+ - Result of expression
+ - ef3bfa83-b838-434e-993d-51b7f1b8af4a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10757
+ 9
+ 24
+
+ -
+ 14990
+ 10769
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 473634ed-a08c-4654-828a-ef2745fb8393
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 14832
+ 10889
+ 132
+ 64
+
+ -
+ 14879
+ 10921
+
+
+
+
+
+ - Input point
+ - 49002525-a6ba-442c-aa90-5322377ababe
+ - Point
+ - Point
+ - false
+ - 3f610739-66f6-4133-aa9c-ed9c6305e3f4
+ - 1
+
+
+
+
+ -
+ 14834
+ 10891
+ 30
+ 60
+
+ -
+ 14850.5
+ 10921
+
+
+
+
+
+
+
+ - Point {x} component
+ - fe418519-b8ba-4dbb-9e0f-b12fa9206367
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 10891
+ 68
+ 20
+
+ -
+ 14929.5
+ 10901
+
+
+
+
+
+
+
+ - Point {y} component
+ - 15db37b0-02fc-435e-bc25-46b85ad3378f
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 10911
+ 68
+ 20
+
+ -
+ 14929.5
+ 10921
+
+
+
+
+
+
+
+ - Point {z} component
+ - 715c06e8-a74c-4ace-8ec0-decda66aca63
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 10931
+ 68
+ 20
+
+ -
+ 14929.5
+ 10941
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b23dda2d-4cf2-4cb6-b260-5f3522944c45
+ - Panel
+
+ - false
+ - 0
+ - ef3bfa83-b838-434e-993d-51b7f1b8af4a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 10733
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.17
+ 10733.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 263a199d-3906-45d1-ac2e-72cea27641d2
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10669
+ 194
+ 28
+
+ -
+ 14901
+ 10683
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8be8b8d1-37d4-41a5-a697-99646f965bd8
+ - Variable O
+ - O
+ - true
+ - 15db37b0-02fc-435e-bc25-46b85ad3378f
+ - 1
+
+
+
+
+ -
+ 14803
+ 10671
+ 14
+ 24
+
+ -
+ 14811.5
+ 10683
+
+
+
+
+
+
+
+ - Result of expression
+ - c175e21a-e0f7-451b-949c-6db2cffdd08e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10671
+ 9
+ 24
+
+ -
+ 14990
+ 10683
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 23fe9e65-96db-4c54-ad7a-0de18adbab80
+ - Panel
+
+ - false
+ - 0
+ - c175e21a-e0f7-451b-949c-6db2cffdd08e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 10644
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.17
+ 10644.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 341fbc99-3289-4790-b610-401be29ac2fc
+ - Division
+ - Division
+
+
+
+
+ -
+ 14857
+ 10567
+ 82
+ 44
+
+ -
+ 14888
+ 10589
+
+
+
+
+
+ - Item to divide (dividend)
+ - 55d58eb0-9439-434f-ba94-ef2b826950d0
+ - A
+ - A
+ - false
+ - b23dda2d-4cf2-4cb6-b260-5f3522944c45
+ - 1
+
+
+
+
+ -
+ 14859
+ 10569
+ 14
+ 20
+
+ -
+ 14867.5
+ 10579
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - b9673105-b4e7-4687-99e8-7cdb06e86a62
+ - B
+ - B
+ - false
+ - 23fe9e65-96db-4c54-ad7a-0de18adbab80
+ - 1
+
+
+
+
+ -
+ 14859
+ 10589
+ 14
+ 20
+
+ -
+ 14867.5
+ 10599
+
+
+
+
+
+
+
+ - The result of the Division
+ - 8ce03f10-5eea-4434-9d47-53e91dfeff6b
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14903
+ 10569
+ 34
+ 40
+
+ -
+ 14921.5
+ 10589
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d93403d2-b922-4f1b-a7a6-577adea13116
+ - Panel
+
+ - false
+ - 0
+ - 25a69c15-0d48-436c-8d7f-63db8b42c0e5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 10497
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.41
+ 10497.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8173c5fe-8e0e-41eb-86ac-aafc074e52c8
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10520
+ 194
+ 28
+
+ -
+ 14901
+ 10534
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2706512d-c871-45eb-b886-7e623129892c
+ - Variable O
+ - O
+ - true
+ - 8ce03f10-5eea-4434-9d47-53e91dfeff6b
+ - 1
+
+
+
+
+ -
+ 14803
+ 10522
+ 14
+ 24
+
+ -
+ 14811.5
+ 10534
+
+
+
+
+
+
+
+ - Result of expression
+ - 2fd16187-6c8d-4e2a-9b75-62f1c843c3d9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10522
+ 9
+ 24
+
+ -
+ 14990
+ 10534
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 25a69c15-0d48-436c-8d7f-63db8b42c0e5
+ - Relay
+
+ - false
+ - 2fd16187-6c8d-4e2a-9b75-62f1c843c3d9
+ - 1
+
+
+
+
+ -
+ 14878
+ 10445
+ 40
+ 16
+
+ -
+ 14898
+ 10453
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - b45a9237-ddd9-4d64-89db-ebf9da902659
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 14857
+ 10382
+ 82
+ 44
+
+ -
+ 14888
+ 10404
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 29569677-0635-4d33-91ad-54e05df56384
+ - A
+ - A
+ - true
+ - 23fe9e65-96db-4c54-ad7a-0de18adbab80
+ - 1
+
+
+
+
+ -
+ 14859
+ 10384
+ 14
+ 20
+
+ -
+ 14867.5
+ 10394
+
+
+
+
+
+
+
+ - Second item for addition
+ - bf00d645-32ea-405f-97eb-186f51929b17
+ - B
+ - B
+ - true
+ - b23dda2d-4cf2-4cb6-b260-5f3522944c45
+ - 1
+
+
+
+
+ -
+ 14859
+ 10404
+ 14
+ 20
+
+ -
+ 14867.5
+ 10414
+
+
+
+
+
+
+
+ - Result of addition
+ - 1a440a1e-7ce2-491e-a325-6b1e9ba51631
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14903
+ 10384
+ 34
+ 40
+
+ -
+ 14921.5
+ 10404
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c2f1f768-86d4-4f76-ad79-7f2a0dcabb4e
+ - Division
+ - Division
+
+
+
+
+ -
+ 14857
+ 10232
+ 82
+ 44
+
+ -
+ 14888
+ 10254
+
+
+
+
+
+ - Item to divide (dividend)
+ - bae49b4d-bd39-409a-b739-4ce6565848d6
+ - A
+ - A
+ - false
+ - 23ef0277-c564-455f-b452-6c0d11eebeb4
+ - 1
+
+
+
+
+ -
+ 14859
+ 10234
+ 14
+ 20
+
+ -
+ 14867.5
+ 10244
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - e5fc7fb6-2a9f-47a3-b0bb-dbe4c19a01e0
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 14859
+ 10254
+ 14
+ 20
+
+ -
+ 14867.5
+ 10264
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 988498e2-0181-4b2d-aa29-a1ed8e769a34
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 14903
+ 10234
+ 34
+ 40
+
+ -
+ 14921.5
+ 10254
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e337558f-550d-4086-aca1-2c76451a8265
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10184
+ 194
+ 28
+
+ -
+ 14901
+ 10198
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - b651c8f0-b8a4-44eb-b8a6-34be29beb2e4
+ - Variable O
+ - O
+ - true
+ - 988498e2-0181-4b2d-aa29-a1ed8e769a34
+ - 1
+
+
+
+
+ -
+ 14803
+ 10186
+ 14
+ 24
+
+ -
+ 14811.5
+ 10198
+
+
+
+
+
+
+
+ - Result of expression
+ - cb0edf30-d7b3-4458-b148-680f9ec8ac8b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10186
+ 9
+ 24
+
+ -
+ 14990
+ 10198
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 654488ab-cbd5-4b27-abbc-fae35a1fcba2
+ - Panel
+
+ - false
+ - 0
+ - cb0edf30-d7b3-4458-b148-680f9ec8ac8b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 10161
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.17
+ 10161.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 23ef0277-c564-455f-b452-6c0d11eebeb4
+ - Panel
+
+ - false
+ - 0
+ - 7f9cea07-b71a-44e7-a917-7cd22db590d6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 10313
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.17
+ 10313
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 795a343d-f80f-4476-bb42-ab4376f9b364
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10335
+ 194
+ 28
+
+ -
+ 14901
+ 10349
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e13712ef-ac2a-4493-b392-aaa38c07f7ff
+ - Variable O
+ - O
+ - true
+ - 1a440a1e-7ce2-491e-a325-6b1e9ba51631
+ - 1
+
+
+
+
+ -
+ 14803
+ 10337
+ 14
+ 24
+
+ -
+ 14811.5
+ 10349
+
+
+
+
+
+
+
+ - Result of expression
+ - 7f9cea07-b71a-44e7-a917-7cd22db590d6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10337
+ 9
+ 24
+
+ -
+ 14990
+ 10349
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - ebc157b3-3407-4a6d-a9bb-16a4b26b7bd8
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14821
+ 10061
+ 154
+ 64
+
+ -
+ 14905
+ 10093
+
+
+
+
+
+ - Base geometry
+ - 055448bf-029b-491d-bc2d-9352756ad499
+ - Geometry
+ - Geometry
+ - true
+ - 467170c3-a747-450d-9db5-691d3222c764
+ - 1
+
+
+
+
+ -
+ 14823
+ 10063
+ 67
+ 20
+
+ -
+ 14866
+ 10073
+
+
+
+
+
+
+
+ - Center of scaling
+ - 3351799c-de4a-48fc-b46b-beca7594cf16
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14823
+ 10083
+ 67
+ 20
+
+ -
+ 14866
+ 10093
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 03a7d3e4-aec3-4f35-a051-6ab099c004d8
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 654488ab-cbd5-4b27-abbc-fae35a1fcba2
+ - 1
+
+
+
+
+ -
+ 14823
+ 10103
+ 67
+ 20
+
+ -
+ 14866
+ 10113
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b13ecf53-af5d-4706-9a96-c01d1fd8e5c4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14920
+ 10063
+ 53
+ 30
+
+ -
+ 14948
+ 10078
+
+
+
+
+
+
+
+ - Transformation data
+ - 14951772-67bd-479c-95bc-e66cc81f3d91
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14920
+ 10093
+ 53
+ 30
+
+ -
+ 14948
+ 10108
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - Curve
+ - Curve
+ - false
+ - b13ecf53-af5d-4706-9a96-c01d1fd8e5c4
+ - 1
+
+
+
+
+ -
+ 14877
+ 9466
+ 50
+ 24
+
+ -
+ 14902.15
+ 9478.595
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 74b7e1ea-51ea-4a7d-8398-fc7c6c939177
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 10842
+ 194
+ 28
+
+ -
+ 14901
+ 10856
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3402099a-5604-48c6-ace1-aa1805d2264d
+ - Variable O
+ - O
+ - true
+ - 715c06e8-a74c-4ace-8ec0-decda66aca63
+ - 1
+
+
+
+
+ -
+ 14803
+ 10844
+ 14
+ 24
+
+ -
+ 14811.5
+ 10856
+
+
+
+
+
+
+
+ - Result of expression
+ - c3425892-f54d-45dd-a2c2-ee8519282c24
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 10844
+ 9
+ 24
+
+ -
+ 14990
+ 10856
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 40c04e3c-10b0-4be2-9dd0-3f635f9f1de3
+ - Panel
+
+ - false
+ - 0
+ - c3425892-f54d-45dd-a2c2-ee8519282c24
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14824
+ 10818
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14824.04
+ 10818.94
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f85a97dc-e0c1-4b62-95b2-48635a76a174
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 14826
+ 9851
+ 144
+ 64
+
+ -
+ 14900
+ 9883
+
+
+
+
+
+ - Curve to evaluate
+ - bc4c2fd5-62b4-410b-921d-c8878ee23fb5
+ - Curve
+ - Curve
+ - false
+ - b13ecf53-af5d-4706-9a96-c01d1fd8e5c4
+ - 1
+
+
+
+
+ -
+ 14828
+ 9853
+ 57
+ 20
+
+ -
+ 14858
+ 9863
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b9a7defe-45bb-4a63-ad99-d8d3bd5a932d
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 9873
+ 57
+ 20
+
+ -
+ 14858
+ 9883
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 508da502-4a0c-442b-9a9b-96bc47ec62b7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 14828
+ 9893
+ 57
+ 20
+
+ -
+ 14858
+ 9903
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d19c05dd-c3ed-4302-9a11-7c2e48000d42
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 9853
+ 53
+ 20
+
+ -
+ 14943
+ 9863
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 74ad9335-188a-4a17-b0ec-855bd73b90a4
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 9873
+ 53
+ 20
+
+ -
+ 14943
+ 9883
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - fcb135e4-3513-47b8-a678-1bca5faf48f6
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 9893
+ 53
+ 20
+
+ -
+ 14943
+ 9903
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b86a47c6-d6e0-4be7-a164-efdb7df953fe
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 9634
+ 194
+ 28
+
+ -
+ 14901
+ 9648
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2b1ffdd0-8bf0-40c2-8138-4227099c3c4c
+ - Variable O
+ - O
+ - true
+ - 8c774309-a3c0-4537-b044-d3c962ad3f9a
+ - 1
+
+
+
+
+ -
+ 14803
+ 9636
+ 14
+ 24
+
+ -
+ 14811.5
+ 9648
+
+
+
+
+
+
+
+ - Result of expression
+ - 132196d4-f6f2-426c-ad82-5d5be077fb73
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 9636
+ 9
+ 24
+
+ -
+ 14990
+ 9648
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 344b3637-27e1-449a-9d39-59102c35d000
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 14832
+ 9768
+ 132
+ 64
+
+ -
+ 14879
+ 9800
+
+
+
+
+
+ - Input point
+ - 15f9fbae-9682-4a52-9d14-029998c2f56c
+ - Point
+ - Point
+ - false
+ - d19c05dd-c3ed-4302-9a11-7c2e48000d42
+ - 1
+
+
+
+
+ -
+ 14834
+ 9770
+ 30
+ 60
+
+ -
+ 14850.5
+ 9800
+
+
+
+
+
+
+
+ - Point {x} component
+ - 8c774309-a3c0-4537-b044-d3c962ad3f9a
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 9770
+ 68
+ 20
+
+ -
+ 14929.5
+ 9780
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6f0fc5a4-0e48-443c-b0e5-e23d991367d9
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 9790
+ 68
+ 20
+
+ -
+ 14929.5
+ 9800
+
+
+
+
+
+
+
+ - Point {z} component
+ - 6ad55e59-0e47-4916-8e60-d659c7cec473
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 14894
+ 9810
+ 68
+ 20
+
+ -
+ 14929.5
+ 9820
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2f4f9882-5af2-4380-85c1-45ca9027d1e7
+ - Panel
+
+ - false
+ - 0
+ - 132196d4-f6f2-426c-ad82-5d5be077fb73
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 9606
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.42
+ 9606.515
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a401d7aa-70bb-4793-b7e7-19d100ac7774
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 9548
+ 194
+ 28
+
+ -
+ 14901
+ 9562
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d3ba31e8-191d-4be9-832d-e78e90f3c447
+ - Variable O
+ - O
+ - true
+ - 6f0fc5a4-0e48-443c-b0e5-e23d991367d9
+ - 1
+
+
+
+
+ -
+ 14803
+ 9550
+ 14
+ 24
+
+ -
+ 14811.5
+ 9562
+
+
+
+
+
+
+
+ - Result of expression
+ - 7d51fb3f-2e80-4afb-a65b-f5d0ffb5853f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 9550
+ 9
+ 24
+
+ -
+ 14990
+ 9562
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 30d40215-0eb8-44b6-9b46-d57410a768d6
+ - Panel
+
+ - false
+ - 0
+ - 7d51fb3f-2e80-4afb-a65b-f5d0ffb5853f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 9520
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.43
+ 9520.886
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2e6664f3-e582-4617-821a-b355f412c58c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 9720
+ 194
+ 28
+
+ -
+ 14901
+ 9734
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 77907fed-61ce-4caa-8d79-e0d0953a2da7
+ - Variable O
+ - O
+ - true
+ - 6ad55e59-0e47-4916-8e60-d659c7cec473
+ - 1
+
+
+
+
+ -
+ 14803
+ 9722
+ 14
+ 24
+
+ -
+ 14811.5
+ 9734
+
+
+
+
+
+
+
+ - Result of expression
+ - 201fbfb4-227d-41e5-a45c-775bddec7020
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 9722
+ 9
+ 24
+
+ -
+ 14990
+ 9734
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ffb917a4-f88a-44d8-8873-e633c1b77f79
+ - Panel
+
+ - false
+ - 0
+ - 201fbfb4-227d-41e5-a45c-775bddec7020
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14823
+ 9692
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14823.17
+ 9692.726
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d7d14ac5-f97b-49bc-b1c5-f762228131a0
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 14721
+ 14027
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 14721.82
+ 14027.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b7a4989e-d29c-4763-b390-a6211a60c766
+ - Panel
+
+ - false
+ - 0
+ - 7afce703-9842-424c-827f-d839a2dfbe66
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14735
+ 12056
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 14735.36
+ 12056.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 884d7e27-d1d4-4c46-9811-b5a25cb04385
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 12342
+ 194
+ 28
+
+ -
+ 14901
+ 12356
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7d963206-7a6e-4354-8fe5-e7029702e895
+ - Variable O
+ - O
+ - true
+ - 919d17fe-401d-4453-ae1a-4909779e11cd
+ - 1
+
+
+
+
+ -
+ 14803
+ 12344
+ 14
+ 24
+
+ -
+ 14811.5
+ 12356
+
+
+
+
+
+
+
+ - Result of expression
+ - 7afce703-9842-424c-827f-d839a2dfbe66
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 12344
+ 9
+ 24
+
+ -
+ 14990
+ 12356
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 14887
+ 14456
+ 50
+ 24
+
+ -
+ 14912.13
+ 14468.81
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 437d0179-cf59-4b71-b44c-2f0819520383
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 14729
+ 12624
+ 160
+ 224
+
+ -
+ 14797
+ 12736
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 4daca2fd-27bb-4ac1-8aa9-e2830cec2ce8
+ - true
+ - Curves
+ - Curves
+ - false
+ - 39788c96-aabd-4b09-9fae-b7021665100d
+ - 1
+
+
+
+
+ -
+ 14731
+ 12626
+ 51
+ 27
+
+ -
+ 14758
+ 12639.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - b43ebe47-43be-4c98-982d-3e604e305b5c
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - c3972cbb-3a21-452a-95bc-32b3ab14e480
+ - 1
+
+
+
+
+ -
+ 14731
+ 12653
+ 51
+ 28
+
+ -
+ 14758
+ 12667.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 1680bbd0-27e6-4e4a-a308-47746113261c
+ - true
+ - Values
+ - Values
+ - false
+ - 2a3fb0e2-1b6e-45ee-ac54-fc68cfba59e5
+ - 1
+
+
+
+
+ -
+ 14731
+ 12681
+ 51
+ 27
+
+ -
+ 14758
+ 12694.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 327f73d2-f4ed-434b-a802-7511e568157b
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 14731
+ 12708
+ 51
+ 28
+
+ -
+ 14758
+ 12722.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 40e391a0-fab1-4f8c-b01c-3a86edcb7331
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 14731
+ 12736
+ 51
+ 27
+
+ -
+ 14758
+ 12749.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 45c209b6-5d24-488c-86db-67e9d4aac2d8
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 14731
+ 12763
+ 51
+ 28
+
+ -
+ 14758
+ 12777.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 046456cd-7ab7-4d3f-be8b-d0558a0102bf
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 14731
+ 12791
+ 51
+ 27
+
+ -
+ 14758
+ 12804.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 4913e238-4b62-4792-8139-51e331323932
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 14731
+ 12818
+ 51
+ 28
+
+ -
+ 14758
+ 12832.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 51ebff00-4f28-45f1-a705-6137a5ec920e
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12626
+ 75
+ 20
+
+ -
+ 14851
+ 12636
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 8eced9e2-33a5-4caa-b2b0-6219a48e1255
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12646
+ 75
+ 20
+
+ -
+ 14851
+ 12656
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 4bceeb7b-575b-4ceb-8faa-34268d674409
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12666
+ 75
+ 20
+
+ -
+ 14851
+ 12676
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - e3fc6867-8531-4d87-a97f-b4c337aaa605
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12686
+ 75
+ 20
+
+ -
+ 14851
+ 12696
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 08be0919-1be5-4c30-bb99-77a014722e0e
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12706
+ 75
+ 20
+
+ -
+ 14851
+ 12716
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 2be29823-8e74-47d3-9bb5-197cc0156986
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12726
+ 75
+ 20
+
+ -
+ 14851
+ 12736
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 1316ccdc-8f6d-4ffc-8758-6a9f9d72df1c
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12746
+ 75
+ 20
+
+ -
+ 14851
+ 12756
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 66e72179-b40b-4c77-821c-7710ac3d6fed
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12766
+ 75
+ 20
+
+ -
+ 14851
+ 12776
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - b979fe8b-19d4-4b4f-bbe3-487173c62ecb
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12786
+ 75
+ 20
+
+ -
+ 14851
+ 12796
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 804282b1-0c62-4c5e-8432-87024a61600e
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12806
+ 75
+ 20
+
+ -
+ 14851
+ 12816
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - ec267d25-f96f-4f6f-a88d-90917360037b
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 14812
+ 12826
+ 75
+ 20
+
+ -
+ 14851
+ 12836
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 97f21de3-e5ca-44d8-b46b-64b07047104c
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 14850
+ 13049
+ 96
+ 44
+
+ -
+ 14900
+ 13071
+
+
+
+
+
+ - Curve to evaluate
+ - 1eb0f09e-6088-4881-83d8-6107ba812fd5
+ - Curve
+ - Curve
+ - false
+ - 39788c96-aabd-4b09-9fae-b7021665100d
+ - 1
+
+
+
+
+ -
+ 14852
+ 13051
+ 33
+ 40
+
+ -
+ 14870
+ 13071
+
+
+
+
+
+
+
+ - Curve start point
+ - 996880aa-b8a3-46fc-9974-f8a44a5d969f
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 13051
+ 29
+ 20
+
+ -
+ 14931
+ 13061
+
+
+
+
+
+
+
+ - Curve end point
+ - b0de7bd5-364a-402f-8a3b-ba0234d43fcb
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 14915
+ 13071
+ 29
+ 20
+
+ -
+ 14931
+ 13081
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 253cf695-782b-4de5-9fbb-cabcf3a053b2
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 14835
+ 12947
+ 126
+ 84
+
+ -
+ 14893
+ 12989
+
+
+
+
+
+ - Rectangle base plane
+ - 9bd0e2d0-a43b-4537-a6be-291a181d0d91
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 14837
+ 12949
+ 41
+ 20
+
+ -
+ 14859
+ 12959
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 0670bb77-792e-4d60-b691-7578c90235ee
+ - Point A
+ - Point A
+ - false
+ - 996880aa-b8a3-46fc-9974-f8a44a5d969f
+ - 1
+
+
+
+
+ -
+ 14837
+ 12969
+ 41
+ 20
+
+ -
+ 14859
+ 12979
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 8bd66708-4e85-44e7-bbd4-15be8b822c63
+ - Point B
+ - Point B
+ - false
+ - b0de7bd5-364a-402f-8a3b-ba0234d43fcb
+ - 1
+
+
+
+
+ -
+ 14837
+ 12989
+ 41
+ 20
+
+ -
+ 14859
+ 12999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 17fa8c6a-5c86-4f19-8a79-1a70ab690d3f
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 14837
+ 13009
+ 41
+ 20
+
+ -
+ 14859
+ 13019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - c3972cbb-3a21-452a-95bc-32b3ab14e480
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 14908
+ 12949
+ 51
+ 40
+
+ -
+ 14935
+ 12969
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 40cbc40d-63dc-4b88-a812-c44142f56e09
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 14908
+ 12989
+ 51
+ 40
+
+ -
+ 14935
+ 13009
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 97691683-4494-42b5-bac4-02ec9576c740
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 14889
+ 12744
+ 126
+ 104
+
+ -
+ 14956
+ 12796
+
+
+
+
+
+ - External curve as a graph
+ - be0887a1-fa54-4d11-96aa-172cc99bfd38
+ - Curve
+ - Curve
+ - false
+ - 39788c96-aabd-4b09-9fae-b7021665100d
+ - 1
+
+
+
+
+ -
+ 14891
+ 12746
+ 50
+ 20
+
+ -
+ 14917.5
+ 12756
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - a865eb98-223f-43f3-b579-ff4f181f7bbe
+ - Boundary
+ - Boundary
+ - true
+ - c3972cbb-3a21-452a-95bc-32b3ab14e480
+ - 1
+
+
+
+
+ -
+ 14891
+ 12766
+ 50
+ 20
+
+ -
+ 14917.5
+ 12776
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - a78c0fc2-9b92-46e3-9e16-f4d37af75e5d
+ - Numbers
+ - Numbers
+ - false
+ - 2a3fb0e2-1b6e-45ee-ac54-fc68cfba59e5
+ - 1
+
+
+
+
+ -
+ 14891
+ 12786
+ 50
+ 20
+
+ -
+ 14917.5
+ 12796
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 0ae76062-5472-4f8b-8b7c-a1c9c58f5765
+ - Input
+ - Input
+ - true
+ - fe3e5fc8-0f03-445e-b5de-af144f26b7ee
+ - 1
+
+
+
+
+ -
+ 14891
+ 12806
+ 50
+ 20
+
+ -
+ 14917.5
+ 12816
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - cfa22c6c-db44-442c-b7c3-e5379bc0e946
+ - Output
+ - Output
+ - true
+ - fe3e5fc8-0f03-445e-b5de-af144f26b7ee
+ - 1
+
+
+
+
+ -
+ 14891
+ 12826
+ 50
+ 20
+
+ -
+ 14917.5
+ 12836
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - d085702b-986e-44bc-9e0a-99cda6fcffa6
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 14971
+ 12746
+ 42
+ 100
+
+ -
+ 14993.5
+ 12796
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - df89b0dd-b37d-4dd1-b093-cce1b1dca103
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 14864
+ 12541
+ 89
+ 64
+
+ -
+ 14909
+ 12573
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 3f328968-fae5-444c-964b-029441bfd16d
+ - Gate
+ - Gate
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 14866
+ 12543
+ 28
+ 20
+
+ -
+ 14881.5
+ 12553
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - bdb43fd9-b49d-4458-b940-eabd27432783
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 51ebff00-4f28-45f1-a705-6137a5ec920e
+ - 1
+
+
+
+
+ -
+ 14866
+ 12563
+ 28
+ 20
+
+ -
+ 14881.5
+ 12573
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 79584586-bd5e-46c5-8b89-cd75776eedff
+ - false
+ - Stream 1
+ - 1
+ - true
+ - d085702b-986e-44bc-9e0a-99cda6fcffa6
+ - 1
+
+
+
+
+ -
+ 14866
+ 12583
+ 28
+ 20
+
+ -
+ 14881.5
+ 12593
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 9af3e55d-34ce-45a8-a8db-6eaa07661438
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 14924
+ 12543
+ 27
+ 60
+
+ -
+ 14939
+ 12573
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - ff43fc76-5f3f-4cc4-84fb-7a68f99e8220
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14833
+ 12468
+ 150
+ 20
+
+ -
+ 14833.79
+ 12468.11
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 71563604-0f17-46fb-8b7b-3fdd0433bc46
+ - Panel
+
+ - false
+ - 1
+ - 1633c81a-5d0e-4716-9f3f-3bd0dba726f8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14813
+ 13243
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 14813.86
+ 13243.37
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 41cbdf17-5670-4397-882a-c79b5a46405e
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 14839
+ 13188
+ 122
+ 28
+
+ -
+ 14903
+ 13202
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - b2df8cb2-b69c-4a9b-a04a-eef046645962
+ - Numbers
+ - Numbers
+ - false
+ - 2a3fb0e2-1b6e-45ee-ac54-fc68cfba59e5
+ - 1
+
+
+
+
+ -
+ 14841
+ 13190
+ 47
+ 24
+
+ -
+ 14866
+ 13202
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - fe3e5fc8-0f03-445e-b5de-af144f26b7ee
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 14918
+ 13190
+ 41
+ 24
+
+ -
+ 14940
+ 13202
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3566668c-48cb-416c-9081-8c205676cb55
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14801
+ 13602
+ 194
+ 28
+
+ -
+ 14901
+ 13616
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f872cac5-2d98-4d6e-a563-a311f5ea871e
+ - true
+ - Variable O
+ - O
+ - true
+ - 2a3fb0e2-1b6e-45ee-ac54-fc68cfba59e5
+ - 1
+
+
+
+
+ -
+ 14803
+ 13604
+ 14
+ 24
+
+ -
+ 14811.5
+ 13616
+
+
+
+
+
+
+
+ - Result of expression
+ - 1633c81a-5d0e-4716-9f3f-3bd0dba726f8
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 14984
+ 13604
+ 9
+ 24
+
+ -
+ 14990
+ 13616
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 829f9269-b7d0-4fae-911e-33607d6d8974
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 14715
+ 13816
+ 367
+ 28
+
+ -
+ 14901
+ 13830
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4ad10f9e-ee45-4d3b-a404-4c54cf04638b
+ - Variable O
+ - O
+ - true
+ - edbce4e2-4993-4d29-83d2-ab63c7ae5f03
+ - 1
+
+
+
+
+ -
+ 14717
+ 13818
+ 14
+ 24
+
+ -
+ 14725.5
+ 13830
+
+
+
+
+
+
+
+ - Result of expression
+ - 119e2cfe-1040-4089-9143-3e060c7430c4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 15071
+ 13818
+ 9
+ 24
+
+ -
+ 15077
+ 13830
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 13ee932b-d7c2-4da3-a838-3c1d3a1bf1d3
+ - Panel
+
+ - false
+ - 0
+ - 119e2cfe-1040-4089-9143-3e060c7430c4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 14814
+ 13780
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14814
+ 13780.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+ - 0153e69e-17b6-46d3-aabe-eea050991035
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 692b3785-26a1-4388-8495-da08f520e287
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14821
+ 9976
+ 154
+ 64
+
+ -
+ 14905
+ 10008
+
+
+
+
+
+ - Base geometry
+ - 3b9531fe-61d9-4022-885c-c48905321386
+ - Geometry
+ - Geometry
+ - true
+ - f1dc7722-f68a-4e76-a629-9d79f7fa672e
+ - 1
+
+
+
+
+ -
+ 14823
+ 9978
+ 67
+ 20
+
+ -
+ 14866
+ 9988
+
+
+
+
+
+
+
+ - Center of scaling
+ - cf749370-c402-4cc6-bf22-29582f56547d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14823
+ 9998
+ 67
+ 20
+
+ -
+ 14866
+ 10008
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 7d69fad2-48ca-4430-b99f-98ca97bf4399
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 654488ab-cbd5-4b27-abbc-fae35a1fcba2
+ - 1
+
+
+
+
+ -
+ 14823
+ 10018
+ 67
+ 20
+
+ -
+ 14866
+ 10028
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ec263a25-cf9a-445a-a6b3-c27727742d4b
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14920
+ 9978
+ 53
+ 30
+
+ -
+ 14948
+ 9993
+
+
+
+
+
+
+
+ - Transformation data
+ - 9a54f3e6-3462-43c2-ac38-2776717a8d69
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14920
+ 10008
+ 53
+ 30
+
+ -
+ 14948
+ 10023
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - bc35ec24-ae25-4161-a748-94c38b2e5b2f
+ - Point
+ - Point
+ - false
+ - ec263a25-cf9a-445a-a6b3-c27727742d4b
+ - 1
+
+
+
+
+ -
+ 14878
+ 9944
+ 50
+ 24
+
+ -
+ 14903.15
+ 9956.765
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 1e7adb91-c83d-4184-b2d9-5c5c37b7cd2f
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 14843
+ 9336
+ 138
+ 44
+
+ -
+ 14911
+ 9358
+
+
+
+
+
+ - Base geometry
+ - 83249ca0-d1d9-4433-9a38-059aca0579cf
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+
+
+
+
+ -
+ 14845
+ 9338
+ 51
+ 20
+
+ -
+ 14872
+ 9348
+
+
+
+
+
+
+
+ - Mirror plane
+ - 0da48253-1251-4e8c-ae88-ddbb4fb49a4f
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 14845
+ 9358
+ 51
+ 20
+
+ -
+ 14872
+ 9368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 6775e49e-78be-4bb4-9389-0460dfffb47d
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14926
+ 9338
+ 53
+ 20
+
+ -
+ 14954
+ 9348
+
+
+
+
+
+
+
+ - Transformation data
+ - a7bf2d2e-ed7b-49b9-b0eb-c3d0dcd00376
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14926
+ 9358
+ 53
+ 20
+
+ -
+ 14954
+ 9368
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e464e48a-068a-4ad2-882b-5575331b82f3
+ - Curve
+ - Curve
+ - false
+ - 2accfed9-20fe-4fe7-a09a-0d2b73f49681
+ - 1
+
+
+
+
+ -
+ 14885
+ 9236
+ 50
+ 24
+
+ -
+ 14910.4
+ 9248.774
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 39788c96-aabd-4b09-9fae-b7021665100d
+ - Relay
+
+ - false
+ - 30f1aeb6-04ea-4fe8-852c-5ed8dc024dc6
+ - 1
+
+
+
+
+ -
+ 14880
+ 13116
+ 40
+ 16
+
+ -
+ 14900
+ 13124
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b71595bd-e6c2-48f2-9231-dee5fcbf6dd4
+ - Curve
+ - Curve
+ - false
+ - b8d85362-f01a-418f-bed8-eb23f9a2d815
+ - 1
+
+
+
+
+ -
+ 14447
+ 13512
+ 50
+ 24
+
+ -
+ 14472.9
+ 13524.23
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 30f1aeb6-04ea-4fe8-852c-5ed8dc024dc6
+ - Curve
+ - Curve
+ - false
+ - 97a11420-64a1-4355-8680-cc42c8625cb8
+ - 1
+
+
+
+
+ -
+ 14446
+ 13222
+ 50
+ 24
+
+ -
+ 14471.99
+ 13234.38
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 401d7467-8f4c-4ce8-8405-e255f5960f0c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14390
+ 13255
+ 154
+ 64
+
+ -
+ 14474
+ 13287
+
+
+
+
+
+ - Base geometry
+ - 95c87839-9e75-4f46-b0cc-26e586907b1d
+ - Geometry
+ - Geometry
+ - true
+ - b71595bd-e6c2-48f2-9231-dee5fcbf6dd4
+ - 1
+
+
+
+
+ -
+ 14392
+ 13257
+ 67
+ 20
+
+ -
+ 14435
+ 13267
+
+
+
+
+
+
+
+ - Center of scaling
+ - 49ad0cdc-cdd2-4d4f-ac3b-e1d59da664a7
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14392
+ 13277
+ 67
+ 20
+
+ -
+ 14435
+ 13287
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 1ed73718-340a-426f-b207-1ad96765fbd8
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 75982fc8-fa2e-4674-8521-53f85dae61b7
+ - 1
+
+
+
+
+ -
+ 14392
+ 13297
+ 67
+ 20
+
+ -
+ 14435
+ 13307
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 97a11420-64a1-4355-8680-cc42c8625cb8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14489
+ 13257
+ 53
+ 30
+
+ -
+ 14517
+ 13272
+
+
+
+
+
+
+
+ - Transformation data
+ - b3a60948-7fe9-4da7-8703-fb925de953e5
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14489
+ 13287
+ 53
+ 30
+
+ -
+ 14517
+ 13302
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b71595bd-e6c2-48f2-9231-dee5fcbf6dd4
+ - 30f1aeb6-04ea-4fe8-852c-5ed8dc024dc6
+ - 401d7467-8f4c-4ce8-8405-e255f5960f0c
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - d090fbd1-93ba-4c0f-aae1-29dc34717e7f
+ - 053a3b78-8041-49d3-9e18-7c2f32b62bd8
+ - c87da551-603b-49bc-b814-b685bcd3e395
+ - 091239b6-a510-4e47-bf40-15534370a9fc
+ - 75982fc8-fa2e-4674-8521-53f85dae61b7
+ - e699aaab-2bc6-4d1d-8873-dd539208c621
+ - 8520bb61-2a13-4c0a-89eb-863a393c064f
+ - 11
+ - b85811c5-8969-4501-a97d-7f43b2611be6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 72156254-a964-41b6-b774-888d3598d1fa
+ - Move
+ - Move
+
+
+
+
+ -
+ 14843
+ 9272
+ 138
+ 44
+
+ -
+ 14911
+ 9294
+
+
+
+
+
+ - Base geometry
+ - 669ab31c-363a-4f90-ac31-c21d2c5875d4
+ - Geometry
+ - Geometry
+ - true
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+
+
+
+
+ -
+ 14845
+ 9274
+ 51
+ 20
+
+ -
+ 14872
+ 9284
+
+
+
+
+
+
+
+ - Translation vector
+ - c7efb812-a534-4c19-9c5c-22f0bb98a157
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 14845
+ 9294
+ 51
+ 20
+
+ -
+ 14872
+ 9304
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 17.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2accfed9-20fe-4fe7-a09a-0d2b73f49681
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14926
+ 9274
+ 53
+ 20
+
+ -
+ 14954
+ 9284
+
+
+
+
+
+
+
+ - Transformation data
+ - 141d7349-5e01-4523-90cb-61cfab2ace34
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14926
+ 9294
+ 53
+ 20
+
+ -
+ 14954
+ 9304
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d090fbd1-93ba-4c0f-aae1-29dc34717e7f
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 14344
+ 13468
+ 250
+ 20
+
+ -
+ 14344.72
+ 13468.61
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 053a3b78-8041-49d3-9e18-7c2f32b62bd8
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 14404
+ 13347
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14404.46
+ 13347.09
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c87da551-603b-49bc-b814-b685bcd3e395
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14446
+ 13179
+ 50
+ 24
+
+ -
+ 14471.99
+ 13191.38
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 091239b6-a510-4e47-bf40-15534370a9fc
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 14450
+ 13649
+ 50
+ 24
+
+ -
+ 14475.49
+ 13661.33
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a3df510c-09a6-46f2-9917-2dae06f260dc
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 14684
+ 13990
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14684.38
+ 13990.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - fd2ba8cc-bf96-4218-9514-39645e334859
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 15268
+ 9967
+ 96
+ 44
+
+ -
+ 15318
+ 9989
+
+
+
+
+
+ - Curve to evaluate
+ - 073ce65e-45e5-453e-a2a0-93516570e9af
+ - Curve
+ - Curve
+ - false
+ - 7c1faeaa-a31d-42ec-9777-daaf2068bcb8
+ - 1
+
+
+
+
+ -
+ 15270
+ 9969
+ 33
+ 40
+
+ -
+ 15288
+ 9989
+
+
+
+
+
+
+
+ - Curve start point
+ - eb9cded9-b336-4de5-835c-df04b5134dd9
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 15333
+ 9969
+ 29
+ 20
+
+ -
+ 15349
+ 9979
+
+
+
+
+
+
+
+ - Curve end point
+ - 2fbdccd7-f07a-4a4b-9905-477279ebdabf
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 15333
+ 9989
+ 29
+ 20
+
+ -
+ 15349
+ 9999
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - af194ecd-d002-477d-8e26-9c63739293d4
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 15253
+ 9864
+ 126
+ 84
+
+ -
+ 15311
+ 9906
+
+
+
+
+
+ - Rectangle base plane
+ - 786053ab-b2f4-4a89-a23c-9fcb637b0f97
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 15255
+ 9866
+ 41
+ 20
+
+ -
+ 15277
+ 9876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - cc3b9dda-2a77-441c-916d-24bd00aa6fb3
+ - Point A
+ - Point A
+ - false
+ - eb9cded9-b336-4de5-835c-df04b5134dd9
+ - 1
+
+
+
+
+ -
+ 15255
+ 9886
+ 41
+ 20
+
+ -
+ 15277
+ 9896
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 60c59750-e574-49d0-99ba-3300e47d596e
+ - Point B
+ - Point B
+ - false
+ - 2fbdccd7-f07a-4a4b-9905-477279ebdabf
+ - 1
+
+
+
+
+ -
+ 15255
+ 9906
+ 41
+ 20
+
+ -
+ 15277
+ 9916
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 10
+ 5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 4252f0f7-8ed9-4c3a-af84-3304fb628ed0
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 15255
+ 9926
+ 41
+ 20
+
+ -
+ 15277
+ 9936
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - eaa3b8e7-ad2c-40d0-a774-c7ae529b8623
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 15326
+ 9866
+ 51
+ 40
+
+ -
+ 15353
+ 9886
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 9aa261e0-652b-4064-aa27-14bb088b0014
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 15326
+ 9906
+ 51
+ 40
+
+ -
+ 15353
+ 9926
+
+
+
+
+
+
+
+
+
+
+
+ - e5c33a79-53d5-4f2b-9a97-d3d45c780edc
+ - Deconstuct Rectangle
+
+
+
+
+ - Retrieve the base plane and side intervals of a rectangle.
+ - true
+ - aab66b17-6468-479c-b7a0-d03e4a8780bb
+ - Deconstuct Rectangle
+ - Deconstuct Rectangle
+
+
+
+
+ -
+ 15245
+ 9781
+ 142
+ 64
+
+ -
+ 15313
+ 9813
+
+
+
+
+
+ - Rectangle to deconstruct
+ - f7502532-c2d8-4e1f-95ca-366697e5855c
+ - Rectangle
+ - Rectangle
+ - false
+ - eaa3b8e7-ad2c-40d0-a774-c7ae529b8623
+ - 1
+
+
+
+
+ -
+ 15247
+ 9783
+ 51
+ 60
+
+ -
+ 15274
+ 9813
+
+
+
+
+
+
+
+ - Base plane of rectangle
+ - bef136bc-2dfc-43b7-b789-fe56a7de3bcd
+ - Base Plane
+ - Base Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 15328
+ 9783
+ 57
+ 20
+
+ -
+ 15358
+ 9793
+
+
+
+
+
+
+
+ - Size interval along base plane X axis
+ - f32c565a-b5e2-459d-a92e-cc99bfcb707f
+ - X Interval
+ - X Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 15328
+ 9803
+ 57
+ 20
+
+ -
+ 15358
+ 9813
+
+
+
+
+
+
+
+ - Size interval along base plane Y axis
+ - 14ec8ccf-9794-4186-8bbe-a2724170e7ee
+ - Y Interval
+ - Y Interval
+ - false
+ - 0
+
+
+
+
+ -
+ 15328
+ 9823
+ 57
+ 20
+
+ -
+ 15358
+ 9833
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - cbd7d4de-a164-41e0-9457-03b5798d5e2f
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 15264
+ 9654
+ 104
+ 44
+
+ -
+ 15322
+ 9676
+
+
+
+
+
+ - Base domain
+ - b991163d-1716-4a2e-af37-2f84b4ebdd37
+ - Domain
+ - Domain
+ - false
+ - 14ec8ccf-9794-4186-8bbe-a2724170e7ee
+ - 1
+
+
+
+
+ -
+ 15266
+ 9656
+ 41
+ 40
+
+ -
+ 15288
+ 9676
+
+
+
+
+
+
+
+ - Start of domain
+ - c650db4e-b8c2-4afa-9b6f-4a0555dd57b8
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 15337
+ 9656
+ 29
+ 20
+
+ -
+ 15353
+ 9666
+
+
+
+
+
+
+
+ - End of domain
+ - 860f34a3-af3c-4c29-a3f6-51d786913642
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 15337
+ 9676
+ 29
+ 20
+
+ -
+ 15353
+ 9686
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - daa6a5fa-06cc-407b-b1aa-7c254a55b12e
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 15264
+ 9716
+ 104
+ 44
+
+ -
+ 15322
+ 9738
+
+
+
+
+
+ - Base domain
+ - b10a06dd-aee7-42aa-a2b7-fca81c821403
+ - Domain
+ - Domain
+ - false
+ - f32c565a-b5e2-459d-a92e-cc99bfcb707f
+ - 1
+
+
+
+
+ -
+ 15266
+ 9718
+ 41
+ 40
+
+ -
+ 15288
+ 9738
+
+
+
+
+
+
+
+ - Start of domain
+ - 48ef0500-bc98-42ab-baa8-c3dd85d5219a
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 15337
+ 9718
+ 29
+ 20
+
+ -
+ 15353
+ 9728
+
+
+
+
+
+
+
+ - End of domain
+ - feb88bc5-ad3d-45e7-9b23-a9bec6dd8d6a
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 15337
+ 9738
+ 29
+ 20
+
+ -
+ 15353
+ 9748
+
+
+
+
+
+
+
+
+
+
+
+ - 290f418a-65ee-406a-a9d0-35699815b512
+ - Scale NU
+
+
+
+
+ - Scale an object with non-uniform factors.
+ - true
+ - d7d7a5ba-4476-45fe-a520-a333d888593f
+ - Scale NU
+ - Scale NU
+
+
+
+
+ -
+ 15239
+ 9531
+ 154
+ 104
+
+ -
+ 15323
+ 9583
+
+
+
+
+
+ - Base geometry
+ - f098e72c-2e94-40b1-888d-61cb8b3cd04b
+ - Geometry
+ - Geometry
+ - true
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+
+
+
+
+ -
+ 15241
+ 9533
+ 67
+ 20
+
+ -
+ 15284
+ 9543
+
+
+
+
+
+
+
+ - Base plane
+ - 12a2ddea-6385-498a-a432-6ca8279dc1dd
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 15241
+ 9553
+ 67
+ 20
+
+ -
+ 15284
+ 9563
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {x} direction
+ - 1df6a8ef-db74-465c-bec5-e3073ba576f5
+ - 1/X
+ - Scale X
+ - Scale X
+ - false
+ - feb88bc5-ad3d-45e7-9b23-a9bec6dd8d6a
+ - 1
+
+
+
+
+ -
+ 15241
+ 9573
+ 67
+ 20
+
+ -
+ 15284
+ 9583
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {y} direction
+ - c2f8db1c-adea-4013-ab8a-2aba6a1f6f40
+ - 1/X
+ - Scale Y
+ - Scale Y
+ - false
+ - 860f34a3-af3c-4c29-a3f6-51d786913642
+ - 1
+
+
+
+
+ -
+ 15241
+ 9593
+ 67
+ 20
+
+ -
+ 15284
+ 9603
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor in {z} direction
+ - 967d67fc-5a70-402d-9a19-03c62e441d53
+ - Scale Z
+ - Scale Z
+ - false
+ - 0
+
+
+
+
+ -
+ 15241
+ 9613
+ 67
+ 20
+
+ -
+ 15284
+ 9623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 18f30baa-9a05-426f-b9c1-e54aeddd0461
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 15338
+ 9533
+ 53
+ 50
+
+ -
+ 15366
+ 9558
+
+
+
+
+
+
+
+ - Transformation data
+ - 2463acfb-4a46-4d0d-a2fb-99c16a27d7a3
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 15338
+ 9583
+ 53
+ 50
+
+ -
+ 15366
+ 9608
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fd2ba8cc-bf96-4218-9514-39645e334859
+ - af194ecd-d002-477d-8e26-9c63739293d4
+ - aab66b17-6468-479c-b7a0-d03e4a8780bb
+ - cbd7d4de-a164-41e0-9457-03b5798d5e2f
+ - daa6a5fa-06cc-407b-b1aa-7c254a55b12e
+ - d7d7a5ba-4476-45fe-a520-a333d888593f
+ - 7c1faeaa-a31d-42ec-9777-daaf2068bcb8
+ - 9cdccbe3-88c1-4358-b357-52199f288269
+ - dff8e557-4997-4e11-b51b-771fd8a3ea77
+ - 8c30f270-d17e-4542-bcbc-8ff2320f35a6
+ - 5cf6e27c-da4b-4d95-8f2d-d8cffbb3165d
+ - 792d6552-db97-41fd-9828-9246e372cd65
+ - 12
+ - 3910df5f-dfc5-47ca-80c9-3aafb9e5537c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7c1faeaa-a31d-42ec-9777-daaf2068bcb8
+ - Curve
+ - Curve
+ - false
+ - 4a84cf0c-40ed-4abf-b243-4081436673d6
+ - 1
+
+
+
+
+ -
+ 15296
+ 10041
+ 50
+ 24
+
+ -
+ 15321.04
+ 10053.98
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9cdccbe3-88c1-4358-b357-52199f288269
+ - Curve
+ - Curve
+ - false
+ - 18f30baa-9a05-426f-b9c1-e54aeddd0461
+ - 1
+
+
+
+
+ -
+ 15292
+ 9490
+ 50
+ 24
+
+ -
+ 15317.82
+ 9502.23
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - dff8e557-4997-4e11-b51b-771fd8a3ea77
+ - Move
+ - Move
+
+
+
+
+ -
+ 15245
+ 9278
+ 138
+ 44
+
+ -
+ 15313
+ 9300
+
+
+
+
+
+ - Base geometry
+ - bf1d551d-124e-4eaf-b3d5-a91375948002
+ - Geometry
+ - Geometry
+ - true
+ - 9cdccbe3-88c1-4358-b357-52199f288269
+ - 1
+
+
+
+
+ -
+ 15247
+ 9280
+ 51
+ 20
+
+ -
+ 15274
+ 9290
+
+
+
+
+
+
+
+ - Translation vector
+ - fe6febf5-f3f3-4701-b48c-c207b2bed3e4
+ - Motion
+ - Motion
+ - false
+ - bfccd18e-cb91-484e-8a45-84b5da37edcf
+ - 1
+
+
+
+
+ -
+ 15247
+ 9300
+ 51
+ 20
+
+ -
+ 15274
+ 9310
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 5
+ 1.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 95a6f769-c7b8-4c80-89bf-6857a334a92f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 15328
+ 9280
+ 53
+ 20
+
+ -
+ 15356
+ 9290
+
+
+
+
+
+
+
+ - Transformation data
+ - 24b87990-ce80-4b23-bd43-2dc1d747ba1d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 15328
+ 9300
+ 53
+ 20
+
+ -
+ 15356
+ 9310
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8c30f270-d17e-4542-bcbc-8ff2320f35a6
+ - Curve
+ - Curve
+ - false
+ - 95a6f769-c7b8-4c80-89bf-6857a334a92f
+ - 1
+
+
+
+
+ -
+ 15293
+ 9236
+ 50
+ 24
+
+ -
+ 15318.15
+ 9248.443
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d6f9f9a9-5843-47cf-9a34-30c7b60e9ab5
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 14684
+ 14151
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 14684.68
+ 14151.66
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 6d00f775-cac7-4be0-817a-ba7895cf23e3
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 14777
+ 14302
+ 251
+ 20
+
+ -
+ 14777.29
+ 14302.06
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 588d1c54-5e44-420c-80ce-3cb6c604d9d3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207*4*4*4*4
+
+
+
+
+ -
+ 14684
+ 14210
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14684.13
+ 14210.7
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 02bd4f03-e28f-42f6-b942-16421ebb3bff
+ - Expression
+
+
+
+
+
+ -
+ 14866
+ 14398
+ 79
+ 28
+
+ -
+ 14908
+ 14412
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8ed25a35-8735-4d37-a6eb-c59414cdfe25
+ - Variable X
+ - X
+ - true
+ - 8f60c651-4f0f-4481-9816-919bbdee7a7a
+ - 1
+
+
+
+
+ -
+ 14868
+ 14400
+ 14
+ 24
+
+ -
+ 14876.5
+ 14412
+
+
+
+
+
+
+
+ - Result of expression
+ - 9f0aa848-e2c9-40b8-8f03-e94966a7c223
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 14934
+ 14400
+ 9
+ 24
+
+ -
+ 14940
+ 14412
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 131ff6e2-f7c7-4eab-b513-44501fc0b6a5
+ - Point
+ - Point
+ - false
+ - 7553f3fd-a0e1-4ee6-9ccc-33ae6881a31e
+ - 1
+
+
+
+
+ -
+ 14900
+ 11926
+ 50
+ 24
+
+ -
+ 14925.1
+ 11938.79
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7553f3fd-a0e1-4ee6-9ccc-33ae6881a31e
+ - Relay
+
+ - false
+ - 919d17fe-401d-4453-ae1a-4909779e11cd
+ - 1
+
+
+
+
+ -
+ 14902
+ 11972
+ 40
+ 16
+
+ -
+ 14922
+ 11980
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f1dc7722-f68a-4e76-a629-9d79f7fa672e
+ - Relay
+
+ - false
+ - 80f9f68a-5096-4a38-9f2f-e140ed9a878f
+ - 1
+
+
+
+
+ -
+ 14902
+ 11749
+ 40
+ 16
+
+ -
+ 14922
+ 11757
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 77c71397-d676-43a5-855e-28a04de20cf2
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 14845
+ 11785
+ 154
+ 64
+
+ -
+ 14929
+ 11817
+
+
+
+
+
+ - Base geometry
+ - d084d26b-37c9-4ded-b103-7b444e105593
+ - Geometry
+ - Geometry
+ - true
+ - 131ff6e2-f7c7-4eab-b513-44501fc0b6a5
+ - 1
+
+
+
+
+ -
+ 14847
+ 11787
+ 67
+ 20
+
+ -
+ 14890
+ 11797
+
+
+
+
+
+
+
+ - Center of scaling
+ - f575e0ce-99bc-42de-8a92-546db54b6194
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 14847
+ 11807
+ 67
+ 20
+
+ -
+ 14890
+ 11817
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - bf7f76ea-813f-4c4d-bd61-9e7751b2c008
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 3436aa80-e9b3-4e21-b285-fc7f29fd2145
+ - 1
+
+
+
+
+ -
+ 14847
+ 11827
+ 67
+ 20
+
+ -
+ 14890
+ 11837
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 80f9f68a-5096-4a38-9f2f-e140ed9a878f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 14944
+ 11787
+ 53
+ 30
+
+ -
+ 14972
+ 11802
+
+
+
+
+
+
+
+ - Transformation data
+ - e7d608e6-cc1e-4082-a538-ed424ce3e59b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 14944
+ 11817
+ 53
+ 30
+
+ -
+ 14972
+ 11832
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 3436aa80-e9b3-4e21-b285-fc7f29fd2145
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 14804
+ 11871
+ 250
+ 20
+
+ -
+ 14804.88
+ 11871.15
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 131ff6e2-f7c7-4eab-b513-44501fc0b6a5
+ - 1
+ - 9856b67b-38f1-47bf-a90e-f1d15176eaba
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 75982fc8-fa2e-4674-8521-53f85dae61b7
+ - Relay
+ -
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 14452
+ 13430
+ 40
+ 16
+
+ -
+ 14472
+ 13438
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e699aaab-2bc6-4d1d-8873-dd539208c621
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 30.93121320041889709
+
+
+
+
+
+ -
+ 14401
+ 13397
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 14401.72
+ 13397.92
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - e73919fc-84dd-4a74-a91b-f7dda75edbb4
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00000752430
+
+
+
+
+ -
+ 14777
+ 14253
+ 251
+ 20
+
+ -
+ 14777.29
+ 14253.81
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 792d6552-db97-41fd-9828-9246e372cd65
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 15245
+ 9364
+ 139
+ 64
+
+ -
+ 15330
+ 9396
+
+
+
+
+
+ - Vector {x} component
+ - 522a8e14-7842-4b8b-a124-2227da4d6332
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 15247
+ 9366
+ 68
+ 20
+
+ -
+ 15282.5
+ 9376
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 17.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - bc579b19-55fb-4b9b-986d-574f59f43c18
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 15247
+ 9386
+ 68
+ 20
+
+ -
+ 15282.5
+ 9396
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - f0b28a02-f967-4c72-a404-6a902aee67b0
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 15247
+ 9406
+ 68
+ 20
+
+ -
+ 15282.5
+ 9416
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - bfccd18e-cb91-484e-8a45-84b5da37edcf
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 15345
+ 9366
+ 37
+ 30
+
+ -
+ 15365
+ 9381
+
+
+
+
+
+
+
+ - Vector length
+ - 2c2b2b0b-7801-4885-aa6b-dc0a06d61271
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 15345
+ 9396
+ 37
+ 30
+
+ -
+ 15365
+ 9411
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f75ec5b3-bb3a-4926-8ec3-92d810a33dfd
+ - Relay
+
+ - false
+ - 7df1562a-5592-4dee-b24d-499aa859f494
+ - 1
+
+
+
+
+ -
+ 14881
+ 13910
+ 40
+ 16
+
+ -
+ 14901
+ 13918
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 8520bb61-2a13-4c0a-89eb-863a393c064f
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 14429
+ 13562
+ 89
+ 64
+
+ -
+ 14474
+ 13594
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - ce839810-06f0-431b-b457-a851719257e7
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 14431
+ 13564
+ 28
+ 20
+
+ -
+ 14446.5
+ 13574
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 5452808c-c433-4f12-9350-2fa31fcb7812
+ - false
+ - Stream 0
+ - 0
+ - true
+ - f95a37a7-02ee-4695-8d91-4a88e8f95efd
+ - 1
+
+
+
+
+ -
+ 14431
+ 13584
+ 28
+ 20
+
+ -
+ 14446.5
+ 13594
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 01229214-0b40-4251-8ecc-edce3f558836
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 671e2d5b-7a1b-4857-abe3-e22c81a1e82b
+ - 1
+
+
+
+
+ -
+ 14431
+ 13604
+ 28
+ 20
+
+ -
+ 14446.5
+ 13614
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - b8d85362-f01a-418f-bed8-eb23f9a2d815
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 14489
+ 13564
+ 27
+ 60
+
+ -
+ 14504
+ 13594
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 9f90d66b-f35b-4ad5-b695-cf816409815b
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 11
+
+ - 256.0
+
+
+
+
+ -
+ 12302
+ 25108
+ 250
+ 20
+
+ -
+ 12302.17
+ 25108.47
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fce57c1e-7c8c-442e-8c34-f03322b193c3
+ - Relay
+
+ - false
+ - 9f90d66b-f35b-4ad5-b695-cf816409815b
+ - 1
+
+
+
+
+ -
+ 12406
+ 25066
+ 40
+ 16
+
+ -
+ 12426
+ 25074
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9f90d66b-f35b-4ad5-b695-cf816409815b
+ - fce57c1e-7c8c-442e-8c34-f03322b193c3
+ - 2
+ - d375b5ca-e8b1-4d1a-8abb-3fd34cb27870
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - Relay
+
+ - false
+ - 6c2d9e2d-29b0-4b0d-8c17-8fe4bfcaa494
+ - 1
+
+
+
+
+ -
+ 12406
+ 24841
+ 40
+ 16
+
+ -
+ 12426
+ 24849
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e8a6074e-3ec6-4ae5-a446-2f42cdae0977
+ - Panel
+
+ - false
+ - 0
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 12354
+ 24796
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12354.67
+ 24796.41
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 6abc685f-5524-48ad-89bb-61a1ce3c6e65
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.00137331210
+
+
+
+
+ -
+ 12301
+ 24878
+ 251
+ 20
+
+ -
+ 12301.6
+ 24878.77
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e8a6074e-3ec6-4ae5-a446-2f42cdae0977
+ - 6abc685f-5524-48ad-89bb-61a1ce3c6e65
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 9f05096a-c595-4115-8939-54713cb925f1
+ - 4
+ - ffaefc29-5720-4d1d-8f74-3ff88cea009f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 49e97076-47e9-42b3-94bb-22be4cbce56d
+ - 82207b9e-ead4-4815-878a-17418dfbdd67
+ - 57f0799b-c461-420d-9597-c2d5f7fd5022
+ - 84df36e3-f442-4145-bdae-23bfd4a52f79
+ - 620f22e7-a506-41a5-9b65-8bfbd9795fb9
+ - 049dd7c6-38d9-418a-9ba6-928754ae8d1e
+ - 6
+ - 93a5c9b6-045a-41b0-9723-f112e1472a5c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1b21a041-d39c-47c7-91ce-6dc280e8829b
+ - e389002a-311f-438a-a821-c71042c2315b
+ - d6b26c61-1407-4b4c-9aa7-230b7881e37c
+ - 80ab671d-6c63-4c2c-bfac-ab967e0adf89
+ - 3dab78bc-8b32-4959-a38a-fbb02c8789ea
+ - 59d5b8d0-333b-439e-8a1d-51ba268e9534
+ - eb698e65-3136-4ee7-8e13-7352ec2f3b5f
+ - 9812fbfd-aed6-419d-9f34-1da7c7a718e2
+ - 43ac5d38-56c2-46fa-a2d6-e12c566c33e1
+ - 057b9293-8565-4ad8-998b-f7b2a50eaa49
+ - f71571ba-c892-4b34-870f-d5235b415665
+ - 8c36d410-9355-4295-bda2-9b458f164ddd
+ - b3aa422e-c362-4f2e-b1d3-3c89403ccf64
+ - cda437b6-b93c-42d1-bef0-8e3012936758
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 0ed6d1b2-6112-44bc-bfc1-0290a4b8f9c7
+ - f5c7b38e-4599-4446-8dac-ea4341bffb71
+ - 574fe67f-71ff-4715-8a12-17491f24eb76
+ - 0ef2a3b3-6bf5-4d6b-8a75-f48a48cd3132
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - c496ed8d-c088-49ad-b789-ec25be9f2ba1
+ - 5b6f0604-d611-43ab-af67-0856d76ac3be
+ - 704efda2-f8e4-4bc0-b678-cc00abc69450
+ - 318cd1cf-1ac0-4b5a-8068-d487fd99f8c6
+ - cf714a6e-ed15-4548-b434-863030ede4e0
+ - 2499fa70-461f-479b-8b56-ad4993db7908
+ - cccade3e-3e98-4637-aaa4-80019f5bd038
+ - 8a57c746-396b-44ab-89cc-7a678067bda5
+ - 364f5e5b-ed41-41e8-8181-5a64c1e08977
+ - 5c1c03fa-558f-4518-bbfb-a2d6c0ac5e6a
+ - b17ebcf6-affa-4588-a133-4cb8786d7e19
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - b739da44-a41c-46cb-81a6-fad678645491
+ - 1b9ca219-a0ff-454d-a6d6-f560bce27a62
+ - 7800477e-1d37-480e-aba9-a1193e61cf8c
+ - ea6bbb6d-3db9-405a-bcc8-0efe6ff2247b
+ - 358ac38f-9d6b-424a-ad12-df92ae478f93
+ - 8e2bc44c-9d11-4369-97ef-3f00902f3bb8
+ - c00374a9-f84c-42f1-8b1e-ac4e020591c6
+ - 3ddf25ea-80bc-417e-82b8-a0703967cef9
+ - 9ee13f26-621a-4b0d-bea0-48c30bddfa77
+ - 423701a7-4f0f-4b22-9304-758f7fd9f28e
+ - d6a382b9-baf6-4d56-ab80-3e464f766497
+ - 7921a184-12d7-40fd-9711-9245da6e5067
+ - a6a8d90f-9c19-4acd-9074-c068e4a57ec2
+ - 3f24efee-8a0e-43a8-ad3d-b3df67ffb742
+ - f12e086b-1939-469f-9138-3bceb2ef7e19
+ - af239c1d-f168-4f3a-b655-86c6944aecdf
+ - c3c83424-c461-49c9-84d5-33b90eecd891
+ - 3d6bff94-3dcf-468c-ab7a-88eb4d735259
+ - 480817fe-986c-4186-8058-a77069fb10b1
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - af94bc05-d9dd-48b3-97ef-80f93e8b6b46
+ - 80dd7959-2379-4209-9410-4c269e87cd92
+ - 93219771-1c76-49bb-ad4c-5f15da0bf464
+ - 0627c16c-3122-4959-bd5d-5ee26688bbc2
+ - 369a09ad-1f6b-437c-8eee-98db33efecd1
+ - 7b3ac5e4-7d3e-411f-ab06-ecedd15cccf6
+ - f6012b3c-e64c-4ea6-9243-00c5921ebd97
+ - 7e6986d8-68a3-447c-b3e6-fe47e0a1edef
+ - 77e51a7d-28dd-4808-a424-f91d4b5f2c67
+ - fdf97c38-5951-4b6e-8bf2-a6426505aae1
+ - bec3286d-af12-4a18-99aa-78e93c87da10
+ - 1475230a-606a-4e52-be6b-a158b83dc0a6
+ - 168eef93-c22e-4ce4-a776-afa80004bce9
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - de70ef17-0df8-4e32-8a5e-183c38885e43
+ - e7b46d59-0bd1-46cc-aeba-7d27258233c5
+ - 66f513a9-e72f-4150-a663-887f521eeb51
+ - b102c42a-7289-4b71-931b-b1642de830b9
+ - 0c798bb0-6521-4051-8591-1d492ce83833
+ - 0ec6fb34-30af-4d76-8b43-afd2c05731f6
+ - 3f8ed296-31ab-4200-9f35-a4baa7e1060d
+ - 586e6fc0-8ddd-4ee9-b107-8d23319269a4
+ - 4a55cc4c-18d1-4cdb-bcfd-c00c4c7438d3
+ - 6eaeacef-ba51-4547-8e87-7709428d14fc
+ - d619ce8e-8981-4dc1-9e8a-8001e77900c1
+ - fad5d6d1-c263-4c2e-8431-e4c7e882d53c
+ - 6d76c8be-dfbc-4f36-9993-40d0efb27bb7
+ - b23a38dc-cf75-4ba3-b10b-2f6039f11554
+ - 504738e4-8406-47af-a2c7-a574221a7427
+ - 96935792-1ec1-4cd9-8dd4-9a092de6ad61
+ - ed3b2feb-3bad-4598-a465-c0ff584626b2
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - 2ea92ada-a4b2-4477-9fa9-52ac38de5ea1
+ - 85
+ - 7be526f5-79eb-4f1d-91ae-d8077f748f28
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e389002a-311f-438a-a821-c71042c2315b
+ - d6b26c61-1407-4b4c-9aa7-230b7881e37c
+ - 80ab671d-6c63-4c2c-bfac-ab967e0adf89
+ - 3dab78bc-8b32-4959-a38a-fbb02c8789ea
+ - 59d5b8d0-333b-439e-8a1d-51ba268e9534
+ - eb698e65-3136-4ee7-8e13-7352ec2f3b5f
+ - 9812fbfd-aed6-419d-9f34-1da7c7a718e2
+ - 43ac5d38-56c2-46fa-a2d6-e12c566c33e1
+ - 057b9293-8565-4ad8-998b-f7b2a50eaa49
+ - f71571ba-c892-4b34-870f-d5235b415665
+ - 8c36d410-9355-4295-bda2-9b458f164ddd
+ - b3aa422e-c362-4f2e-b1d3-3c89403ccf64
+ - cda437b6-b93c-42d1-bef0-8e3012936758
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 0ed6d1b2-6112-44bc-bfc1-0290a4b8f9c7
+ - f5c7b38e-4599-4446-8dac-ea4341bffb71
+ - 574fe67f-71ff-4715-8a12-17491f24eb76
+ - 0ef2a3b3-6bf5-4d6b-8a75-f48a48cd3132
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - c496ed8d-c088-49ad-b789-ec25be9f2ba1
+ - 5b6f0604-d611-43ab-af67-0856d76ac3be
+ - 704efda2-f8e4-4bc0-b678-cc00abc69450
+ - 318cd1cf-1ac0-4b5a-8068-d487fd99f8c6
+ - cf714a6e-ed15-4548-b434-863030ede4e0
+ - 2499fa70-461f-479b-8b56-ad4993db7908
+ - cccade3e-3e98-4637-aaa4-80019f5bd038
+ - 8a57c746-396b-44ab-89cc-7a678067bda5
+ - 364f5e5b-ed41-41e8-8181-5a64c1e08977
+ - 5c1c03fa-558f-4518-bbfb-a2d6c0ac5e6a
+ - b17ebcf6-affa-4588-a133-4cb8786d7e19
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - b739da44-a41c-46cb-81a6-fad678645491
+ - 1b9ca219-a0ff-454d-a6d6-f560bce27a62
+ - 7800477e-1d37-480e-aba9-a1193e61cf8c
+ - ea6bbb6d-3db9-405a-bcc8-0efe6ff2247b
+ - 358ac38f-9d6b-424a-ad12-df92ae478f93
+ - 8e2bc44c-9d11-4369-97ef-3f00902f3bb8
+ - c00374a9-f84c-42f1-8b1e-ac4e020591c6
+ - 3ddf25ea-80bc-417e-82b8-a0703967cef9
+ - 9ee13f26-621a-4b0d-bea0-48c30bddfa77
+ - 423701a7-4f0f-4b22-9304-758f7fd9f28e
+ - d6a382b9-baf6-4d56-ab80-3e464f766497
+ - 7921a184-12d7-40fd-9711-9245da6e5067
+ - a6a8d90f-9c19-4acd-9074-c068e4a57ec2
+ - 3f24efee-8a0e-43a8-ad3d-b3df67ffb742
+ - f12e086b-1939-469f-9138-3bceb2ef7e19
+ - af239c1d-f168-4f3a-b655-86c6944aecdf
+ - c3c83424-c461-49c9-84d5-33b90eecd891
+ - 3d6bff94-3dcf-468c-ab7a-88eb4d735259
+ - 480817fe-986c-4186-8058-a77069fb10b1
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - af94bc05-d9dd-48b3-97ef-80f93e8b6b46
+ - 80dd7959-2379-4209-9410-4c269e87cd92
+ - 93219771-1c76-49bb-ad4c-5f15da0bf464
+ - 0627c16c-3122-4959-bd5d-5ee26688bbc2
+ - 369a09ad-1f6b-437c-8eee-98db33efecd1
+ - 7b3ac5e4-7d3e-411f-ab06-ecedd15cccf6
+ - f6012b3c-e64c-4ea6-9243-00c5921ebd97
+ - 7e6986d8-68a3-447c-b3e6-fe47e0a1edef
+ - 77e51a7d-28dd-4808-a424-f91d4b5f2c67
+ - fdf97c38-5951-4b6e-8bf2-a6426505aae1
+ - bec3286d-af12-4a18-99aa-78e93c87da10
+ - 1475230a-606a-4e52-be6b-a158b83dc0a6
+ - 168eef93-c22e-4ce4-a776-afa80004bce9
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - de70ef17-0df8-4e32-8a5e-183c38885e43
+ - e7b46d59-0bd1-46cc-aeba-7d27258233c5
+ - 66f513a9-e72f-4150-a663-887f521eeb51
+ - b102c42a-7289-4b71-931b-b1642de830b9
+ - 0c798bb0-6521-4051-8591-1d492ce83833
+ - 0ec6fb34-30af-4d76-8b43-afd2c05731f6
+ - 3f8ed296-31ab-4200-9f35-a4baa7e1060d
+ - 586e6fc0-8ddd-4ee9-b107-8d23319269a4
+ - 4a55cc4c-18d1-4cdb-bcfd-c00c4c7438d3
+ - 6eaeacef-ba51-4547-8e87-7709428d14fc
+ - d619ce8e-8981-4dc1-9e8a-8001e77900c1
+ - fad5d6d1-c263-4c2e-8431-e4c7e882d53c
+ - 6d76c8be-dfbc-4f36-9993-40d0efb27bb7
+ - b23a38dc-cf75-4ba3-b10b-2f6039f11554
+ - 79
+ - 1b21a041-d39c-47c7-91ce-6dc280e8829b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fad5d6d1-c263-4c2e-8431-e4c7e882d53c
+ - 1
+ - e389002a-311f-438a-a821-c71042c2315b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 80ab671d-6c63-4c2c-bfac-ab967e0adf89
+ - 1
+ - d6b26c61-1407-4b4c-9aa7-230b7881e37c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3dab78bc-8b32-4959-a38a-fbb02c8789ea
+ - 1
+ - 80ab671d-6c63-4c2c-bfac-ab967e0adf89
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 59d5b8d0-333b-439e-8a1d-51ba268e9534
+ - 1
+ - 3dab78bc-8b32-4959-a38a-fbb02c8789ea
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eb698e65-3136-4ee7-8e13-7352ec2f3b5f
+ - 1
+ - 59d5b8d0-333b-439e-8a1d-51ba268e9534
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9812fbfd-aed6-419d-9f34-1da7c7a718e2
+ - 1
+ - eb698e65-3136-4ee7-8e13-7352ec2f3b5f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 057b9293-8565-4ad8-998b-f7b2a50eaa49
+ - 1
+ - 9812fbfd-aed6-419d-9f34-1da7c7a718e2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 43ac5d38-56c2-46fa-a2d6-e12c566c33e1
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2989
+ 21494
+ 50
+ 24
+
+ -
+ 3014.946
+ 21506.91
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 43ac5d38-56c2-46fa-a2d6-e12c566c33e1
+ - 1
+ - 057b9293-8565-4ad8-998b-f7b2a50eaa49
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5c1c03fa-558f-4518-bbfb-a2d6c0ac5e6a
+ - 1
+ - f71571ba-c892-4b34-870f-d5235b415665
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b3aa422e-c362-4f2e-b1d3-3c89403ccf64
+ - cda437b6-b93c-42d1-bef0-8e3012936758
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 0ed6d1b2-6112-44bc-bfc1-0290a4b8f9c7
+ - f5c7b38e-4599-4446-8dac-ea4341bffb71
+ - 574fe67f-71ff-4715-8a12-17491f24eb76
+ - 0ef2a3b3-6bf5-4d6b-8a75-f48a48cd3132
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 5b6f0604-d611-43ab-af67-0856d76ac3be
+ - c496ed8d-c088-49ad-b789-ec25be9f2ba1
+ - f71571ba-c892-4b34-870f-d5235b415665
+ - 057b9293-8565-4ad8-998b-f7b2a50eaa49
+ - de70ef17-0df8-4e32-8a5e-183c38885e43
+ - e7b46d59-0bd1-46cc-aeba-7d27258233c5
+ - 66f513a9-e72f-4150-a663-887f521eeb51
+ - b102c42a-7289-4b71-931b-b1642de830b9
+ - 0c798bb0-6521-4051-8591-1d492ce83833
+ - 0ec6fb34-30af-4d76-8b43-afd2c05731f6
+ - 1475230a-606a-4e52-be6b-a158b83dc0a6
+ - 168eef93-c22e-4ce4-a776-afa80004bce9
+ - 20
+ - 8c36d410-9355-4295-bda2-9b458f164ddd
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - b3aa422e-c362-4f2e-b1d3-3c89403ccf64
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 2963
+ 22658
+ 104
+ 64
+
+ -
+ 3022
+ 22690
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 8774b7ce-e1a5-4125-9beb-fa2e3b636ca8
+ - Data
+ - Data
+ - false
+ - 9cd003b4-142b-41e2-b151-8bc96e64cb2e
+ - 1
+
+
+
+
+ -
+ 2965
+ 22660
+ 42
+ 20
+
+ -
+ 2987.5
+ 22670
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - b9433302-4811-47ed-9a72-755d2a3bb9b8
+ - Number
+ - Number
+ - false
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - 1
+
+
+
+
+ -
+ 2965
+ 22680
+ 42
+ 20
+
+ -
+ 2987.5
+ 22690
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - f100e17b-5264-4645-9f98-0bcf69189c8d
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 2965
+ 22700
+ 42
+ 20
+
+ -
+ 2987.5
+ 22710
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - cc6a2811-cc51-4e88-9810-d0a028d938b8
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 3037
+ 22660
+ 28
+ 60
+
+ -
+ 3052.5
+ 22690
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - cda437b6-b93c-42d1-bef0-8e3012936758
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 2949
+ 20730
+ 116
+ 44
+
+ -
+ 3010
+ 20752
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 9ae858ab-b5dc-4f5f-8d68-24ba948d2d04
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - cc6a2811-cc51-4e88-9810-d0a028d938b8
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 2951
+ 20732
+ 44
+ 20
+
+ -
+ 2974.5
+ 20742
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 508b84dd-2069-43ce-a5e0-bc7312d82de8
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - ce24876e-e2fe-44f8-bf9d-ba5699084a02
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 2951
+ 20752
+ 44
+ 20
+
+ -
+ 2974.5
+ 20762
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 71686122-ab34-4e3f-854e-297570dbc306
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 3025
+ 20732
+ 38
+ 20
+
+ -
+ 3045.5
+ 20742
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 0da3606f-e8e9-424b-b40d-9632eaf7af1a
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 3025
+ 20752
+ 38
+ 20
+
+ -
+ 3045.5
+ 20762
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 0ed6d1b2-6112-44bc-bfc1-0290a4b8f9c7
+ - Series
+ - Series
+
+
+
+
+ -
+ 2960
+ 21987
+ 101
+ 64
+
+ -
+ 3010
+ 22019
+
+
+
+
+
+ - First number in the series
+ - 01b26cd6-1fc7-4dc6-90d1-973aefd802a7
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2962
+ 21989
+ 33
+ 20
+
+ -
+ 2980
+ 21999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 08cd3c8f-d411-4cd9-99eb-0760225effb9
+ - Step
+ - Step
+ - false
+ - d619ce8e-8981-4dc1-9e8a-8001e77900c1
+ - 1
+
+
+
+
+ -
+ 2962
+ 22009
+ 33
+ 20
+
+ -
+ 2980
+ 22019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - a98418a8-91ce-440c-a92c-df4e15306600
+ - Count
+ - Count
+ - false
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - 1
+
+
+
+
+ -
+ 2962
+ 22029
+ 33
+ 20
+
+ -
+ 2980
+ 22039
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - a93ae73f-0686-4504-96a7-3e01e97bbf19
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 3025
+ 21989
+ 34
+ 60
+
+ -
+ 3043.5
+ 22019
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - f5c7b38e-4599-4446-8dac-ea4341bffb71
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2947
+ 22838
+ 150
+ 20
+
+ -
+ 2947.626
+ 22838.76
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 574fe67f-71ff-4715-8a12-17491f24eb76
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 2910
+ 22229
+ 120
+ 28
+
+ -
+ 2971
+ 22243
+
+
+
+
+
+ - Angle in degrees
+ - e5f275a9-3de0-436e-b23d-d175af4a615c
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 2912
+ 22231
+ 44
+ 24
+
+ -
+ 2935.5
+ 22243
+
+
+
+
+
+
+
+ - Angle in radians
+ - 24008995-0884-48c0-b4d6-45d04b80ced0
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 2986
+ 22231
+ 42
+ 24
+
+ -
+ 3008.5
+ 22243
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 0ef2a3b3-6bf5-4d6b-8a75-f48a48cd3132
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 2887
+ 22593
+ 251
+ 20
+
+ -
+ 2887.837
+ 22593.75
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - c496ed8d-c088-49ad-b789-ec25be9f2ba1
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 2935
+ 19965
+ 144
+ 84
+
+ -
+ 3021
+ 20007
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - eddf4b56-3dda-4284-ac4c-65e579f34f77
+ - Vertices
+ - Vertices
+ - false
+ - 57f0799b-c461-420d-9597-c2d5f7fd5022
+ - 1
+
+
+
+
+ -
+ 2937
+ 19967
+ 69
+ 20
+
+ -
+ 2973
+ 19977
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 2bc72dfe-3590-41ef-bc21-b51f5edfb0f2
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19987
+ 69
+ 20
+
+ -
+ 2973
+ 19997
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - c2f8297e-0bc7-4411-904b-ba2c9525f7d8
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 20007
+ 69
+ 20
+
+ -
+ 2973
+ 20017
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 6a697279-befd-4772-a215-35085422b2eb
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 20027
+ 69
+ 20
+
+ -
+ 2973
+ 20037
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 4057c060-2b5d-4a2e-a040-65cb746604a2
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3036
+ 19967
+ 41
+ 26
+
+ -
+ 3058
+ 19980.33
+
+
+
+
+
+
+
+ - Curve length
+ - dcc8e44c-96ed-4a3f-ba4f-7e82ac4a334a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3036
+ 19993
+ 41
+ 27
+
+ -
+ 3058
+ 20007
+
+
+
+
+
+
+
+ - Curve domain
+ - b786e946-2d5e-4316-86df-409b89ad5be7
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 3036
+ 20020
+ 41
+ 27
+
+ -
+ 3058
+ 20033.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b3aa422e-c362-4f2e-b1d3-3c89403ccf64
+ - cda437b6-b93c-42d1-bef0-8e3012936758
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 0ed6d1b2-6112-44bc-bfc1-0290a4b8f9c7
+ - f5c7b38e-4599-4446-8dac-ea4341bffb71
+ - 574fe67f-71ff-4715-8a12-17491f24eb76
+ - 0ef2a3b3-6bf5-4d6b-8a75-f48a48cd3132
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 586e6fc0-8ddd-4ee9-b107-8d23319269a4
+ - 1b9ca219-a0ff-454d-a6d6-f560bce27a62
+ - bec3286d-af12-4a18-99aa-78e93c87da10
+ - 3f8ed296-31ab-4200-9f35-a4baa7e1060d
+ - 4a55cc4c-18d1-4cdb-bcfd-c00c4c7438d3
+ - 93ff246b-28e0-41db-9a25-0de40ecb9d2f
+ - 14
+ - 5b6f0604-d611-43ab-af67-0856d76ac3be
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 704efda2-f8e4-4bc0-b678-cc00abc69450
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2935
+ 19797
+ 144
+ 64
+
+ -
+ 3009
+ 19829
+
+
+
+
+
+ - Curve to evaluate
+ - 9aa87a62-76fc-4dbf-9d00-bc7349979c2d
+ - Curve
+ - Curve
+ - false
+ - 4057c060-2b5d-4a2e-a040-65cb746604a2
+ - 1
+
+
+
+
+ -
+ 2937
+ 19799
+ 57
+ 20
+
+ -
+ 2967
+ 19809
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 2037313d-fe7e-4663-86ef-ae10a43ba893
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19819
+ 57
+ 20
+
+ -
+ 2967
+ 19829
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - d1a452c6-1d68-4f1d-b5fa-61a94be35bae
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19839
+ 57
+ 20
+
+ -
+ 2967
+ 19849
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d880bc64-38d7-413d-9d25-76974b3ae82a
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19799
+ 53
+ 20
+
+ -
+ 3052
+ 19809
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - db0923f3-c5d8-4ec6-9df6-4fe0c285d051
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19819
+ 53
+ 20
+
+ -
+ 3052
+ 19829
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - e114d922-d3a2-4635-89a2-9fe1190b7c43
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19839
+ 53
+ 20
+
+ -
+ 3052
+ 19849
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 318cd1cf-1ac0-4b5a-8068-d487fd99f8c6
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 2938
+ 19735
+ 138
+ 44
+
+ -
+ 3006
+ 19757
+
+
+
+
+
+ - Base geometry
+ - 99411a44-9673-4688-afa7-065a0d54ee52
+ - Geometry
+ - Geometry
+ - true
+ - 4057c060-2b5d-4a2e-a040-65cb746604a2
+ - 1
+
+
+
+
+ -
+ 2940
+ 19737
+ 51
+ 20
+
+ -
+ 2967
+ 19747
+
+
+
+
+
+
+
+ - Mirror plane
+ - dbe215d1-6837-4e0a-9d81-5b0987756dcc
+ - Plane
+ - Plane
+ - false
+ - 987f4116-c443-46cf-8c32-3e2d4082db60
+ - 1
+
+
+
+
+ -
+ 2940
+ 19757
+ 51
+ 20
+
+ -
+ 2967
+ 19767
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 9ee71fee-eabb-4c01-9324-9acdaea4f5bc
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3021
+ 19737
+ 53
+ 20
+
+ -
+ 3049
+ 19747
+
+
+
+
+
+
+
+ - Transformation data
+ - aa36bbf2-4f39-45f1-9f58-56cb2dffcb20
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3021
+ 19757
+ 53
+ 20
+
+ -
+ 3049
+ 19767
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - cf714a6e-ed15-4548-b434-863030ede4e0
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 2954
+ 19881
+ 106
+ 64
+
+ -
+ 3018
+ 19913
+
+
+
+
+
+ - Line start point
+ - 13c548d8-ab40-41d5-8ead-03a9fab9aef1
+ - Start
+ - Start
+ - false
+ - d880bc64-38d7-413d-9d25-76974b3ae82a
+ - 1
+
+
+
+
+ -
+ 2956
+ 19883
+ 47
+ 20
+
+ -
+ 2981
+ 19893
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - a305711c-8af2-428a-a34a-121747b585c9
+ - Direction
+ - Direction
+ - false
+ - db0923f3-c5d8-4ec6-9df6-4fe0c285d051
+ - 1
+
+
+
+
+ -
+ 2956
+ 19903
+ 47
+ 20
+
+ -
+ 2981
+ 19913
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0e78b25f-2e63-4916-8fcb-bf03df32ea1a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2956
+ 19923
+ 47
+ 20
+
+ -
+ 2981
+ 19933
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 987f4116-c443-46cf-8c32-3e2d4082db60
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 3033
+ 19883
+ 25
+ 60
+
+ -
+ 3047
+ 19913
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 2499fa70-461f-479b-8b56-ad4993db7908
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 2948
+ 19673
+ 118
+ 44
+
+ -
+ 3011
+ 19695
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 844a8a70-5f5a-480e-93bb-bac9b984096d
+ - Curves
+ - Curves
+ - false
+ - 4057c060-2b5d-4a2e-a040-65cb746604a2
+ - 9ee71fee-eabb-4c01-9324-9acdaea4f5bc
+ - 2
+
+
+
+
+ -
+ 2950
+ 19675
+ 46
+ 20
+
+ -
+ 2974.5
+ 19685
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 40cf51f3-98bf-4fc6-9200-8540e8a3d92e
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 2950
+ 19695
+ 46
+ 20
+
+ -
+ 2974.5
+ 19705
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 61b9705a-3f7c-4316-baa3-1a8aae5849f5
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3026
+ 19675
+ 38
+ 40
+
+ -
+ 3046.5
+ 19695
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - cccade3e-3e98-4637-aaa4-80019f5bd038
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2935
+ 19589
+ 144
+ 64
+
+ -
+ 3009
+ 19621
+
+
+
+
+
+ - Curve to evaluate
+ - 46e56da7-1a6e-467d-b642-52465c709b5f
+ - Curve
+ - Curve
+ - false
+ - 61b9705a-3f7c-4316-baa3-1a8aae5849f5
+ - 1
+
+
+
+
+ -
+ 2937
+ 19591
+ 57
+ 20
+
+ -
+ 2967
+ 19601
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 5fa78312-2440-436a-a076-67c05ea6c000
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19611
+ 57
+ 20
+
+ -
+ 2967
+ 19621
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - ad033806-4bce-405b-87f7-566945884a74
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19631
+ 57
+ 20
+
+ -
+ 2967
+ 19641
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 8a060934-75bb-4d51-aeb9-36c84b2731de
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19591
+ 53
+ 20
+
+ -
+ 3052
+ 19601
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - c2791d22-0cff-42d8-9c28-0bf471d7acea
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19611
+ 53
+ 20
+
+ -
+ 3052
+ 19621
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - fa0f3b17-cee9-42bf-a8c8-7ec464062731
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19631
+ 53
+ 20
+
+ -
+ 3052
+ 19641
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 8a57c746-396b-44ab-89cc-7a678067bda5
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 2938
+ 19506
+ 138
+ 64
+
+ -
+ 3006
+ 19538
+
+
+
+
+
+ - Base geometry
+ - a028f1ef-cf43-45df-acf4-4a2a4d97f744
+ - Geometry
+ - Geometry
+ - true
+ - 61b9705a-3f7c-4316-baa3-1a8aae5849f5
+ - 1
+
+
+
+
+ -
+ 2940
+ 19508
+ 51
+ 20
+
+ -
+ 2967
+ 19518
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 66ff8808-0356-4f97-8b08-e04e0d6e820f
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 2940
+ 19528
+ 51
+ 20
+
+ -
+ 2967
+ 19538
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 88cd5b3b-a665-4937-815e-0d4e6b63cf3d
+ - Plane
+ - Plane
+ - false
+ - 8a060934-75bb-4d51-aeb9-36c84b2731de
+ - 1
+
+
+
+
+ -
+ 2940
+ 19548
+ 51
+ 20
+
+ -
+ 2967
+ 19558
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 3e104311-a7fe-4090-b1ce-61e3e6aac39e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3021
+ 19508
+ 53
+ 30
+
+ -
+ 3049
+ 19523
+
+
+
+
+
+
+
+ - Transformation data
+ - b3021552-5159-4a70-9578-69b8dd8c1a4a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3021
+ 19538
+ 53
+ 30
+
+ -
+ 3049
+ 19553
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 364f5e5b-ed41-41e8-8181-5a64c1e08977
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 2948
+ 19443
+ 118
+ 44
+
+ -
+ 3011
+ 19465
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 319b601c-b779-4b2f-98ab-b5e42d69b0d4
+ - Curves
+ - Curves
+ - false
+ - 61b9705a-3f7c-4316-baa3-1a8aae5849f5
+ - 3e104311-a7fe-4090-b1ce-61e3e6aac39e
+ - 2
+
+
+
+
+ -
+ 2950
+ 19445
+ 46
+ 20
+
+ -
+ 2974.5
+ 19455
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - e35fd497-bebf-4ffa-a7f2-241a045f602b
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 2950
+ 19465
+ 46
+ 20
+
+ -
+ 2974.5
+ 19475
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 9d28ddd1-1658-4a5f-95df-0eaad23ae026
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 3026
+ 19445
+ 38
+ 40
+
+ -
+ 3046.5
+ 19465
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c496ed8d-c088-49ad-b789-ec25be9f2ba1
+ - 704efda2-f8e4-4bc0-b678-cc00abc69450
+ - 318cd1cf-1ac0-4b5a-8068-d487fd99f8c6
+ - cf714a6e-ed15-4548-b434-863030ede4e0
+ - 2499fa70-461f-479b-8b56-ad4993db7908
+ - cccade3e-3e98-4637-aaa4-80019f5bd038
+ - 8a57c746-396b-44ab-89cc-7a678067bda5
+ - 364f5e5b-ed41-41e8-8181-5a64c1e08977
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - 49e97076-47e9-42b3-94bb-22be4cbce56d
+ - 82207b9e-ead4-4815-878a-17418dfbdd67
+ - 57f0799b-c461-420d-9597-c2d5f7fd5022
+ - 84df36e3-f442-4145-bdae-23bfd4a52f79
+ - 049dd7c6-38d9-418a-9ba6-928754ae8d1e
+ - 620f22e7-a506-41a5-9b65-8bfbd9795fb9
+ - 15
+ - 5c1c03fa-558f-4518-bbfb-a2d6c0ac5e6a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b17ebcf6-affa-4588-a133-4cb8786d7e19
+ - Panel
+
+ - false
+ - 0
+ - 7921a184-12d7-40fd-9711-9245da6e5067
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2941
+ 22080
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2941.366
+ 22080.26
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - Curve
+ - Curve
+ - false
+ - 9d28ddd1-1658-4a5f-95df-0eaad23ae026
+ - 1
+
+
+
+
+ -
+ 2989
+ 19407
+ 50
+ 24
+
+ -
+ 3014.946
+ 19419.82
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - 1
+ - b739da44-a41c-46cb-81a6-fad678645491
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1b9ca219-a0ff-454d-a6d6-f560bce27a62
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 2795
+ 22316
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2795.927
+ 22316.94
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 7800477e-1d37-480e-aba9-a1193e61cf8c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2935
+ 19317
+ 144
+ 64
+
+ -
+ 3009
+ 19349
+
+
+
+
+
+ - Curve to evaluate
+ - 141416a6-b721-4aef-a2e3-b0146546b0b5
+ - Curve
+ - Curve
+ - false
+ - 9d28ddd1-1658-4a5f-95df-0eaad23ae026
+ - 1
+
+
+
+
+ -
+ 2937
+ 19319
+ 57
+ 20
+
+ -
+ 2967
+ 19329
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 6327b436-e0cb-4c5a-b798-43e55a32c1a2
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19339
+ 57
+ 20
+
+ -
+ 2967
+ 19349
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9f34607c-188d-4758-9808-3b208f60b372
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 19359
+ 57
+ 20
+
+ -
+ 2967
+ 19369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e513d9c0-bbdb-4b65-b0f9-8a5fc880f7d0
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19319
+ 53
+ 20
+
+ -
+ 3052
+ 19329
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 82639f4c-d46b-47a3-b9d1-cfbd7f16af04
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19339
+ 53
+ 20
+
+ -
+ 3052
+ 19349
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a73bdfc7-c389-4f65-903f-e01b47b3a4f5
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 19359
+ 53
+ 20
+
+ -
+ 3052
+ 19369
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ea6bbb6d-3db9-405a-bcc8-0efe6ff2247b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 19095
+ 194
+ 28
+
+ -
+ 3010
+ 19109
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c73d1da7-2872-4a8f-912a-a13dde72e057
+ - Variable O
+ - O
+ - true
+ - 2182d553-d440-43c8-a668-25e4e79e913b
+ - 1
+
+
+
+
+ -
+ 2912
+ 19097
+ 14
+ 24
+
+ -
+ 2920.5
+ 19109
+
+
+
+
+
+
+
+ - Result of expression
+ - 4e260858-464a-4ab4-b551-8904dd7f0048
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 19097
+ 9
+ 24
+
+ -
+ 3099
+ 19109
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 358ac38f-9d6b-424a-ad12-df92ae478f93
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 2941
+ 19229
+ 132
+ 64
+
+ -
+ 2988
+ 19261
+
+
+
+
+
+ - Input point
+ - 731b1aad-bb80-4e48-bed3-235140fdb3e6
+ - Point
+ - Point
+ - false
+ - e513d9c0-bbdb-4b65-b0f9-8a5fc880f7d0
+ - 1
+
+
+
+
+ -
+ 2943
+ 19231
+ 30
+ 60
+
+ -
+ 2959.5
+ 19261
+
+
+
+
+
+
+
+ - Point {x} component
+ - 2182d553-d440-43c8-a668-25e4e79e913b
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 19231
+ 68
+ 20
+
+ -
+ 3038.5
+ 19241
+
+
+
+
+
+
+
+ - Point {y} component
+ - 55b8b94b-2800-4efd-bfc5-71c17213ab4e
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 19251
+ 68
+ 20
+
+ -
+ 3038.5
+ 19261
+
+
+
+
+
+
+
+ - Point {z} component
+ - 57a7830b-1f16-4bfb-9084-4410e4813cd4
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 19271
+ 68
+ 20
+
+ -
+ 3038.5
+ 19281
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8e2bc44c-9d11-4369-97ef-3f00902f3bb8
+ - Panel
+
+ - false
+ - 0
+ - 4e260858-464a-4ab4-b551-8904dd7f0048
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 19073
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.718
+ 19073.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c00374a9-f84c-42f1-8b1e-ac4e020591c6
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 19009
+ 194
+ 28
+
+ -
+ 3010
+ 19023
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e5cc2820-ca7d-45a6-b5c9-2223347a25ef
+ - Variable O
+ - O
+ - true
+ - 55b8b94b-2800-4efd-bfc5-71c17213ab4e
+ - 1
+
+
+
+
+ -
+ 2912
+ 19011
+ 14
+ 24
+
+ -
+ 2920.5
+ 19023
+
+
+
+
+
+
+
+ - Result of expression
+ - 752fbb44-e28e-4f0a-ada7-744cd24cbcb6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 19011
+ 9
+ 24
+
+ -
+ 3099
+ 19023
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3ddf25ea-80bc-417e-82b8-a0703967cef9
+ - Panel
+
+ - false
+ - 0
+ - 752fbb44-e28e-4f0a-ada7-744cd24cbcb6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 18984
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.718
+ 18984.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 9ee13f26-621a-4b0d-bea0-48c30bddfa77
+ - Division
+ - Division
+
+
+
+
+ -
+ 2966
+ 18907
+ 82
+ 44
+
+ -
+ 2997
+ 18929
+
+
+
+
+
+ - Item to divide (dividend)
+ - bcd65c31-9194-4a6e-8a6a-598ae81fc66d
+ - A
+ - A
+ - false
+ - 8e2bc44c-9d11-4369-97ef-3f00902f3bb8
+ - 1
+
+
+
+
+ -
+ 2968
+ 18909
+ 14
+ 20
+
+ -
+ 2976.5
+ 18919
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - ccd5bfcb-8c45-4a34-92db-f1364b781317
+ - B
+ - B
+ - false
+ - 3ddf25ea-80bc-417e-82b8-a0703967cef9
+ - 1
+
+
+
+
+ -
+ 2968
+ 18929
+ 14
+ 20
+
+ -
+ 2976.5
+ 18939
+
+
+
+
+
+
+
+ - The result of the Division
+ - e475034f-ea3b-4607-8197-55baffcb48f9
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3012
+ 18909
+ 34
+ 40
+
+ -
+ 3030.5
+ 18929
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 423701a7-4f0f-4b22-9304-758f7fd9f28e
+ - Panel
+
+ - false
+ - 0
+ - 7921a184-12d7-40fd-9711-9245da6e5067
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 18837
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.956
+ 18837.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d6a382b9-baf6-4d56-ab80-3e464f766497
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 18860
+ 194
+ 28
+
+ -
+ 3010
+ 18874
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - effae4db-eb36-4b20-8840-0015529f405b
+ - Variable O
+ - O
+ - true
+ - e475034f-ea3b-4607-8197-55baffcb48f9
+ - 1
+
+
+
+
+ -
+ 2912
+ 18862
+ 14
+ 24
+
+ -
+ 2920.5
+ 18874
+
+
+
+
+
+
+
+ - Result of expression
+ - dc97c662-4675-47d7-b039-00e74939e276
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 18862
+ 9
+ 24
+
+ -
+ 3099
+ 18874
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 7921a184-12d7-40fd-9711-9245da6e5067
+ - Relay
+
+ - false
+ - dc97c662-4675-47d7-b039-00e74939e276
+ - 1
+
+
+
+
+ -
+ 2987
+ 18785
+ 40
+ 16
+
+ -
+ 3007
+ 18793
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - a6a8d90f-9c19-4acd-9074-c068e4a57ec2
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 2966
+ 18722
+ 82
+ 44
+
+ -
+ 2997
+ 18744
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 5b4e12c8-e7ce-4f9e-8b72-4a0e08357083
+ - A
+ - A
+ - true
+ - 3ddf25ea-80bc-417e-82b8-a0703967cef9
+ - 1
+
+
+
+
+ -
+ 2968
+ 18724
+ 14
+ 20
+
+ -
+ 2976.5
+ 18734
+
+
+
+
+
+
+
+ - Second item for addition
+ - a1afa5cf-defc-4950-b13e-c95c1b7a21e3
+ - B
+ - B
+ - true
+ - 8e2bc44c-9d11-4369-97ef-3f00902f3bb8
+ - 1
+
+
+
+
+ -
+ 2968
+ 18744
+ 14
+ 20
+
+ -
+ 2976.5
+ 18754
+
+
+
+
+
+
+
+ - Result of addition
+ - 5ac33d9f-fc1f-4b0d-a95f-8986745ec1ad
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3012
+ 18724
+ 34
+ 40
+
+ -
+ 3030.5
+ 18744
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 3f24efee-8a0e-43a8-ad3d-b3df67ffb742
+ - Division
+ - Division
+
+
+
+
+ -
+ 2966
+ 18572
+ 82
+ 44
+
+ -
+ 2997
+ 18594
+
+
+
+
+
+ - Item to divide (dividend)
+ - 88cf22f4-dacc-44ba-812b-aea1e44040ae
+ - A
+ - A
+ - false
+ - c3c83424-c461-49c9-84d5-33b90eecd891
+ - 1
+
+
+
+
+ -
+ 2968
+ 18574
+ 14
+ 20
+
+ -
+ 2976.5
+ 18584
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - eaa76c8a-a383-4bef-b7ee-87d421b60265
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 2968
+ 18594
+ 14
+ 20
+
+ -
+ 2976.5
+ 18604
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - d5f2f7ce-0d29-4225-9032-6452b60a4dee
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 3012
+ 18574
+ 34
+ 40
+
+ -
+ 3030.5
+ 18594
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f12e086b-1939-469f-9138-3bceb2ef7e19
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 18524
+ 194
+ 28
+
+ -
+ 3010
+ 18538
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e3c77d79-f32b-407b-b777-220f35335397
+ - Variable O
+ - O
+ - true
+ - d5f2f7ce-0d29-4225-9032-6452b60a4dee
+ - 1
+
+
+
+
+ -
+ 2912
+ 18526
+ 14
+ 24
+
+ -
+ 2920.5
+ 18538
+
+
+
+
+
+
+
+ - Result of expression
+ - f1bd89b8-eb21-4492-bb9d-1395442f4fab
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 18526
+ 9
+ 24
+
+ -
+ 3099
+ 18538
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - af239c1d-f168-4f3a-b655-86c6944aecdf
+ - Panel
+
+ - false
+ - 0
+ - f1bd89b8-eb21-4492-bb9d-1395442f4fab
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 18501
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.718
+ 18501.32
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c3c83424-c461-49c9-84d5-33b90eecd891
+ - Panel
+
+ - false
+ - 0
+ - 0f7cfb7b-cd98-4245-881c-a772900d37d5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 18653
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.718
+ 18653.23
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3d6bff94-3dcf-468c-ab7a-88eb4d735259
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 18675
+ 194
+ 28
+
+ -
+ 3010
+ 18689
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8391baa9-5380-4698-9590-bd569935fe7c
+ - Variable O
+ - O
+ - true
+ - 5ac33d9f-fc1f-4b0d-a95f-8986745ec1ad
+ - 1
+
+
+
+
+ -
+ 2912
+ 18677
+ 14
+ 24
+
+ -
+ 2920.5
+ 18689
+
+
+
+
+
+
+
+ - Result of expression
+ - 0f7cfb7b-cd98-4245-881c-a772900d37d5
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 18677
+ 9
+ 24
+
+ -
+ 3099
+ 18689
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 480817fe-986c-4186-8058-a77069fb10b1
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2930
+ 18401
+ 154
+ 64
+
+ -
+ 3014
+ 18433
+
+
+
+
+
+ - Base geometry
+ - a83d2e11-3831-4a92-bca7-2c450f18f7f7
+ - Geometry
+ - Geometry
+ - true
+ - 4c590110-8cd2-40ad-bad5-7b4469a3e74b
+ - 1
+
+
+
+
+ -
+ 2932
+ 18403
+ 67
+ 20
+
+ -
+ 2975
+ 18413
+
+
+
+
+
+
+
+ - Center of scaling
+ - bb3c64f6-409f-4efd-80e8-551a6f4de83d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2932
+ 18423
+ 67
+ 20
+
+ -
+ 2975
+ 18433
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - d8668115-f2c6-41f9-881c-12a4a058838d
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - af239c1d-f168-4f3a-b655-86c6944aecdf
+ - 1
+
+
+
+
+ -
+ 2932
+ 18443
+ 67
+ 20
+
+ -
+ 2975
+ 18453
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 0b4365f6-06f0-4383-91e4-0b0895b1b9a2
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3029
+ 18403
+ 53
+ 30
+
+ -
+ 3057
+ 18418
+
+
+
+
+
+
+
+ - Transformation data
+ - c7796223-bda6-47e5-81b1-ccd7d538b9bf
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3029
+ 18433
+ 53
+ 30
+
+ -
+ 3057
+ 18448
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - Curve
+ - Curve
+ - false
+ - 0b4365f6-06f0-4383-91e4-0b0895b1b9a2
+ - 1
+
+
+
+
+ -
+ 2987
+ 17806
+ 50
+ 24
+
+ -
+ 3012.696
+ 17818.82
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - af94bc05-d9dd-48b3-97ef-80f93e8b6b46
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 19182
+ 194
+ 28
+
+ -
+ 3010
+ 19196
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9b121662-9092-4892-a1b3-e29def25fdc6
+ - Variable O
+ - O
+ - true
+ - 57a7830b-1f16-4bfb-9084-4410e4813cd4
+ - 1
+
+
+
+
+ -
+ 2912
+ 19184
+ 14
+ 24
+
+ -
+ 2920.5
+ 19196
+
+
+
+
+
+
+
+ - Result of expression
+ - 2b2a4cd9-03cd-467f-bfa5-eb69f14cce20
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 19184
+ 9
+ 24
+
+ -
+ 3099
+ 19196
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 80dd7959-2379-4209-9410-4c269e87cd92
+ - Panel
+
+ - false
+ - 0
+ - 2b2a4cd9-03cd-467f-bfa5-eb69f14cce20
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2934
+ 19159
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2934.587
+ 19159.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 93219771-1c76-49bb-ad4c-5f15da0bf464
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 2935
+ 18191
+ 144
+ 64
+
+ -
+ 3009
+ 18223
+
+
+
+
+
+ - Curve to evaluate
+ - 8b421b0f-a28f-4ea1-98e9-3c9261f9430f
+ - Curve
+ - Curve
+ - false
+ - 0b4365f6-06f0-4383-91e4-0b0895b1b9a2
+ - 1
+
+
+
+
+ -
+ 2937
+ 18193
+ 57
+ 20
+
+ -
+ 2967
+ 18203
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d54c5d17-20cb-426f-8dd2-b03203227af8
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 18213
+ 57
+ 20
+
+ -
+ 2967
+ 18223
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 681e4df5-920c-417c-9f2a-9683169343f7
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 18233
+ 57
+ 20
+
+ -
+ 2967
+ 18243
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 9f796daf-039e-467d-9fb5-9e5fa9eae965
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 18193
+ 53
+ 20
+
+ -
+ 3052
+ 18203
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - e6009b60-b726-4257-bf31-e9ab2e079175
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 18213
+ 53
+ 20
+
+ -
+ 3052
+ 18223
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 05ad9317-302e-45b7-ac3e-e992bc303c41
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 18233
+ 53
+ 20
+
+ -
+ 3052
+ 18243
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0627c16c-3122-4959-bd5d-5ee26688bbc2
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 17974
+ 194
+ 28
+
+ -
+ 3010
+ 17988
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c097b315-1505-4c30-82d9-71e264b6c976
+ - Variable O
+ - O
+ - true
+ - 2908c21f-c4de-417a-b8ce-a264e2bdcf87
+ - 1
+
+
+
+
+ -
+ 2912
+ 17976
+ 14
+ 24
+
+ -
+ 2920.5
+ 17988
+
+
+
+
+
+
+
+ - Result of expression
+ - 6915573a-1d91-45df-a8f2-041107ce239c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 17976
+ 9
+ 24
+
+ -
+ 3099
+ 17988
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 369a09ad-1f6b-437c-8eee-98db33efecd1
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 2941
+ 18108
+ 132
+ 64
+
+ -
+ 2988
+ 18140
+
+
+
+
+
+ - Input point
+ - 9a77e0ca-42f7-490d-bfc9-1ef8b6a3a29b
+ - Point
+ - Point
+ - false
+ - 9f796daf-039e-467d-9fb5-9e5fa9eae965
+ - 1
+
+
+
+
+ -
+ 2943
+ 18110
+ 30
+ 60
+
+ -
+ 2959.5
+ 18140
+
+
+
+
+
+
+
+ - Point {x} component
+ - 2908c21f-c4de-417a-b8ce-a264e2bdcf87
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 18110
+ 68
+ 20
+
+ -
+ 3038.5
+ 18120
+
+
+
+
+
+
+
+ - Point {y} component
+ - 3467649a-b248-4c01-89e9-bb35b330b1a7
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 18130
+ 68
+ 20
+
+ -
+ 3038.5
+ 18140
+
+
+
+
+
+
+
+ - Point {z} component
+ - 36fd5590-4142-49d3-a6e0-38bf0e13957a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 3003
+ 18150
+ 68
+ 20
+
+ -
+ 3038.5
+ 18160
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7b3ac5e4-7d3e-411f-ab06-ecedd15cccf6
+ - Panel
+
+ - false
+ - 0
+ - 6915573a-1d91-45df-a8f2-041107ce239c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 17946
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.968
+ 17946.75
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f6012b3c-e64c-4ea6-9243-00c5921ebd97
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 17888
+ 194
+ 28
+
+ -
+ 3010
+ 17902
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 269096ad-667f-44c5-8e1f-569f2c60f1c3
+ - Variable O
+ - O
+ - true
+ - 3467649a-b248-4c01-89e9-bb35b330b1a7
+ - 1
+
+
+
+
+ -
+ 2912
+ 17890
+ 14
+ 24
+
+ -
+ 2920.5
+ 17902
+
+
+
+
+
+
+
+ - Result of expression
+ - cc12a092-0034-49f3-9db4-37f7927811d8
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 17890
+ 9
+ 24
+
+ -
+ 3099
+ 17902
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7e6986d8-68a3-447c-b3e6-fe47e0a1edef
+ - Panel
+
+ - false
+ - 0
+ - cc12a092-0034-49f3-9db4-37f7927811d8
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 17861
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.977
+ 17861.12
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 77e51a7d-28dd-4808-a424-f91d4b5f2c67
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 18060
+ 194
+ 28
+
+ -
+ 3010
+ 18074
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 990c124f-1def-4414-9e8c-5345f592aaf5
+ - Variable O
+ - O
+ - true
+ - 36fd5590-4142-49d3-a6e0-38bf0e13957a
+ - 1
+
+
+
+
+ -
+ 2912
+ 18062
+ 14
+ 24
+
+ -
+ 2920.5
+ 18074
+
+
+
+
+
+
+
+ - Result of expression
+ - bce8bd99-8675-4a6c-accf-b9295f09c088
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 18062
+ 9
+ 24
+
+ -
+ 3099
+ 18074
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fdf97c38-5951-4b6e-8bf2-a6426505aae1
+ - Panel
+
+ - false
+ - 0
+ - bce8bd99-8675-4a6c-accf-b9295f09c088
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2933
+ 18032
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2933.718
+ 18032.96
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bec3286d-af12-4a18-99aa-78e93c87da10
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 2825
+ 22387
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 2825.376
+ 22387.41
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1475230a-606a-4e52-be6b-a158b83dc0a6
+ - Panel
+
+ - false
+ - 0
+ - b0bd8f2d-9278-4244-8d90-3720a99f566b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2845
+ 20396
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 2845.907
+ 20396.74
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 168eef93-c22e-4ce4-a776-afa80004bce9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 20682
+ 194
+ 28
+
+ -
+ 3010
+ 20696
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d126cc00-ff9f-4ddf-94a1-809d717b1f85
+ - Variable O
+ - O
+ - true
+ - 0da3606f-e8e9-424b-b40d-9632eaf7af1a
+ - 1
+
+
+
+
+ -
+ 2912
+ 20684
+ 14
+ 24
+
+ -
+ 2920.5
+ 20696
+
+
+
+
+
+
+
+ - Result of expression
+ - b0bd8f2d-9278-4244-8d90-3720a99f566b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 20684
+ 9
+ 24
+
+ -
+ 3099
+ 20696
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 2997
+ 22797
+ 50
+ 24
+
+ -
+ 3022.677
+ 22809.05
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - de70ef17-0df8-4e32-8a5e-183c38885e43
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 2838
+ 20964
+ 160
+ 224
+
+ -
+ 2906
+ 21076
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 952368ff-63db-4b6b-bf77-47185a89071f
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0c9f5125-8b29-4eb0-a9b2-af2775c85491
+ - 1
+
+
+
+
+ -
+ 2840
+ 20966
+ 51
+ 27
+
+ -
+ 2867
+ 20979.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 270fca9f-91d4-4d80-81cd-8513d3ad053c
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - cdde36fd-f665-45f1-b7ad-bc3424d13fdf
+ - 1
+
+
+
+
+ -
+ 2840
+ 20993
+ 51
+ 28
+
+ -
+ 2867
+ 21007.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 2fce7b6d-c52e-440e-a6bf-2616d7bd60d6
+ - true
+ - Values
+ - Values
+ - false
+ - a93ae73f-0686-4504-96a7-3e01e97bbf19
+ - 1
+
+
+
+
+ -
+ 2840
+ 21021
+ 51
+ 27
+
+ -
+ 2867
+ 21034.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - c1221dc0-a076-4ada-8064-6a9be828ec53
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 2840
+ 21048
+ 51
+ 28
+
+ -
+ 2867
+ 21062.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 205b7edb-a4b0-4bd5-b8c6-9faf12885d09
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 2840
+ 21076
+ 51
+ 27
+
+ -
+ 2867
+ 21089.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - bc2a4497-d732-4a9d-af6e-60ab7e7de1ad
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ 21103
+ 51
+ 28
+
+ -
+ 2867
+ 21117.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 05196f6b-fb98-439e-b2c4-fe8e330ab6df
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ 21131
+ 51
+ 27
+
+ -
+ 2867
+ 21144.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - cd210256-106e-49b1-b487-5f831d2b6e23
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 2840
+ 21158
+ 51
+ 28
+
+ -
+ 2867
+ 21172.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 2239fee1-5b43-4790-aff8-c37f13433ac9
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 20966
+ 75
+ 20
+
+ -
+ 2960
+ 20976
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 13e18167-8ca0-4335-84c8-5fa02b1852ac
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 20986
+ 75
+ 20
+
+ -
+ 2960
+ 20996
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - f76fc9ff-a44d-4a8b-8085-919384d75ff0
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21006
+ 75
+ 20
+
+ -
+ 2960
+ 21016
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 83f0efd4-5908-4cdf-8bcc-26272227fa73
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21026
+ 75
+ 20
+
+ -
+ 2960
+ 21036
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 08acaf2e-3597-4682-93bc-ea6c7debd4a2
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21046
+ 75
+ 20
+
+ -
+ 2960
+ 21056
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - f592770e-efdb-417a-8621-e034e074d187
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21066
+ 75
+ 20
+
+ -
+ 2960
+ 21076
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 91c64238-6095-4430-9437-2d02a573651d
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21086
+ 75
+ 20
+
+ -
+ 2960
+ 21096
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - c3a04758-4d94-4634-a580-71f7bc94596c
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21106
+ 75
+ 20
+
+ -
+ 2960
+ 21116
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - a6d1245f-2e42-4312-9071-2c582d290612
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21126
+ 75
+ 20
+
+ -
+ 2960
+ 21136
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - bfceb5b8-559e-47c4-8ba8-bf9445bd86c3
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21146
+ 75
+ 20
+
+ -
+ 2960
+ 21156
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 544862d9-f3b5-4b56-8e13-c61695d12d90
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 2921
+ 21166
+ 75
+ 20
+
+ -
+ 2960
+ 21176
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - e7b46d59-0bd1-46cc-aeba-7d27258233c5
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 2959
+ 21389
+ 96
+ 44
+
+ -
+ 3009
+ 21411
+
+
+
+
+
+ - Curve to evaluate
+ - 67281c70-2be8-4324-8f3d-c5d1087b22cd
+ - Curve
+ - Curve
+ - false
+ - 0c9f5125-8b29-4eb0-a9b2-af2775c85491
+ - 1
+
+
+
+
+ -
+ 2961
+ 21391
+ 33
+ 40
+
+ -
+ 2979
+ 21411
+
+
+
+
+
+
+
+ - Curve start point
+ - 0394e597-30a8-435c-b63b-e47af57f3096
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 21391
+ 29
+ 20
+
+ -
+ 3040
+ 21401
+
+
+
+
+
+
+
+ - Curve end point
+ - e6f25ff5-5ab9-4731-9acc-5223a00d2d7b
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 3024
+ 21411
+ 29
+ 20
+
+ -
+ 3040
+ 21421
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 66f513a9-e72f-4150-a663-887f521eeb51
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 2949
+ 21261
+ 126
+ 84
+
+ -
+ 3007
+ 21303
+
+
+
+
+
+ - Rectangle base plane
+ - 23bd9751-2de1-4670-bfe3-b09c43aa3cf7
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 2951
+ 21263
+ 41
+ 20
+
+ -
+ 2973
+ 21273
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 0eb544a2-2212-41a5-9449-1cabdbb4bd7a
+ - Point A
+ - Point A
+ - false
+ - 0394e597-30a8-435c-b63b-e47af57f3096
+ - 1
+
+
+
+
+ -
+ 2951
+ 21283
+ 41
+ 20
+
+ -
+ 2973
+ 21293
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 9df1d5c9-af2c-4bd4-abd4-7b27626095f8
+ - Point B
+ - Point B
+ - false
+ - e6f25ff5-5ab9-4731-9acc-5223a00d2d7b
+ - 1
+
+
+
+
+ -
+ 2951
+ 21303
+ 41
+ 20
+
+ -
+ 2973
+ 21313
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 0e7e3490-682b-4248-a568-047cef714c12
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 2951
+ 21323
+ 41
+ 20
+
+ -
+ 2973
+ 21333
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - cdde36fd-f665-45f1-b7ad-bc3424d13fdf
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 3022
+ 21263
+ 51
+ 40
+
+ -
+ 3049
+ 21283
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 5fe18674-4e73-467f-8e83-b7db3b4f0d69
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3022
+ 21303
+ 51
+ 40
+
+ -
+ 3049
+ 21323
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - b102c42a-7289-4b71-931b-b1642de830b9
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 2998
+ 21084
+ 126
+ 104
+
+ -
+ 3065
+ 21136
+
+
+
+
+
+ - External curve as a graph
+ - 9690190c-b0a1-42b2-a022-0cc31adab0bc
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0c9f5125-8b29-4eb0-a9b2-af2775c85491
+ - 1
+
+
+
+
+ -
+ 3000
+ 21086
+ 50
+ 20
+
+ -
+ 3026.5
+ 21096
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 618106b9-ed69-4cf7-aa3c-99353c5fc703
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - cdde36fd-f665-45f1-b7ad-bc3424d13fdf
+ - 1
+
+
+
+
+ -
+ 3000
+ 21106
+ 50
+ 20
+
+ -
+ 3026.5
+ 21116
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - e71bdd8f-4456-47a3-9e5e-d585ab11076a
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - a93ae73f-0686-4504-96a7-3e01e97bbf19
+ - 1
+
+
+
+
+ -
+ 3000
+ 21126
+ 50
+ 20
+
+ -
+ 3026.5
+ 21136
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 8ba1ee43-0aa7-4ef9-b754-f03b1378d319
+ - true
+ - Input
+ - Input
+ - true
+ - 6bd7e3fb-0023-4354-a5a5-1a743d528e75
+ - 1
+
+
+
+
+ -
+ 3000
+ 21146
+ 50
+ 20
+
+ -
+ 3026.5
+ 21156
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 770f829f-3345-4e55-839f-e17cda1d8b4e
+ - true
+ - Output
+ - Output
+ - true
+ - 6bd7e3fb-0023-4354-a5a5-1a743d528e75
+ - 1
+
+
+
+
+ -
+ 3000
+ 21166
+ 50
+ 20
+
+ -
+ 3026.5
+ 21176
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 514f261b-6618-4813-898a-47961f234d92
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 3080
+ 21086
+ 42
+ 100
+
+ -
+ 3102.5
+ 21136
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 0c798bb0-6521-4051-8591-1d492ce83833
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 2973
+ 20881
+ 89
+ 64
+
+ -
+ 3018
+ 20913
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 4e587f82-acda-43fa-a488-a3a3b82b405b
+ - Gate
+ - Gate
+ - false
+ - 3ae0a9ca-46aa-4bac-8ff4-c39cfa9c4f33
+ - 1
+
+
+
+
+ -
+ 2975
+ 20883
+ 28
+ 20
+
+ -
+ 2990.5
+ 20893
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 9805940f-43e0-4d74-934d-9be7c26667d3
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 2239fee1-5b43-4790-aff8-c37f13433ac9
+ - 1
+
+
+
+
+ -
+ 2975
+ 20903
+ 28
+ 20
+
+ -
+ 2990.5
+ 20913
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 5b015aac-7e38-4b65-8423-2b8972668d5b
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 514f261b-6618-4813-898a-47961f234d92
+ - 1
+
+
+
+
+ -
+ 2975
+ 20923
+ 28
+ 20
+
+ -
+ 2990.5
+ 20933
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - ce24876e-e2fe-44f8-bf9d-ba5699084a02
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 3033
+ 20883
+ 27
+ 60
+
+ -
+ 3048
+ 20913
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0ec6fb34-30af-4d76-8b43-afd2c05731f6
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 2950
+ 20801
+ 150
+ 20
+
+ -
+ 2950.337
+ 20801.34
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f8ed296-31ab-4200-9f35-a4baa7e1060d
+ - Panel
+
+ - false
+ - 1
+ - 9aeeff2d-ec5e-4a40-bda8-fa5e35e2a8f0
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2924
+ 21583
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 2924.407
+ 21583.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 586e6fc0-8ddd-4ee9-b107-8d23319269a4
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 2948
+ 21528
+ 122
+ 28
+
+ -
+ 3012
+ 21542
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 2fed1945-4af3-48dd-94fc-2e1504aac266
+ - Numbers
+ - Numbers
+ - false
+ - a93ae73f-0686-4504-96a7-3e01e97bbf19
+ - 1
+
+
+
+
+ -
+ 2950
+ 21530
+ 47
+ 24
+
+ -
+ 2975
+ 21542
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 6bd7e3fb-0023-4354-a5a5-1a743d528e75
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 3027
+ 21530
+ 41
+ 24
+
+ -
+ 3049
+ 21542
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4a55cc4c-18d1-4cdb-bcfd-c00c4c7438d3
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2910
+ 21942
+ 194
+ 28
+
+ -
+ 3010
+ 21956
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - bbe2fe48-a916-4dec-9784-20d2a65a5fcb
+ - true
+ - Variable O
+ - O
+ - true
+ - a93ae73f-0686-4504-96a7-3e01e97bbf19
+ - 1
+
+
+
+
+ -
+ 2912
+ 21944
+ 14
+ 24
+
+ -
+ 2920.5
+ 21956
+
+
+
+
+
+
+
+ - Result of expression
+ - 9aeeff2d-ec5e-4a40-bda8-fa5e35e2a8f0
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3093
+ 21944
+ 9
+ 24
+
+ -
+ 3099
+ 21956
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 6eaeacef-ba51-4547-8e87-7709428d14fc
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 2824
+ 22174
+ 367
+ 28
+
+ -
+ 3010
+ 22188
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 04dd9f5c-3037-4dff-a45e-2fccd51dae01
+ - Variable O
+ - O
+ - true
+ - 24008995-0884-48c0-b4d6-45d04b80ced0
+ - 1
+
+
+
+
+ -
+ 2826
+ 22176
+ 14
+ 24
+
+ -
+ 2834.5
+ 22188
+
+
+
+
+
+
+
+ - Result of expression
+ - 58aad056-c1da-4a75-af65-bb65d045f59a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 3180
+ 22176
+ 9
+ 24
+
+ -
+ 3186
+ 22188
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d619ce8e-8981-4dc1-9e8a-8001e77900c1
+ - Panel
+
+ - false
+ - 0
+ - 58aad056-c1da-4a75-af65-bb65d045f59a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 2924
+ 22120
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2924.546
+ 22120.48
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - 1
+ - fad5d6d1-c263-4c2e-8431-e4c7e882d53c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 6d76c8be-dfbc-4f36-9993-40d0efb27bb7
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2930
+ 18316
+ 154
+ 64
+
+ -
+ 3014
+ 18348
+
+
+
+
+
+ - Base geometry
+ - f6bcc41f-a6ba-4e20-adc2-b4975eb95e6c
+ - Geometry
+ - Geometry
+ - true
+ - 57f0799b-c461-420d-9597-c2d5f7fd5022
+ - 1
+
+
+
+
+ -
+ 2932
+ 18318
+ 67
+ 20
+
+ -
+ 2975
+ 18328
+
+
+
+
+
+
+
+ - Center of scaling
+ - 623703ef-e576-4148-803c-b45c47de2cb8
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2932
+ 18338
+ 67
+ 20
+
+ -
+ 2975
+ 18348
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e1e3f46f-b3ba-4d8b-b10c-bd5d8ec25d18
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - af239c1d-f168-4f3a-b655-86c6944aecdf
+ - 1
+
+
+
+
+ -
+ 2932
+ 18358
+ 67
+ 20
+
+ -
+ 2975
+ 18368
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 0e43fd06-3ba4-4339-bd65-d80fc37ce0d6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3029
+ 18318
+ 53
+ 30
+
+ -
+ 3057
+ 18333
+
+
+
+
+
+
+
+ - Transformation data
+ - d2a34327-3dc3-4e6b-b716-5d675c07727e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3029
+ 18348
+ 53
+ 30
+
+ -
+ 3057
+ 18363
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - b23a38dc-cf75-4ba3-b10b-2f6039f11554
+ - Point
+ - Point
+ - false
+ - 0e43fd06-3ba4-4339-bd65-d80fc37ce0d6
+ - 1
+
+
+
+
+ -
+ 2988
+ 18285
+ 50
+ 24
+
+ -
+ 3013.696
+ 18297
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 504738e4-8406-47af-a2c7-a574221a7427
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 2935
+ 17516
+ 138
+ 44
+
+ -
+ 3003
+ 17538
+
+
+
+
+
+ - Base geometry
+ - c22ad9a2-5a96-44b0-92c7-bd61c819d9d1
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - 1
+
+
+
+
+ -
+ 2937
+ 17518
+ 51
+ 20
+
+ -
+ 2964
+ 17528
+
+
+
+
+
+
+
+ - Mirror plane
+ - 26e24988-4a8d-4048-a036-5a408985967f
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 2937
+ 17538
+ 51
+ 20
+
+ -
+ 2964
+ 17548
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 7cf5d232-688b-44d2-8f6c-398fbdc473da
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3018
+ 17518
+ 53
+ 20
+
+ -
+ 3046
+ 17528
+
+
+
+
+
+
+
+ - Transformation data
+ - e1c1a70c-e84b-4739-93c8-407c063ff7a2
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3018
+ 17538
+ 53
+ 20
+
+ -
+ 3046
+ 17548
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 96935792-1ec1-4cd9-8dd4-9a092de6ad61
+ - Curve
+ - Curve
+ - false
+ - c81335a0-ddbb-498e-893f-43a31d8cd505
+ - 1
+
+
+
+
+ -
+ 2987
+ 17416
+ 50
+ 24
+
+ -
+ 3012.946
+ 17428
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0c9f5125-8b29-4eb0-a9b2-af2775c85491
+ - Relay
+
+ - false
+ - 64f057b3-8d69-4683-a356-cc3a9ebba111
+ - 1
+
+
+
+
+ -
+ 2987
+ 21460
+ 40
+ 16
+
+ -
+ 3007
+ 21468
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f94da2bc-d071-4b7f-ad50-a3d8e7e6df46
+ - Curve
+ - Curve
+ - false
+ - 270d3941-6706-46e2-8861-fe273a0f9203
+ - 1
+
+
+
+
+ -
+ 2580
+ 21833
+ 50
+ 24
+
+ -
+ 2605.027
+ 21845.58
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 64f057b3-8d69-4683-a356-cc3a9ebba111
+ - Curve
+ - Curve
+ - false
+ - 2037fc27-5784-4c4a-aab4-f217811a502f
+ - 1
+
+
+
+
+ -
+ 2580
+ 21551
+ 50
+ 24
+
+ -
+ 2605.128
+ 21563.91
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 12d1e858-5174-4c8d-9b86-79662978887b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2522
+ 21584
+ 154
+ 64
+
+ -
+ 2606
+ 21616
+
+
+
+
+
+ - Base geometry
+ - 56937ea0-cb0e-47ea-8c68-08da8a6bbd6d
+ - Geometry
+ - Geometry
+ - true
+ - f94da2bc-d071-4b7f-ad50-a3d8e7e6df46
+ - 1
+
+
+
+
+ -
+ 2524
+ 21586
+ 67
+ 20
+
+ -
+ 2567
+ 21596
+
+
+
+
+
+
+
+ - Center of scaling
+ - e6569b91-5924-4b8d-ba8d-789d515075e3
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2524
+ 21606
+ 67
+ 20
+
+ -
+ 2567
+ 21616
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 7443f77e-93ec-466a-a46f-4d06d402715e
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 2524
+ 21626
+ 67
+ 20
+
+ -
+ 2567
+ 21636
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 2037fc27-5784-4c4a-aab4-f217811a502f
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 2621
+ 21586
+ 53
+ 30
+
+ -
+ 2649
+ 21601
+
+
+
+
+
+
+
+ - Transformation data
+ - 709f4a97-2a2e-4b92-ab9d-5f8d5a9e0da9
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 2621
+ 21616
+ 53
+ 30
+
+ -
+ 2649
+ 21631
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f94da2bc-d071-4b7f-ad50-a3d8e7e6df46
+ - 64f057b3-8d69-4683-a356-cc3a9ebba111
+ - 12d1e858-5174-4c8d-9b86-79662978887b
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - cc70bbb3-8e62-43a8-89b7-a04a7c23a69a
+ - 1fbbe719-afab-43c1-8002-d88926fda48e
+ - d635009e-7496-4f0a-b419-1c3bc7ea2e82
+ - 77caac64-a7e4-49bc-87b4-46dabf90784a
+ - 446219ab-8ce4-4042-87a6-b6ea0e93f342
+ - 5d6229b2-80b9-413c-a2de-76a14008b61a
+ - 10
+ - ac29e4de-75e7-4875-81a4-f6cdfbdeb31b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - ed3b2feb-3bad-4598-a465-c0ff584626b2
+ - Move
+ - Move
+
+
+
+
+ -
+ 2935
+ 17452
+ 138
+ 44
+
+ -
+ 3003
+ 17474
+
+
+
+
+
+ - Base geometry
+ - e8156acf-4650-4f02-9230-6edb7eec150f
+ - Geometry
+ - Geometry
+ - true
+ - 42c15cbd-a73d-4764-821c-1e992d0e0f27
+ - 1
+
+
+
+
+ -
+ 2937
+ 17454
+ 51
+ 20
+
+ -
+ 2964
+ 17464
+
+
+
+
+
+
+
+ - Translation vector
+ - ad29c9fb-8135-416c-99c0-8fdcf995f3f9
+ - Motion
+ - Motion
+ - false
+ - 73720f25-b486-4063-bf77-17ff68e76c9e
+ - 1
+
+
+
+
+ -
+ 2937
+ 17474
+ 51
+ 20
+
+ -
+ 2964
+ 17484
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - c81335a0-ddbb-498e-893f-43a31d8cd505
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3018
+ 17454
+ 53
+ 20
+
+ -
+ 3046
+ 17464
+
+
+
+
+
+
+
+ - Transformation data
+ - ecb1ed1b-9d26-478c-863d-b4c1c5c593f4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3018
+ 17474
+ 53
+ 20
+
+ -
+ 3046
+ 17484
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - cc70bbb3-8e62-43a8-89b7-a04a7c23a69a
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 2480
+ 21777
+ 250
+ 20
+
+ -
+ 2480.427
+ 21777
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1fbbe719-afab-43c1-8002-d88926fda48e
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 2537
+ 21676
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2537.587
+ 21676.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d635009e-7496-4f0a-b419-1c3bc7ea2e82
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2580
+ 21508
+ 50
+ 24
+
+ -
+ 2605.128
+ 21520.91
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 77caac64-a7e4-49bc-87b4-46dabf90784a
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 2582
+ 21965
+ 50
+ 24
+
+ -
+ 2607.077
+ 21977.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2480fc5c-66cb-4fcc-af50-79745d500b87
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 2794
+ 22367
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2794.927
+ 22367.94
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 36d8d781-7249-499e-9200-c1eb0dc8215d
+ - Panel
+
+ - false
+ - 0
+ - b728aecf-c06e-47c6-90f5-cc6153fb8819
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 2795
+ 22491
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 2795.237
+ 22491.89
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - fd3cde6d-4956-45e7-b959-30385e85fb44
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 2887
+ 22633
+ 251
+ 20
+
+ -
+ 2887.837
+ 22633.3
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a9574e45-69fb-4cab-b92c-3d617258bb91
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 2795
+ 22613
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 2795.677
+ 22613.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 93ff246b-28e0-41db-9a25-0de40ecb9d2f
+ - Expression
+
+
+
+
+
+ -
+ 2975
+ 22738
+ 79
+ 28
+
+ -
+ 3017
+ 22752
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ef2ae35b-50c9-4fe0-9bb4-d422d3fd7750
+ - Variable X
+ - X
+ - true
+ - 174bb911-caba-47e2-9382-8b612bd7dc09
+ - 1
+
+
+
+
+ -
+ 2977
+ 22740
+ 14
+ 24
+
+ -
+ 2985.5
+ 22752
+
+
+
+
+
+
+
+ - Result of expression
+ - 9cd003b4-142b-41e2-b151-8bc96e64cb2e
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 3043
+ 22740
+ 9
+ 24
+
+ -
+ 3049
+ 22752
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 49e97076-47e9-42b3-94bb-22be4cbce56d
+ - Point
+ - Point
+ - false
+ - 82207b9e-ead4-4815-878a-17418dfbdd67
+ - 1
+
+
+
+
+ -
+ 3010
+ 20267
+ 50
+ 24
+
+ -
+ 3035.657
+ 20279.02
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 82207b9e-ead4-4815-878a-17418dfbdd67
+ - Relay
+
+ - false
+ - 0da3606f-e8e9-424b-b40d-9632eaf7af1a
+ - 1
+
+
+
+
+ -
+ 3011
+ 20312
+ 40
+ 16
+
+ -
+ 3031
+ 20320
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 57f0799b-c461-420d-9597-c2d5f7fd5022
+ - Relay
+
+ - false
+ - d8055d91-f89a-4e89-8a6b-f6d9bc26718d
+ - 1
+
+
+
+
+ -
+ 3011
+ 20089
+ 40
+ 16
+
+ -
+ 3031
+ 20097
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 84df36e3-f442-4145-bdae-23bfd4a52f79
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 2954
+ 20125
+ 154
+ 64
+
+ -
+ 3038
+ 20157
+
+
+
+
+
+ - Base geometry
+ - 5e664073-3d42-40b2-a9c8-1554fdf7420d
+ - Geometry
+ - Geometry
+ - true
+ - 49e97076-47e9-42b3-94bb-22be4cbce56d
+ - 1
+
+
+
+
+ -
+ 2956
+ 20127
+ 67
+ 20
+
+ -
+ 2999
+ 20137
+
+
+
+
+
+
+
+ - Center of scaling
+ - a3caabff-e975-4d5e-8c80-faf302d69885
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 2956
+ 20147
+ 67
+ 20
+
+ -
+ 2999
+ 20157
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 444912a7-cd00-454d-a0d9-fb1ba20ed45f
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 620f22e7-a506-41a5-9b65-8bfbd9795fb9
+ - 1
+
+
+
+
+ -
+ 2956
+ 20167
+ 67
+ 20
+
+ -
+ 2999
+ 20177
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - d8055d91-f89a-4e89-8a6b-f6d9bc26718d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3053
+ 20127
+ 53
+ 30
+
+ -
+ 3081
+ 20142
+
+
+
+
+
+
+
+ - Transformation data
+ - 982e0807-63a2-461f-80cd-22cb90d70f41
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3053
+ 20157
+ 53
+ 30
+
+ -
+ 3081
+ 20172
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 620f22e7-a506-41a5-9b65-8bfbd9795fb9
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 2915
+ 20211
+ 250
+ 20
+
+ -
+ 2915.436
+ 20211.38
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 49e97076-47e9-42b3-94bb-22be4cbce56d
+ - 1
+ - 049dd7c6-38d9-418a-9ba6-928754ae8d1e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - b728aecf-c06e-47c6-90f5-cc6153fb8819
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 2887
+ 22533
+ 251
+ 20
+
+ -
+ 2887.337
+ 22533.61
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 5d6229b2-80b9-413c-a2de-76a14008b61a
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 2480
+ 21738
+ 250
+ 20
+
+ -
+ 2480.427
+ 21738
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 2ea92ada-a4b2-4477-9fa9-52ac38de5ea1
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 2934
+ 17589
+ 139
+ 64
+
+ -
+ 3019
+ 17621
+
+
+
+
+
+ - Vector {x} component
+ - 60c54331-bc4b-4521-9929-be231313bc87
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 2936
+ 17591
+ 68
+ 20
+
+ -
+ 2971.5
+ 17601
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 16cbf773-aa5e-44f3-a305-63b696951888
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 2936
+ 17611
+ 68
+ 20
+
+ -
+ 2971.5
+ 17621
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 1d4f19f4-7e41-4fec-810f-5de82b28ea5d
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 2936
+ 17631
+ 68
+ 20
+
+ -
+ 2971.5
+ 17641
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 73720f25-b486-4063-bf77-17ff68e76c9e
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 3034
+ 17591
+ 37
+ 30
+
+ -
+ 3054
+ 17606
+
+
+
+
+
+
+
+ - Vector length
+ - 66b39a2e-2bc8-4086-b038-0d7a860088a8
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 3034
+ 17621
+ 37
+ 30
+
+ -
+ 3054
+ 17636
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 446219ab-8ce4-4042-87a6-b6ea0e93f342
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 2561
+ 21877
+ 89
+ 64
+
+ -
+ 2606
+ 21909
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - ad79a5ac-d5b5-4e57-b88a-90bc2302e10d
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 2563
+ 21879
+ 28
+ 20
+
+ -
+ 2578.5
+ 21889
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 995ebdca-a563-4dc7-a7a7-63ff65fa63fe
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 9e8a3a26-c196-4a8e-8854-2e1303fa393c
+ - 1
+
+
+
+
+ -
+ 2563
+ 21899
+ 28
+ 20
+
+ -
+ 2578.5
+ 21909
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - b1c28ded-1647-4af8-b659-aae008c0f448
+ - false
+ - Stream 1
+ - 1
+ - true
+ - f32e469d-5411-4757-a641-2639d4f5739a
+ - 1
+
+
+
+
+ -
+ 2563
+ 21919
+ 28
+ 20
+
+ -
+ 2578.5
+ 21929
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 270d3941-6706-46e2-8861-fe273a0f9203
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 2621
+ 21879
+ 27
+ 60
+
+ -
+ 2636
+ 21909
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 3ae0a9ca-46aa-4bac-8ff4-c39cfa9c4f33
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 2987
+ 20858
+ 40
+ 16
+
+ -
+ 3007
+ 20866
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d478f100-725b-4409-a7b6-375d5771f6d1
+ - fe323d14-26b4-40ee-b6c3-d29c50862bda
+ - 9d5c8bd8-8469-41e2-a537-e174f9e35067
+ - a41828e4-8b7d-4583-8576-6498debc414a
+ - 93600863-543e-4c15-8ca0-9aa3a4c41133
+ - 65772831-622c-45f0-8b74-27794372ba84
+ - 6
+ - d6eb3725-69b0-4a96-ab78-573647865ce9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9a9751c8-6b04-4028-a9b9-ab45a77adc44
+ - e86e1333-996d-426d-9d43-729770fc5d9e
+ - 885f2e1d-5cb2-4ac3-99db-2afaa276d3c4
+ - d3fa259b-9cf3-4618-8cdb-49e372ea33af
+ - fe3301eb-6cbd-42f9-87ee-9b4fda2fed9d
+ - b8d31e82-7624-4e46-b20b-4eb86b4ba78d
+ - fc31f1c6-d0ba-4d8e-a16b-59ed97dfcf5d
+ - 6293ad42-b56a-42a9-b8a7-0b75bc77d29a
+ - 1ada7be1-89a0-4450-87b9-20e93d1acfb8
+ - 56294286-d42f-4763-9849-2c890745dbc5
+ - 5fbe45e5-87d0-4cad-b63f-8bb82a20ee3e
+ - ee3c2f43-73b5-472e-b7e2-0db184021600
+ - 0a3d7a60-480c-451b-8e1d-c334c9932d8e
+ - 9a1c517e-848c-43b1-87fc-42a28832bfde
+ - c224342c-801f-4459-9224-44879ddf539f
+ - def91bd9-37fa-4802-a0b4-1ddfb4722e3f
+ - 9283d059-2d52-4d86-9362-5e2baf255c27
+ - d5894a96-90d1-47d4-bf1e-1745cd1934d7
+ - d9a4a6e3-c722-410c-a790-c549c6d0ae5e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - e5d6d52d-2e6d-41ec-9c34-ca12be6a9777
+ - 71112fe7-1fea-47f3-b4e9-ce6884c9ceaf
+ - 85eb4dac-c74b-4487-ab1d-eb90b550227a
+ - fc0a1afb-e49c-47ae-9f34-e01642b1f260
+ - b290088f-51c3-499d-bcc6-651a21180fbd
+ - f2e3277d-70ea-4bdf-b0f6-693524cbaf85
+ - 4751e2e0-6092-46cd-980b-641ed6e917ee
+ - fd670389-bfb1-48e6-8095-f6f97722a9b1
+ - 15b697dd-03e3-4b13-9e3b-1e060efec5bf
+ - f084951b-766e-437c-b35d-714be45ce7b8
+ - 6ecc5a11-8bbc-46bc-8596-6b233cd01831
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - 22a118c7-1cad-4618-866c-28f67d88c518
+ - 87b2f042-29bd-4276-877e-cf779572385b
+ - efdc0f6f-4347-4267-a362-b2066e677d13
+ - 7791abdb-7ea1-41c5-88d3-5918db40045b
+ - 618f3f32-a03d-4629-a735-0977fcd7d620
+ - c6648f71-7936-4ce9-9b78-78e1d02360d7
+ - c69dda4c-1311-4376-8f47-855cae61799b
+ - 2bd2f342-3868-46a8-b091-2121183f9fb7
+ - 48099344-617a-4929-a66f-fec7ab3d4afb
+ - 9f7384eb-c649-4742-a327-81feb1906785
+ - 2ff3e964-219b-4094-a76a-34df9b871ee9
+ - e58101fd-fa11-4e34-b636-f46fa022581c
+ - ffa4f3da-c167-439e-9439-fae140c43c5a
+ - 7951e322-6f89-4c62-911e-43899993d21e
+ - 3f879e60-3daa-43ef-a228-f571f145b353
+ - 04819f51-3ef5-4f05-a1c1-e17b9546ed74
+ - 61172d09-8902-4f10-b2c7-17cd51e5027a
+ - b5b899a1-84ac-4fa0-a768-c850b12c7691
+ - 2af7f12d-42dd-4647-b3c5-2dad5de770bc
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - 04b0d7b0-300c-4f1c-9d7e-f41a0e83a4c4
+ - e00ce40b-ecb5-4c8d-8d68-8d5c0aa50486
+ - a974ac3e-f4af-48c9-999a-d2329a3ad1e9
+ - e02c8247-aa66-49e1-a7c0-f831f4113bf4
+ - 1a0ff00c-ad3d-44d5-b6b8-1e5e3c702bf9
+ - 50767aea-5e04-4ad8-a3bb-2273d2e0ca5f
+ - b8cc5c94-5e89-4fcd-9fda-2686d818fc62
+ - 9afb0544-51e9-40c4-aecb-21aa4eeda4c8
+ - ae2cc63f-a8af-4018-a449-3d8f87e3e5e9
+ - c4b38ca4-f087-4d8f-8a27-cd0113925a13
+ - a5b7a28c-c714-4e04-a20c-a1672c48d88b
+ - 3aad9ca7-1883-4a7e-8ae5-1fb4937b0b3f
+ - 3c8cf81e-1720-4651-b4bb-d6e1fd8819ee
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - b5da1097-2a48-4cd6-a489-40cb2c221f47
+ - 07fc185b-285c-4d94-bbde-e0ed5aaf023f
+ - 53979eb6-9c9b-437c-b4e7-4b6b9a1dab95
+ - af64ea04-5511-4bb8-816c-4ed0705490f6
+ - 4d9514a4-6cbd-4d54-af16-2f88e8f4d1d1
+ - 8d8e45b6-007c-4f16-8238-2801dae68966
+ - bd2898b9-73bb-4f3e-ad59-dd7a36b40460
+ - 6fa31a4c-4d12-4c66-a161-dba69c84582b
+ - 40c4fee9-ed72-44e0-9487-c1b6d27ec5d7
+ - 21e86b7b-3b35-4a89-929c-c6381ca2343c
+ - 0b19f101-19e4-47e9-a4d6-7abdb0a95380
+ - 0bb08cee-3279-44b7-bfd8-62b20eb39978
+ - 0db85545-2abc-408a-a205-3415624eb0b5
+ - 679891f5-4c19-4bdd-9087-054e9a29e795
+ - 66da5c64-2186-4036-af21-cc53ca0c7db4
+ - 8ad9374d-afcb-4796-84e7-8728425be2be
+ - 3f13fe4e-bf76-447f-8707-32c517a7b1a2
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - 3311fde3-9c8c-4c18-b745-432105d58c63
+ - 85
+ - aa88b280-104b-485a-a623-7becc3d592e6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e86e1333-996d-426d-9d43-729770fc5d9e
+ - 885f2e1d-5cb2-4ac3-99db-2afaa276d3c4
+ - d3fa259b-9cf3-4618-8cdb-49e372ea33af
+ - fe3301eb-6cbd-42f9-87ee-9b4fda2fed9d
+ - b8d31e82-7624-4e46-b20b-4eb86b4ba78d
+ - fc31f1c6-d0ba-4d8e-a16b-59ed97dfcf5d
+ - 6293ad42-b56a-42a9-b8a7-0b75bc77d29a
+ - 1ada7be1-89a0-4450-87b9-20e93d1acfb8
+ - 56294286-d42f-4763-9849-2c890745dbc5
+ - 5fbe45e5-87d0-4cad-b63f-8bb82a20ee3e
+ - ee3c2f43-73b5-472e-b7e2-0db184021600
+ - 0a3d7a60-480c-451b-8e1d-c334c9932d8e
+ - 9a1c517e-848c-43b1-87fc-42a28832bfde
+ - c224342c-801f-4459-9224-44879ddf539f
+ - def91bd9-37fa-4802-a0b4-1ddfb4722e3f
+ - 9283d059-2d52-4d86-9362-5e2baf255c27
+ - d5894a96-90d1-47d4-bf1e-1745cd1934d7
+ - d9a4a6e3-c722-410c-a790-c549c6d0ae5e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - e5d6d52d-2e6d-41ec-9c34-ca12be6a9777
+ - 71112fe7-1fea-47f3-b4e9-ce6884c9ceaf
+ - 85eb4dac-c74b-4487-ab1d-eb90b550227a
+ - fc0a1afb-e49c-47ae-9f34-e01642b1f260
+ - b290088f-51c3-499d-bcc6-651a21180fbd
+ - f2e3277d-70ea-4bdf-b0f6-693524cbaf85
+ - 4751e2e0-6092-46cd-980b-641ed6e917ee
+ - fd670389-bfb1-48e6-8095-f6f97722a9b1
+ - 15b697dd-03e3-4b13-9e3b-1e060efec5bf
+ - f084951b-766e-437c-b35d-714be45ce7b8
+ - 6ecc5a11-8bbc-46bc-8596-6b233cd01831
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - 22a118c7-1cad-4618-866c-28f67d88c518
+ - 87b2f042-29bd-4276-877e-cf779572385b
+ - efdc0f6f-4347-4267-a362-b2066e677d13
+ - 7791abdb-7ea1-41c5-88d3-5918db40045b
+ - 618f3f32-a03d-4629-a735-0977fcd7d620
+ - c6648f71-7936-4ce9-9b78-78e1d02360d7
+ - c69dda4c-1311-4376-8f47-855cae61799b
+ - 2bd2f342-3868-46a8-b091-2121183f9fb7
+ - 48099344-617a-4929-a66f-fec7ab3d4afb
+ - 9f7384eb-c649-4742-a327-81feb1906785
+ - 2ff3e964-219b-4094-a76a-34df9b871ee9
+ - e58101fd-fa11-4e34-b636-f46fa022581c
+ - ffa4f3da-c167-439e-9439-fae140c43c5a
+ - 7951e322-6f89-4c62-911e-43899993d21e
+ - 3f879e60-3daa-43ef-a228-f571f145b353
+ - 04819f51-3ef5-4f05-a1c1-e17b9546ed74
+ - 61172d09-8902-4f10-b2c7-17cd51e5027a
+ - b5b899a1-84ac-4fa0-a768-c850b12c7691
+ - 2af7f12d-42dd-4647-b3c5-2dad5de770bc
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - 04b0d7b0-300c-4f1c-9d7e-f41a0e83a4c4
+ - e00ce40b-ecb5-4c8d-8d68-8d5c0aa50486
+ - a974ac3e-f4af-48c9-999a-d2329a3ad1e9
+ - e02c8247-aa66-49e1-a7c0-f831f4113bf4
+ - 1a0ff00c-ad3d-44d5-b6b8-1e5e3c702bf9
+ - 50767aea-5e04-4ad8-a3bb-2273d2e0ca5f
+ - b8cc5c94-5e89-4fcd-9fda-2686d818fc62
+ - 9afb0544-51e9-40c4-aecb-21aa4eeda4c8
+ - ae2cc63f-a8af-4018-a449-3d8f87e3e5e9
+ - c4b38ca4-f087-4d8f-8a27-cd0113925a13
+ - a5b7a28c-c714-4e04-a20c-a1672c48d88b
+ - 3aad9ca7-1883-4a7e-8ae5-1fb4937b0b3f
+ - 3c8cf81e-1720-4651-b4bb-d6e1fd8819ee
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - b5da1097-2a48-4cd6-a489-40cb2c221f47
+ - 07fc185b-285c-4d94-bbde-e0ed5aaf023f
+ - 53979eb6-9c9b-437c-b4e7-4b6b9a1dab95
+ - af64ea04-5511-4bb8-816c-4ed0705490f6
+ - 4d9514a4-6cbd-4d54-af16-2f88e8f4d1d1
+ - 8d8e45b6-007c-4f16-8238-2801dae68966
+ - bd2898b9-73bb-4f3e-ad59-dd7a36b40460
+ - 6fa31a4c-4d12-4c66-a161-dba69c84582b
+ - 40c4fee9-ed72-44e0-9487-c1b6d27ec5d7
+ - 21e86b7b-3b35-4a89-929c-c6381ca2343c
+ - 0b19f101-19e4-47e9-a4d6-7abdb0a95380
+ - 0bb08cee-3279-44b7-bfd8-62b20eb39978
+ - 0db85545-2abc-408a-a205-3415624eb0b5
+ - 679891f5-4c19-4bdd-9087-054e9a29e795
+ - 79
+ - 9a9751c8-6b04-4028-a9b9-ab45a77adc44
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0bb08cee-3279-44b7-bfd8-62b20eb39978
+ - 1
+ - e86e1333-996d-426d-9d43-729770fc5d9e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d3fa259b-9cf3-4618-8cdb-49e372ea33af
+ - 1
+ - 885f2e1d-5cb2-4ac3-99db-2afaa276d3c4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fe3301eb-6cbd-42f9-87ee-9b4fda2fed9d
+ - 1
+ - d3fa259b-9cf3-4618-8cdb-49e372ea33af
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - b8d31e82-7624-4e46-b20b-4eb86b4ba78d
+ - 1
+ - fe3301eb-6cbd-42f9-87ee-9b4fda2fed9d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fc31f1c6-d0ba-4d8e-a16b-59ed97dfcf5d
+ - 1
+ - b8d31e82-7624-4e46-b20b-4eb86b4ba78d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6293ad42-b56a-42a9-b8a7-0b75bc77d29a
+ - 1
+ - fc31f1c6-d0ba-4d8e-a16b-59ed97dfcf5d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 56294286-d42f-4763-9849-2c890745dbc5
+ - 1
+ - 6293ad42-b56a-42a9-b8a7-0b75bc77d29a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1ada7be1-89a0-4450-87b9-20e93d1acfb8
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4399
+ 21496
+ 50
+ 24
+
+ -
+ 4424.946
+ 21508.43
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1ada7be1-89a0-4450-87b9-20e93d1acfb8
+ - 1
+ - 56294286-d42f-4763-9849-2c890745dbc5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f084951b-766e-437c-b35d-714be45ce7b8
+ - 1
+ - 5fbe45e5-87d0-4cad-b63f-8bb82a20ee3e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a3d7a60-480c-451b-8e1d-c334c9932d8e
+ - 9a1c517e-848c-43b1-87fc-42a28832bfde
+ - c224342c-801f-4459-9224-44879ddf539f
+ - def91bd9-37fa-4802-a0b4-1ddfb4722e3f
+ - 9283d059-2d52-4d86-9362-5e2baf255c27
+ - d5894a96-90d1-47d4-bf1e-1745cd1934d7
+ - d9a4a6e3-c722-410c-a790-c549c6d0ae5e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 71112fe7-1fea-47f3-b4e9-ce6884c9ceaf
+ - e5d6d52d-2e6d-41ec-9c34-ca12be6a9777
+ - 5fbe45e5-87d0-4cad-b63f-8bb82a20ee3e
+ - 56294286-d42f-4763-9849-2c890745dbc5
+ - b5da1097-2a48-4cd6-a489-40cb2c221f47
+ - 07fc185b-285c-4d94-bbde-e0ed5aaf023f
+ - 53979eb6-9c9b-437c-b4e7-4b6b9a1dab95
+ - af64ea04-5511-4bb8-816c-4ed0705490f6
+ - 4d9514a4-6cbd-4d54-af16-2f88e8f4d1d1
+ - 8d8e45b6-007c-4f16-8238-2801dae68966
+ - 3aad9ca7-1883-4a7e-8ae5-1fb4937b0b3f
+ - 3c8cf81e-1720-4651-b4bb-d6e1fd8819ee
+ - 20
+ - ee3c2f43-73b5-472e-b7e2-0db184021600
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 0a3d7a60-480c-451b-8e1d-c334c9932d8e
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 4373
+ 22659
+ 104
+ 64
+
+ -
+ 4432
+ 22691
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - c1bcdb8b-a8de-42b8-bc97-b9013965a2b3
+ - Data
+ - Data
+ - false
+ - a7e6299f-016a-4b75-9f16-98b4845afdda
+ - 1
+
+
+
+
+ -
+ 4375
+ 22661
+ 42
+ 20
+
+ -
+ 4397.5
+ 22671
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - f6dc3c10-a8b6-43ec-b7a4-49f7b5396cfc
+ - Number
+ - Number
+ - false
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - 1
+
+
+
+
+ -
+ 4375
+ 22681
+ 42
+ 20
+
+ -
+ 4397.5
+ 22691
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 34747507-1a6e-45b5-b4c3-d26c4929ffa2
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 4375
+ 22701
+ 42
+ 20
+
+ -
+ 4397.5
+ 22711
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 97811af2-0aca-4f54-8b25-1ba9649407a5
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 4447
+ 22661
+ 28
+ 60
+
+ -
+ 4462.5
+ 22691
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 9a1c517e-848c-43b1-87fc-42a28832bfde
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 4359
+ 20731
+ 116
+ 44
+
+ -
+ 4420
+ 20753
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 347a5f6d-80d3-4e82-87b3-db3f0ff054cb
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 97811af2-0aca-4f54-8b25-1ba9649407a5
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 4361
+ 20733
+ 44
+ 20
+
+ -
+ 4384.5
+ 20743
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - bdf83768-9d65-4c4f-ac4e-ca87d3d0f4ce
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 1c8ee915-ea01-475d-abde-9b8ca4ca0fea
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 4361
+ 20753
+ 44
+ 20
+
+ -
+ 4384.5
+ 20763
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 8f55da05-d245-4a81-a63b-5cc4a12e6ea6
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 4435
+ 20733
+ 38
+ 20
+
+ -
+ 4455.5
+ 20743
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 51d8b6ea-0964-4fcf-99d0-55c92d4e3230
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4435
+ 20753
+ 38
+ 20
+
+ -
+ 4455.5
+ 20763
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - def91bd9-37fa-4802-a0b4-1ddfb4722e3f
+ - Series
+ - Series
+
+
+
+
+ -
+ 4370
+ 21988
+ 101
+ 64
+
+ -
+ 4420
+ 22020
+
+
+
+
+
+ - First number in the series
+ - 0f3c2dc1-bad6-429b-9a52-639d852042bd
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4372
+ 21990
+ 33
+ 20
+
+ -
+ 4390
+ 22000
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 7a306ee6-211e-4c63-a562-54892d2536c5
+ - Step
+ - Step
+ - false
+ - 0b19f101-19e4-47e9-a4d6-7abdb0a95380
+ - 1
+
+
+
+
+ -
+ 4372
+ 22010
+ 33
+ 20
+
+ -
+ 4390
+ 22020
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 4ddb0e87-a79a-4db0-8382-2c4d2586eeb4
+ - Count
+ - Count
+ - false
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - 1
+
+
+
+
+ -
+ 4372
+ 22030
+ 33
+ 20
+
+ -
+ 4390
+ 22040
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - b14d6bac-1c0b-4330-b6ec-6e130a31f993
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 4435
+ 21990
+ 34
+ 60
+
+ -
+ 4453.5
+ 22020
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 9283d059-2d52-4d86-9362-5e2baf255c27
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4357
+ 22840
+ 150
+ 20
+
+ -
+ 4357.626
+ 22840.28
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - d5894a96-90d1-47d4-bf1e-1745cd1934d7
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 4320
+ 22230
+ 120
+ 28
+
+ -
+ 4381
+ 22244
+
+
+
+
+
+ - Angle in degrees
+ - 07e0c639-e24e-4586-bcfb-7f132ff21eee
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 4322
+ 22232
+ 44
+ 24
+
+ -
+ 4345.5
+ 22244
+
+
+
+
+
+
+
+ - Angle in radians
+ - 4c6f9405-70bf-4366-aebe-2bfeb9080f3d
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 4396
+ 22232
+ 42
+ 24
+
+ -
+ 4418.5
+ 22244
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d9a4a6e3-c722-410c-a790-c549c6d0ae5e
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 4297
+ 22595
+ 251
+ 20
+
+ -
+ 4297.837
+ 22595.27
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - e5d6d52d-2e6d-41ec-9c34-ca12be6a9777
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 4345
+ 19966
+ 144
+ 84
+
+ -
+ 4431
+ 20008
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 38e7180b-8c8a-44b2-9e59-518e36fdaced
+ - Vertices
+ - Vertices
+ - false
+ - 9d5c8bd8-8469-41e2-a537-e174f9e35067
+ - 1
+
+
+
+
+ -
+ 4347
+ 19968
+ 69
+ 20
+
+ -
+ 4383
+ 19978
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 70b98e12-800b-4e3b-bbd5-49bf7caa1c83
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19988
+ 69
+ 20
+
+ -
+ 4383
+ 19998
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - b33ea881-bf00-452d-aa80-ee5f3c908ca5
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 20008
+ 69
+ 20
+
+ -
+ 4383
+ 20018
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - d99a5997-1b10-4cba-a065-5710f9120cd7
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 20028
+ 69
+ 20
+
+ -
+ 4383
+ 20038
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 999fd7e2-51af-4c75-9bed-a576dca901c6
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 4446
+ 19968
+ 41
+ 26
+
+ -
+ 4468
+ 19981.33
+
+
+
+
+
+
+
+ - Curve length
+ - 974706f3-32dd-43a9-9fe0-bdc976e1e316
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4446
+ 19994
+ 41
+ 27
+
+ -
+ 4468
+ 20008
+
+
+
+
+
+
+
+ - Curve domain
+ - 37aa1cd7-8c57-46f6-b234-a862c6ca063a
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4446
+ 20021
+ 41
+ 27
+
+ -
+ 4468
+ 20034.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0a3d7a60-480c-451b-8e1d-c334c9932d8e
+ - 9a1c517e-848c-43b1-87fc-42a28832bfde
+ - c224342c-801f-4459-9224-44879ddf539f
+ - def91bd9-37fa-4802-a0b4-1ddfb4722e3f
+ - 9283d059-2d52-4d86-9362-5e2baf255c27
+ - d5894a96-90d1-47d4-bf1e-1745cd1934d7
+ - d9a4a6e3-c722-410c-a790-c549c6d0ae5e
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 6fa31a4c-4d12-4c66-a161-dba69c84582b
+ - 87b2f042-29bd-4276-877e-cf779572385b
+ - a5b7a28c-c714-4e04-a20c-a1672c48d88b
+ - bd2898b9-73bb-4f3e-ad59-dd7a36b40460
+ - 40c4fee9-ed72-44e0-9487-c1b6d27ec5d7
+ - 0598e9e1-8220-4e81-af9f-441038d63c96
+ - 14
+ - 71112fe7-1fea-47f3-b4e9-ce6884c9ceaf
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 85eb4dac-c74b-4487-ab1d-eb90b550227a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4345
+ 19798
+ 144
+ 64
+
+ -
+ 4419
+ 19830
+
+
+
+
+
+ - Curve to evaluate
+ - 6cb975b7-2be7-4b12-adc6-ee80e2a19b78
+ - Curve
+ - Curve
+ - false
+ - 999fd7e2-51af-4c75-9bed-a576dca901c6
+ - 1
+
+
+
+
+ -
+ 4347
+ 19800
+ 57
+ 20
+
+ -
+ 4377
+ 19810
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 1be9fca7-2617-4384-8091-20939534cc87
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19820
+ 57
+ 20
+
+ -
+ 4377
+ 19830
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 19af5ffb-cd25-4608-a4c2-ca2b9b1a0389
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19840
+ 57
+ 20
+
+ -
+ 4377
+ 19850
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e629d262-ea3f-4304-ac40-fc5f3ba9690e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19800
+ 53
+ 20
+
+ -
+ 4462
+ 19810
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - f404b052-c0c3-4baf-99d1-1724976e2a6d
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19820
+ 53
+ 20
+
+ -
+ 4462
+ 19830
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 49cfd836-1d5c-4f4b-aafb-3497bfe0abc1
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19840
+ 53
+ 20
+
+ -
+ 4462
+ 19850
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - fc0a1afb-e49c-47ae-9f34-e01642b1f260
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 4348
+ 19736
+ 138
+ 44
+
+ -
+ 4416
+ 19758
+
+
+
+
+
+ - Base geometry
+ - 9835bdbe-e1bc-4366-a386-e744318522d4
+ - Geometry
+ - Geometry
+ - true
+ - 999fd7e2-51af-4c75-9bed-a576dca901c6
+ - 1
+
+
+
+
+ -
+ 4350
+ 19738
+ 51
+ 20
+
+ -
+ 4377
+ 19748
+
+
+
+
+
+
+
+ - Mirror plane
+ - 570781c8-3192-44da-a80c-aa6338512118
+ - Plane
+ - Plane
+ - false
+ - 9b8c9bd8-b093-4ee4-b444-c101a9496e02
+ - 1
+
+
+
+
+ -
+ 4350
+ 19758
+ 51
+ 20
+
+ -
+ 4377
+ 19768
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 59f1e754-03a8-42eb-a33d-d187d51b98cc
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4431
+ 19738
+ 53
+ 20
+
+ -
+ 4459
+ 19748
+
+
+
+
+
+
+
+ - Transformation data
+ - ea2e2479-cef6-4642-8bb2-d9c621d72819
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4431
+ 19758
+ 53
+ 20
+
+ -
+ 4459
+ 19768
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - b290088f-51c3-499d-bcc6-651a21180fbd
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 4364
+ 19882
+ 106
+ 64
+
+ -
+ 4428
+ 19914
+
+
+
+
+
+ - Line start point
+ - 49f703c9-9b23-47a4-a3ca-f43d8574a657
+ - Start
+ - Start
+ - false
+ - e629d262-ea3f-4304-ac40-fc5f3ba9690e
+ - 1
+
+
+
+
+ -
+ 4366
+ 19884
+ 47
+ 20
+
+ -
+ 4391
+ 19894
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 345bd603-2311-43be-bf68-8220adab479b
+ - Direction
+ - Direction
+ - false
+ - f404b052-c0c3-4baf-99d1-1724976e2a6d
+ - 1
+
+
+
+
+ -
+ 4366
+ 19904
+ 47
+ 20
+
+ -
+ 4391
+ 19914
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 739cf427-bde4-49a8-9605-3a16991456d3
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4366
+ 19924
+ 47
+ 20
+
+ -
+ 4391
+ 19934
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 9b8c9bd8-b093-4ee4-b444-c101a9496e02
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 4443
+ 19884
+ 25
+ 60
+
+ -
+ 4457
+ 19914
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - f2e3277d-70ea-4bdf-b0f6-693524cbaf85
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 4358
+ 19674
+ 118
+ 44
+
+ -
+ 4421
+ 19696
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 0c38b4d6-8bfc-49e9-b6f6-09dcbe618d49
+ - Curves
+ - Curves
+ - false
+ - 999fd7e2-51af-4c75-9bed-a576dca901c6
+ - 59f1e754-03a8-42eb-a33d-d187d51b98cc
+ - 2
+
+
+
+
+ -
+ 4360
+ 19676
+ 46
+ 20
+
+ -
+ 4384.5
+ 19686
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 946b2f20-d666-4aa8-821d-7868b8c74ba0
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 19696
+ 46
+ 20
+
+ -
+ 4384.5
+ 19706
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - dde4faf6-60a2-4e1e-abf7-3dd17012994e
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4436
+ 19676
+ 38
+ 40
+
+ -
+ 4456.5
+ 19696
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4751e2e0-6092-46cd-980b-641ed6e917ee
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4345
+ 19590
+ 144
+ 64
+
+ -
+ 4419
+ 19622
+
+
+
+
+
+ - Curve to evaluate
+ - 372750a2-aac5-4675-a32e-6a365c02c99b
+ - Curve
+ - Curve
+ - false
+ - dde4faf6-60a2-4e1e-abf7-3dd17012994e
+ - 1
+
+
+
+
+ -
+ 4347
+ 19592
+ 57
+ 20
+
+ -
+ 4377
+ 19602
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3da6d7f3-5930-4d92-b938-68fdeee2905b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19612
+ 57
+ 20
+
+ -
+ 4377
+ 19622
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 83395691-83ae-4432-a928-794fcea824e2
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19632
+ 57
+ 20
+
+ -
+ 4377
+ 19642
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4e6c8214-fa2b-4fcb-9201-b38e47e15645
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19592
+ 53
+ 20
+
+ -
+ 4462
+ 19602
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 9b6b898b-0acb-4ba1-9bbf-7e4bbababa7b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19612
+ 53
+ 20
+
+ -
+ 4462
+ 19622
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - d1a71204-a881-45ef-b6fc-b9dbb9cd14b0
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19632
+ 53
+ 20
+
+ -
+ 4462
+ 19642
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - fd670389-bfb1-48e6-8095-f6f97722a9b1
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 4348
+ 19507
+ 138
+ 64
+
+ -
+ 4416
+ 19539
+
+
+
+
+
+ - Base geometry
+ - 215ad207-5b7b-4f27-b6b5-f92e88682ed0
+ - Geometry
+ - Geometry
+ - true
+ - dde4faf6-60a2-4e1e-abf7-3dd17012994e
+ - 1
+
+
+
+
+ -
+ 4350
+ 19509
+ 51
+ 20
+
+ -
+ 4377
+ 19519
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 69e2459f-cb1e-4c90-892e-0f846baa524a
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 4350
+ 19529
+ 51
+ 20
+
+ -
+ 4377
+ 19539
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 25d4fea7-29a1-4b79-b46a-3f766ab20998
+ - Plane
+ - Plane
+ - false
+ - 4e6c8214-fa2b-4fcb-9201-b38e47e15645
+ - 1
+
+
+
+
+ -
+ 4350
+ 19549
+ 51
+ 20
+
+ -
+ 4377
+ 19559
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 586fb019-0eda-4995-80e1-91db7f614783
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4431
+ 19509
+ 53
+ 30
+
+ -
+ 4459
+ 19524
+
+
+
+
+
+
+
+ - Transformation data
+ - 0773c6a2-c99f-4c5d-aa8c-bd50133c2241
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4431
+ 19539
+ 53
+ 30
+
+ -
+ 4459
+ 19554
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 15b697dd-03e3-4b13-9e3b-1e060efec5bf
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 4358
+ 19444
+ 118
+ 44
+
+ -
+ 4421
+ 19466
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 65c295ee-1b46-4d0d-bab6-af50d820e4bf
+ - Curves
+ - Curves
+ - false
+ - dde4faf6-60a2-4e1e-abf7-3dd17012994e
+ - 586fb019-0eda-4995-80e1-91db7f614783
+ - 2
+
+
+
+
+ -
+ 4360
+ 19446
+ 46
+ 20
+
+ -
+ 4384.5
+ 19456
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 62d37571-300a-41a8-aa38-54495199b18a
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 19466
+ 46
+ 20
+
+ -
+ 4384.5
+ 19476
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 586a061e-0e58-4e4d-8ab5-09851aa51eb8
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4436
+ 19446
+ 38
+ 40
+
+ -
+ 4456.5
+ 19466
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5d6d52d-2e6d-41ec-9c34-ca12be6a9777
+ - 85eb4dac-c74b-4487-ab1d-eb90b550227a
+ - fc0a1afb-e49c-47ae-9f34-e01642b1f260
+ - b290088f-51c3-499d-bcc6-651a21180fbd
+ - f2e3277d-70ea-4bdf-b0f6-693524cbaf85
+ - 4751e2e0-6092-46cd-980b-641ed6e917ee
+ - fd670389-bfb1-48e6-8095-f6f97722a9b1
+ - 15b697dd-03e3-4b13-9e3b-1e060efec5bf
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - d478f100-725b-4409-a7b6-375d5771f6d1
+ - fe323d14-26b4-40ee-b6c3-d29c50862bda
+ - 9d5c8bd8-8469-41e2-a537-e174f9e35067
+ - a41828e4-8b7d-4583-8576-6498debc414a
+ - 65772831-622c-45f0-8b74-27794372ba84
+ - 93600863-543e-4c15-8ca0-9aa3a4c41133
+ - 15
+ - f084951b-766e-437c-b35d-714be45ce7b8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6ecc5a11-8bbc-46bc-8596-6b233cd01831
+ - Panel
+
+ - false
+ - 0
+ - e58101fd-fa11-4e34-b636-f46fa022581c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4351
+ 22081
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4351.366
+ 22081.78
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - Curve
+ - Curve
+ - false
+ - 586a061e-0e58-4e4d-8ab5-09851aa51eb8
+ - 1
+
+
+
+
+ -
+ 4399
+ 19409
+ 50
+ 24
+
+ -
+ 4424.946
+ 19421.34
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - 1
+ - 22a118c7-1cad-4618-866c-28f67d88c518
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 87b2f042-29bd-4276-877e-cf779572385b
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 4205
+ 22318
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4205.927
+ 22318.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - efdc0f6f-4347-4267-a362-b2066e677d13
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4345
+ 19318
+ 144
+ 64
+
+ -
+ 4419
+ 19350
+
+
+
+
+
+ - Curve to evaluate
+ - 5941985e-81a5-4c46-a0de-55adf4a0186a
+ - Curve
+ - Curve
+ - false
+ - 586a061e-0e58-4e4d-8ab5-09851aa51eb8
+ - 1
+
+
+
+
+ -
+ 4347
+ 19320
+ 57
+ 20
+
+ -
+ 4377
+ 19330
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 08da2794-9553-4af3-946c-da9c5067de76
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19340
+ 57
+ 20
+
+ -
+ 4377
+ 19350
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 3f3939ae-2110-41e4-babc-49ba734ec842
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 19360
+ 57
+ 20
+
+ -
+ 4377
+ 19370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 7f508137-51bc-436d-804f-01b08f71c261
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19320
+ 53
+ 20
+
+ -
+ 4462
+ 19330
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a39396f7-2236-4aaa-8de2-64928664165b
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19340
+ 53
+ 20
+
+ -
+ 4462
+ 19350
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 78af0065-f39e-4d35-acf0-27b65c63c3ab
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 19360
+ 53
+ 20
+
+ -
+ 4462
+ 19370
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 7791abdb-7ea1-41c5-88d3-5918db40045b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 19096
+ 194
+ 28
+
+ -
+ 4420
+ 19110
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0a4d58b6-009e-4804-8fa1-eb5b39975ed5
+ - Variable O
+ - O
+ - true
+ - 72839dd2-6065-4a41-ada8-6a6c226009cf
+ - 1
+
+
+
+
+ -
+ 4322
+ 19098
+ 14
+ 24
+
+ -
+ 4330.5
+ 19110
+
+
+
+
+
+
+
+ - Result of expression
+ - 89cc53c7-a51f-442a-9d09-8f902e22b247
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 19098
+ 9
+ 24
+
+ -
+ 4509
+ 19110
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 618f3f32-a03d-4629-a735-0977fcd7d620
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 4351
+ 19230
+ 132
+ 64
+
+ -
+ 4398
+ 19262
+
+
+
+
+
+ - Input point
+ - 9163e150-b5e2-413f-8888-e91bd60706c3
+ - Point
+ - Point
+ - false
+ - 7f508137-51bc-436d-804f-01b08f71c261
+ - 1
+
+
+
+
+ -
+ 4353
+ 19232
+ 30
+ 60
+
+ -
+ 4369.5
+ 19262
+
+
+
+
+
+
+
+ - Point {x} component
+ - 72839dd2-6065-4a41-ada8-6a6c226009cf
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 19232
+ 68
+ 20
+
+ -
+ 4448.5
+ 19242
+
+
+
+
+
+
+
+ - Point {y} component
+ - c0484107-28da-417a-856e-675f4c5b4cef
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 19252
+ 68
+ 20
+
+ -
+ 4448.5
+ 19262
+
+
+
+
+
+
+
+ - Point {z} component
+ - bcbea2b7-9150-4d7b-8760-e44d277a4231
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 19272
+ 68
+ 20
+
+ -
+ 4448.5
+ 19282
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c6648f71-7936-4ce9-9b78-78e1d02360d7
+ - Panel
+
+ - false
+ - 0
+ - 89cc53c7-a51f-442a-9d09-8f902e22b247
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 19074
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.718
+ 19074.92
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c69dda4c-1311-4376-8f47-855cae61799b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 19010
+ 194
+ 28
+
+ -
+ 4420
+ 19024
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7d96e1d9-cc7a-495f-a005-e8616f16f49e
+ - Variable O
+ - O
+ - true
+ - c0484107-28da-417a-856e-675f4c5b4cef
+ - 1
+
+
+
+
+ -
+ 4322
+ 19012
+ 14
+ 24
+
+ -
+ 4330.5
+ 19024
+
+
+
+
+
+
+
+ - Result of expression
+ - 8323ed63-598f-48fe-b695-18cdb4d332d7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 19012
+ 9
+ 24
+
+ -
+ 4509
+ 19024
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2bd2f342-3868-46a8-b091-2121183f9fb7
+ - Panel
+
+ - false
+ - 0
+ - 8323ed63-598f-48fe-b695-18cdb4d332d7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 18986
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.718
+ 18986.49
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 48099344-617a-4929-a66f-fec7ab3d4afb
+ - Division
+ - Division
+
+
+
+
+ -
+ 4376
+ 18908
+ 82
+ 44
+
+ -
+ 4407
+ 18930
+
+
+
+
+
+ - Item to divide (dividend)
+ - 834f7056-44e3-4c31-8146-9915598e7765
+ - A
+ - A
+ - false
+ - c6648f71-7936-4ce9-9b78-78e1d02360d7
+ - 1
+
+
+
+
+ -
+ 4378
+ 18910
+ 14
+ 20
+
+ -
+ 4386.5
+ 18920
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - f5b202bc-0d98-4b04-847f-ad22fac6521e
+ - B
+ - B
+ - false
+ - 2bd2f342-3868-46a8-b091-2121183f9fb7
+ - 1
+
+
+
+
+ -
+ 4378
+ 18930
+ 14
+ 20
+
+ -
+ 4386.5
+ 18940
+
+
+
+
+
+
+
+ - The result of the Division
+ - 2198150d-8bac-45fd-aaf3-34e40c8ee272
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4422
+ 18910
+ 34
+ 40
+
+ -
+ 4440.5
+ 18930
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9f7384eb-c649-4742-a327-81feb1906785
+ - Panel
+
+ - false
+ - 0
+ - e58101fd-fa11-4e34-b636-f46fa022581c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 18838
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.956
+ 18838.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2ff3e964-219b-4094-a76a-34df9b871ee9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 18861
+ 194
+ 28
+
+ -
+ 4420
+ 18875
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 16f75d72-2085-4ea1-a6b5-a73a735b9e39
+ - Variable O
+ - O
+ - true
+ - 2198150d-8bac-45fd-aaf3-34e40c8ee272
+ - 1
+
+
+
+
+ -
+ 4322
+ 18863
+ 14
+ 24
+
+ -
+ 4330.5
+ 18875
+
+
+
+
+
+
+
+ - Result of expression
+ - e950c6ca-b4d1-4407-87ad-6749815c647d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 18863
+ 9
+ 24
+
+ -
+ 4509
+ 18875
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e58101fd-fa11-4e34-b636-f46fa022581c
+ - Relay
+
+ - false
+ - e950c6ca-b4d1-4407-87ad-6749815c647d
+ - 1
+
+
+
+
+ -
+ 4397
+ 18786
+ 40
+ 16
+
+ -
+ 4417
+ 18794
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - ffa4f3da-c167-439e-9439-fae140c43c5a
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 4376
+ 18723
+ 82
+ 44
+
+ -
+ 4407
+ 18745
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 325f0739-034c-43a1-8353-56eaad0a0ee3
+ - A
+ - A
+ - true
+ - 2bd2f342-3868-46a8-b091-2121183f9fb7
+ - 1
+
+
+
+
+ -
+ 4378
+ 18725
+ 14
+ 20
+
+ -
+ 4386.5
+ 18735
+
+
+
+
+
+
+
+ - Second item for addition
+ - ef45c4fb-32f8-4746-ac9d-4fa1d856bfde
+ - B
+ - B
+ - true
+ - c6648f71-7936-4ce9-9b78-78e1d02360d7
+ - 1
+
+
+
+
+ -
+ 4378
+ 18745
+ 14
+ 20
+
+ -
+ 4386.5
+ 18755
+
+
+
+
+
+
+
+ - Result of addition
+ - f2a3644f-2c54-4945-959e-c0099d935b04
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4422
+ 18725
+ 34
+ 40
+
+ -
+ 4440.5
+ 18745
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7951e322-6f89-4c62-911e-43899993d21e
+ - Division
+ - Division
+
+
+
+
+ -
+ 4376
+ 18573
+ 82
+ 44
+
+ -
+ 4407
+ 18595
+
+
+
+
+
+ - Item to divide (dividend)
+ - 503711cc-6129-4a5e-8a86-3fb4b605ea3d
+ - A
+ - A
+ - false
+ - 61172d09-8902-4f10-b2c7-17cd51e5027a
+ - 1
+
+
+
+
+ -
+ 4378
+ 18575
+ 14
+ 20
+
+ -
+ 4386.5
+ 18585
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 8352ca73-bbcb-4d3f-8e10-84039c6586ee
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 4378
+ 18595
+ 14
+ 20
+
+ -
+ 4386.5
+ 18605
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 2dff2c6d-6bb5-4e30-8954-cf5ddb6f8c3d
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4422
+ 18575
+ 34
+ 40
+
+ -
+ 4440.5
+ 18595
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3f879e60-3daa-43ef-a228-f571f145b353
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 18525
+ 194
+ 28
+
+ -
+ 4420
+ 18539
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 06d03132-7d32-48b2-a272-050fe4c948d1
+ - Variable O
+ - O
+ - true
+ - 2dff2c6d-6bb5-4e30-8954-cf5ddb6f8c3d
+ - 1
+
+
+
+
+ -
+ 4322
+ 18527
+ 14
+ 24
+
+ -
+ 4330.5
+ 18539
+
+
+
+
+
+
+
+ - Result of expression
+ - b9d22025-768f-4239-a254-21a4b342b0ab
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 18527
+ 9
+ 24
+
+ -
+ 4509
+ 18539
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 04819f51-3ef5-4f05-a1c1-e17b9546ed74
+ - Panel
+
+ - false
+ - 0
+ - b9d22025-768f-4239-a254-21a4b342b0ab
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 18502
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.718
+ 18502.84
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 61172d09-8902-4f10-b2c7-17cd51e5027a
+ - Panel
+
+ - false
+ - 0
+ - 243e112c-da2b-4083-8aef-daa7ad6f181d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 18654
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.718
+ 18654.75
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b5b899a1-84ac-4fa0-a768-c850b12c7691
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 18676
+ 194
+ 28
+
+ -
+ 4420
+ 18690
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 0061d545-7c8d-4ed7-bb46-e911c516f81f
+ - Variable O
+ - O
+ - true
+ - f2a3644f-2c54-4945-959e-c0099d935b04
+ - 1
+
+
+
+
+ -
+ 4322
+ 18678
+ 14
+ 24
+
+ -
+ 4330.5
+ 18690
+
+
+
+
+
+
+
+ - Result of expression
+ - 243e112c-da2b-4083-8aef-daa7ad6f181d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 18678
+ 9
+ 24
+
+ -
+ 4509
+ 18690
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 2af7f12d-42dd-4647-b3c5-2dad5de770bc
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4340
+ 18402
+ 154
+ 64
+
+ -
+ 4424
+ 18434
+
+
+
+
+
+ - Base geometry
+ - a9ca66e0-63ab-425c-80aa-b5b95987ad22
+ - Geometry
+ - Geometry
+ - true
+ - 14b8f8d0-45ef-4704-b912-0fcc8b135f3a
+ - 1
+
+
+
+
+ -
+ 4342
+ 18404
+ 67
+ 20
+
+ -
+ 4385
+ 18414
+
+
+
+
+
+
+
+ - Center of scaling
+ - 9fc1dae6-7308-4e22-89e6-876dfd55105c
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 18424
+ 67
+ 20
+
+ -
+ 4385
+ 18434
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4b5bc2d7-e92d-48ad-a207-b2e611a6529d
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 04819f51-3ef5-4f05-a1c1-e17b9546ed74
+ - 1
+
+
+
+
+ -
+ 4342
+ 18444
+ 67
+ 20
+
+ -
+ 4385
+ 18454
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c18a9447-0b39-435b-b676-68a7105df1a8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4439
+ 18404
+ 53
+ 30
+
+ -
+ 4467
+ 18419
+
+
+
+
+
+
+
+ - Transformation data
+ - 49a166a2-ccf1-4ff1-a244-10a386b65633
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4439
+ 18434
+ 53
+ 30
+
+ -
+ 4467
+ 18449
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - Curve
+ - Curve
+ - false
+ - c18a9447-0b39-435b-b676-68a7105df1a8
+ - 1
+
+
+
+
+ -
+ 4397
+ 17808
+ 50
+ 24
+
+ -
+ 4422.696
+ 17820.34
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 04b0d7b0-300c-4f1c-9d7e-f41a0e83a4c4
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 19183
+ 194
+ 28
+
+ -
+ 4420
+ 19197
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 77883f19-fe56-4d4d-bde0-a92cc9d7de9e
+ - Variable O
+ - O
+ - true
+ - bcbea2b7-9150-4d7b-8760-e44d277a4231
+ - 1
+
+
+
+
+ -
+ 4322
+ 19185
+ 14
+ 24
+
+ -
+ 4330.5
+ 19197
+
+
+
+
+
+
+
+ - Result of expression
+ - 483d5366-ae6a-4605-a776-7dede05b6901
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 19185
+ 9
+ 24
+
+ -
+ 4509
+ 19197
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e00ce40b-ecb5-4c8d-8d68-8d5c0aa50486
+ - Panel
+
+ - false
+ - 0
+ - 483d5366-ae6a-4605-a776-7dede05b6901
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4344
+ 19160
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4344.587
+ 19160.69
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - a974ac3e-f4af-48c9-999a-d2329a3ad1e9
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4345
+ 18192
+ 144
+ 64
+
+ -
+ 4419
+ 18224
+
+
+
+
+
+ - Curve to evaluate
+ - dd279833-3dc1-413e-981b-5e9a800bc9d2
+ - Curve
+ - Curve
+ - false
+ - c18a9447-0b39-435b-b676-68a7105df1a8
+ - 1
+
+
+
+
+ -
+ 4347
+ 18194
+ 57
+ 20
+
+ -
+ 4377
+ 18204
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - dd8b46e3-c743-4944-8f9b-b0b58e2be9d5
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 18214
+ 57
+ 20
+
+ -
+ 4377
+ 18224
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 8440a143-7377-44df-86e5-61e64f094168
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 18234
+ 57
+ 20
+
+ -
+ 4377
+ 18244
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - fe53ee4f-7852-465c-9e75-6adfb08f36f3
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 18194
+ 53
+ 20
+
+ -
+ 4462
+ 18204
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 5586620c-327a-4b28-bc99-fd697b7741b6
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 18214
+ 53
+ 20
+
+ -
+ 4462
+ 18224
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - d475793d-3403-4886-bbc9-be5a3a5bc02f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 18234
+ 53
+ 20
+
+ -
+ 4462
+ 18244
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e02c8247-aa66-49e1-a7c0-f831f4113bf4
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 17975
+ 194
+ 28
+
+ -
+ 4420
+ 17989
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - afdfc549-12af-4caa-9ef3-8f334263bdb0
+ - Variable O
+ - O
+ - true
+ - 28cce138-70cc-4c36-9dfa-4b145f5db265
+ - 1
+
+
+
+
+ -
+ 4322
+ 17977
+ 14
+ 24
+
+ -
+ 4330.5
+ 17989
+
+
+
+
+
+
+
+ - Result of expression
+ - c536b556-64cc-4442-9fd3-e85a35cf2d61
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 17977
+ 9
+ 24
+
+ -
+ 4509
+ 17989
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 1a0ff00c-ad3d-44d5-b6b8-1e5e3c702bf9
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 4351
+ 18109
+ 132
+ 64
+
+ -
+ 4398
+ 18141
+
+
+
+
+
+ - Input point
+ - 4c86603b-2073-4b92-952e-4b87446fc8b6
+ - Point
+ - Point
+ - false
+ - fe53ee4f-7852-465c-9e75-6adfb08f36f3
+ - 1
+
+
+
+
+ -
+ 4353
+ 18111
+ 30
+ 60
+
+ -
+ 4369.5
+ 18141
+
+
+
+
+
+
+
+ - Point {x} component
+ - 28cce138-70cc-4c36-9dfa-4b145f5db265
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 18111
+ 68
+ 20
+
+ -
+ 4448.5
+ 18121
+
+
+
+
+
+
+
+ - Point {y} component
+ - 9a781b7e-29b8-44d9-9773-564d5dceec9a
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 18131
+ 68
+ 20
+
+ -
+ 4448.5
+ 18141
+
+
+
+
+
+
+
+ - Point {z} component
+ - 5045e85a-e4e7-4dd9-a35b-31d7bf04836a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 4413
+ 18151
+ 68
+ 20
+
+ -
+ 4448.5
+ 18161
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 50767aea-5e04-4ad8-a3bb-2273d2e0ca5f
+ - Panel
+
+ - false
+ - 0
+ - c536b556-64cc-4442-9fd3-e85a35cf2d61
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 17948
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.968
+ 17948.27
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b8cc5c94-5e89-4fcd-9fda-2686d818fc62
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 17889
+ 194
+ 28
+
+ -
+ 4420
+ 17903
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7c1f36b0-fd47-4a10-89f9-68efeaa7f9dc
+ - Variable O
+ - O
+ - true
+ - 9a781b7e-29b8-44d9-9773-564d5dceec9a
+ - 1
+
+
+
+
+ -
+ 4322
+ 17891
+ 14
+ 24
+
+ -
+ 4330.5
+ 17903
+
+
+
+
+
+
+
+ - Result of expression
+ - 8c1ff02e-0f54-40ca-9c88-39f5aa70fd6f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 17891
+ 9
+ 24
+
+ -
+ 4509
+ 17903
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9afb0544-51e9-40c4-aecb-21aa4eeda4c8
+ - Panel
+
+ - false
+ - 0
+ - 8c1ff02e-0f54-40ca-9c88-39f5aa70fd6f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 17862
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.977
+ 17862.63
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - ae2cc63f-a8af-4018-a449-3d8f87e3e5e9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 18061
+ 194
+ 28
+
+ -
+ 4420
+ 18075
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e92b7ff8-ba38-42ff-a010-8e658a3045ea
+ - Variable O
+ - O
+ - true
+ - 5045e85a-e4e7-4dd9-a35b-31d7bf04836a
+ - 1
+
+
+
+
+ -
+ 4322
+ 18063
+ 14
+ 24
+
+ -
+ 4330.5
+ 18075
+
+
+
+
+
+
+
+ - Result of expression
+ - 3b25a617-5555-442d-905a-92c1d04991ea
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 18063
+ 9
+ 24
+
+ -
+ 4509
+ 18075
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c4b38ca4-f087-4d8f-8a27-cd0113925a13
+ - Panel
+
+ - false
+ - 0
+ - 3b25a617-5555-442d-905a-92c1d04991ea
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4343
+ 18034
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4343.718
+ 18034.48
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a5b7a28c-c714-4e04-a20c-a1672c48d88b
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 4235
+ 22388
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 4235.376
+ 22388.93
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3aad9ca7-1883-4a7e-8ae5-1fb4937b0b3f
+ - Panel
+
+ - false
+ - 0
+ - fed61f29-31a5-4bf4-b461-0ce2612cd45d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4255
+ 20398
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 4255.907
+ 20398.26
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 3c8cf81e-1720-4651-b4bb-d6e1fd8819ee
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 20683
+ 194
+ 28
+
+ -
+ 4420
+ 20697
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9dc7f913-1388-4bd4-aab1-9723c624155a
+ - Variable O
+ - O
+ - true
+ - 51d8b6ea-0964-4fcf-99d0-55c92d4e3230
+ - 1
+
+
+
+
+ -
+ 4322
+ 20685
+ 14
+ 24
+
+ -
+ 4330.5
+ 20697
+
+
+
+
+
+
+
+ - Result of expression
+ - fed61f29-31a5-4bf4-b461-0ce2612cd45d
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 20685
+ 9
+ 24
+
+ -
+ 4509
+ 20697
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 4407
+ 22798
+ 50
+ 24
+
+ -
+ 4432.677
+ 22810.57
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - b5da1097-2a48-4cd6-a489-40cb2c221f47
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 4248
+ 20965
+ 160
+ 224
+
+ -
+ 4316
+ 21077
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - c353f87d-921f-4335-9048-59443bbe8b64
+ - true
+ - Curves
+ - Curves
+ - false
+ - 50ca04a9-32b7-4eb5-a363-9fa2561e1ef6
+ - 1
+
+
+
+
+ -
+ 4250
+ 20967
+ 51
+ 27
+
+ -
+ 4277
+ 20980.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 722d8e97-5e40-408f-bf17-c77e9f95179e
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 3bbb8a7c-3af9-4f7a-9069-f53d1ba35f7e
+ - 1
+
+
+
+
+ -
+ 4250
+ 20994
+ 51
+ 28
+
+ -
+ 4277
+ 21008.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - ed13e5d7-1597-4d27-9be2-6d7503b5b548
+ - true
+ - Values
+ - Values
+ - false
+ - b14d6bac-1c0b-4330-b6ec-6e130a31f993
+ - 1
+
+
+
+
+ -
+ 4250
+ 21022
+ 51
+ 27
+
+ -
+ 4277
+ 21035.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 5970e511-af97-455b-af3d-670e79d407bf
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 4250
+ 21049
+ 51
+ 28
+
+ -
+ 4277
+ 21063.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - eb5f99e2-849d-45bf-a3b3-f2721535a635
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 4250
+ 21077
+ 51
+ 27
+
+ -
+ 4277
+ 21090.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - cbaaaa58-f54d-48eb-9a32-6c3eb45cbbe8
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 4250
+ 21104
+ 51
+ 28
+
+ -
+ 4277
+ 21118.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 9e54350d-3902-4db4-b313-6ded2187557d
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 4250
+ 21132
+ 51
+ 27
+
+ -
+ 4277
+ 21145.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - f6304eab-cb6c-4abe-8c2a-4e481963b5dc
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 4250
+ 21159
+ 51
+ 28
+
+ -
+ 4277
+ 21173.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - bd492d30-dca1-4039-b3d0-425a96477167
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 20967
+ 75
+ 20
+
+ -
+ 4370
+ 20977
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 0a8976db-bd6e-4c7d-a597-b196b7853cdf
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 20987
+ 75
+ 20
+
+ -
+ 4370
+ 20997
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 7b280276-0da1-4999-87cb-32a5f6fb94c4
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21007
+ 75
+ 20
+
+ -
+ 4370
+ 21017
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 989ca79f-9660-492e-bb0f-3bc4165c6bb7
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21027
+ 75
+ 20
+
+ -
+ 4370
+ 21037
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - ebecfed1-30c7-48ad-b18a-d973f8df9fc2
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21047
+ 75
+ 20
+
+ -
+ 4370
+ 21057
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 3a045e5b-acee-42d1-9ef7-ef418ea2f4b8
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21067
+ 75
+ 20
+
+ -
+ 4370
+ 21077
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - aca1a47e-4a47-4dee-bbb2-7baafdd95c1a
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21087
+ 75
+ 20
+
+ -
+ 4370
+ 21097
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - b7c6e2be-54ab-49ca-bb20-243b2be2a073
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21107
+ 75
+ 20
+
+ -
+ 4370
+ 21117
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - 4eefae75-6a08-4796-aed6-77d4e75e9fc2
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21127
+ 75
+ 20
+
+ -
+ 4370
+ 21137
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - dc9ded47-5348-4465-ba7c-4634d719cc0f
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21147
+ 75
+ 20
+
+ -
+ 4370
+ 21157
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 532c1637-977d-4e3c-afc9-a2d915938796
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 4331
+ 21167
+ 75
+ 20
+
+ -
+ 4370
+ 21177
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 07fc185b-285c-4d94-bbde-e0ed5aaf023f
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 4369
+ 21390
+ 96
+ 44
+
+ -
+ 4419
+ 21412
+
+
+
+
+
+ - Curve to evaluate
+ - 5366e069-f211-4031-99c5-efc512454244
+ - Curve
+ - Curve
+ - false
+ - 50ca04a9-32b7-4eb5-a363-9fa2561e1ef6
+ - 1
+
+
+
+
+ -
+ 4371
+ 21392
+ 33
+ 40
+
+ -
+ 4389
+ 21412
+
+
+
+
+
+
+
+ - Curve start point
+ - ef3276e3-0c7a-4745-994e-64817518ef67
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 21392
+ 29
+ 20
+
+ -
+ 4450
+ 21402
+
+
+
+
+
+
+
+ - Curve end point
+ - e47125e0-2b31-474f-abee-422b2663c658
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 4434
+ 21412
+ 29
+ 20
+
+ -
+ 4450
+ 21422
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 53979eb6-9c9b-437c-b4e7-4b6b9a1dab95
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 4359
+ 21262
+ 126
+ 84
+
+ -
+ 4417
+ 21304
+
+
+
+
+
+ - Rectangle base plane
+ - 9e3d896b-84b4-4c8f-ad5d-d97d2721b48d
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4361
+ 21264
+ 41
+ 20
+
+ -
+ 4383
+ 21274
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - f1cfce6c-3ccd-40bb-a8b2-f3c27ba8f69e
+ - Point A
+ - Point A
+ - false
+ - ef3276e3-0c7a-4745-994e-64817518ef67
+ - 1
+
+
+
+
+ -
+ 4361
+ 21284
+ 41
+ 20
+
+ -
+ 4383
+ 21294
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - d0b86255-a647-4b03-bb74-ec072a357fb6
+ - Point B
+ - Point B
+ - false
+ - e47125e0-2b31-474f-abee-422b2663c658
+ - 1
+
+
+
+
+ -
+ 4361
+ 21304
+ 41
+ 20
+
+ -
+ 4383
+ 21314
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 50b44396-6f8c-404f-8188-a0519feed785
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 4361
+ 21324
+ 41
+ 20
+
+ -
+ 4383
+ 21334
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 3bbb8a7c-3af9-4f7a-9069-f53d1ba35f7e
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 4432
+ 21264
+ 51
+ 40
+
+ -
+ 4459
+ 21284
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 51e4e8b2-ded7-4d55-a227-11b51a58747b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4432
+ 21304
+ 51
+ 40
+
+ -
+ 4459
+ 21324
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - af64ea04-5511-4bb8-816c-4ed0705490f6
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - false
+
+
+
+
+ -
+ 4408
+ 21085
+ 126
+ 104
+
+ -
+ 4475
+ 21137
+
+
+
+
+
+ - External curve as a graph
+ - 0ae7e9fb-fe90-4515-9a55-c93fba510eed
+ - true
+ - Curve
+ - Curve
+ - false
+ - 50ca04a9-32b7-4eb5-a363-9fa2561e1ef6
+ - 1
+
+
+
+
+ -
+ 4410
+ 21087
+ 50
+ 20
+
+ -
+ 4436.5
+ 21097
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - a4350732-493f-4ada-9fe6-986ed71f92ce
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - 3bbb8a7c-3af9-4f7a-9069-f53d1ba35f7e
+ - 1
+
+
+
+
+ -
+ 4410
+ 21107
+ 50
+ 20
+
+ -
+ 4436.5
+ 21117
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 96a94da3-0a4b-454c-a776-c548877be3c0
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - b14d6bac-1c0b-4330-b6ec-6e130a31f993
+ - 1
+
+
+
+
+ -
+ 4410
+ 21127
+ 50
+ 20
+
+ -
+ 4436.5
+ 21137
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - eacf04ff-b544-4d60-8ba5-7fad0ba7b1ef
+ - true
+ - Input
+ - Input
+ - true
+ - 4ae1fad1-a8cd-410a-bc5c-da70ee1ed3f3
+ - 1
+
+
+
+
+ -
+ 4410
+ 21147
+ 50
+ 20
+
+ -
+ 4436.5
+ 21157
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 0830477e-1a1f-441e-ab85-6360eb93565d
+ - true
+ - Output
+ - Output
+ - true
+ - 4ae1fad1-a8cd-410a-bc5c-da70ee1ed3f3
+ - 1
+
+
+
+
+ -
+ 4410
+ 21167
+ 50
+ 20
+
+ -
+ 4436.5
+ 21177
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 660d2fb8-6f70-4754-820f-fbde3aa50d36
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 4490
+ 21087
+ 42
+ 100
+
+ -
+ 4512.5
+ 21137
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 4d9514a4-6cbd-4d54-af16-2f88e8f4d1d1
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 4383
+ 20882
+ 89
+ 64
+
+ -
+ 4428
+ 20914
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - cd76acc8-b8c5-4252-b918-5eabb6edded2
+ - Gate
+ - Gate
+ - false
+ - b122e610-50d0-4981-a71c-d18f46995133
+ - 1
+
+
+
+
+ -
+ 4385
+ 20884
+ 28
+ 20
+
+ -
+ 4400.5
+ 20894
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 2ffdeee5-b7dd-49ad-8582-14d033c7eae9
+ - false
+ - Stream 0
+ - 0
+ - true
+ - bd492d30-dca1-4039-b3d0-425a96477167
+ - 1
+
+
+
+
+ -
+ 4385
+ 20904
+ 28
+ 20
+
+ -
+ 4400.5
+ 20914
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - d7e6a0c6-2276-494c-963e-d741f11ff180
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 660d2fb8-6f70-4754-820f-fbde3aa50d36
+ - 1
+
+
+
+
+ -
+ 4385
+ 20924
+ 28
+ 20
+
+ -
+ 4400.5
+ 20934
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 1c8ee915-ea01-475d-abde-9b8ca4ca0fea
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 4443
+ 20884
+ 27
+ 60
+
+ -
+ 4458
+ 20914
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 8d8e45b6-007c-4f16-8238-2801dae68966
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4360
+ 20802
+ 150
+ 20
+
+ -
+ 4360.337
+ 20802.86
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bd2898b9-73bb-4f3e-ad59-dd7a36b40460
+ - Panel
+
+ - false
+ - 1
+ - 2153ab13-be79-4db5-9420-92768e8d4d61
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4334
+ 21585
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 4334.407
+ 21585.13
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 6fa31a4c-4d12-4c66-a161-dba69c84582b
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 4358
+ 21529
+ 122
+ 28
+
+ -
+ 4422
+ 21543
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - ed42cd40-1bfa-46e5-8c51-a3c57dd02098
+ - Numbers
+ - Numbers
+ - false
+ - b14d6bac-1c0b-4330-b6ec-6e130a31f993
+ - 1
+
+
+
+
+ -
+ 4360
+ 21531
+ 47
+ 24
+
+ -
+ 4385
+ 21543
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 4ae1fad1-a8cd-410a-bc5c-da70ee1ed3f3
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 4437
+ 21531
+ 41
+ 24
+
+ -
+ 4459
+ 21543
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 40c4fee9-ed72-44e0-9487-c1b6d27ec5d7
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4320
+ 21943
+ 194
+ 28
+
+ -
+ 4420
+ 21957
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4591fe3d-df12-48cf-8991-4ebd23e1ec32
+ - true
+ - Variable O
+ - O
+ - true
+ - b14d6bac-1c0b-4330-b6ec-6e130a31f993
+ - 1
+
+
+
+
+ -
+ 4322
+ 21945
+ 14
+ 24
+
+ -
+ 4330.5
+ 21957
+
+
+
+
+
+
+
+ - Result of expression
+ - 2153ab13-be79-4db5-9420-92768e8d4d61
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4503
+ 21945
+ 9
+ 24
+
+ -
+ 4509
+ 21957
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 21e86b7b-3b35-4a89-929c-c6381ca2343c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4234
+ 22175
+ 367
+ 28
+
+ -
+ 4420
+ 22189
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 90fa6b89-8772-4146-b311-8207343c62c1
+ - Variable O
+ - O
+ - true
+ - 4c6f9405-70bf-4366-aebe-2bfeb9080f3d
+ - 1
+
+
+
+
+ -
+ 4236
+ 22177
+ 14
+ 24
+
+ -
+ 4244.5
+ 22189
+
+
+
+
+
+
+
+ - Result of expression
+ - 6ab62f94-3c0e-4e32-84f7-0cca2724b788
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 4590
+ 22177
+ 9
+ 24
+
+ -
+ 4596
+ 22189
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 0b19f101-19e4-47e9-a4d6-7abdb0a95380
+ - Panel
+
+ - false
+ - 0
+ - 6ab62f94-3c0e-4e32-84f7-0cca2724b788
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4334
+ 22122
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4334.546
+ 22122
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - 1
+ - 0bb08cee-3279-44b7-bfd8-62b20eb39978
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 0db85545-2abc-408a-a205-3415624eb0b5
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4340
+ 18317
+ 154
+ 64
+
+ -
+ 4424
+ 18349
+
+
+
+
+
+ - Base geometry
+ - f2516cb6-5b36-4ba6-87ce-51060c162060
+ - Geometry
+ - Geometry
+ - true
+ - 9d5c8bd8-8469-41e2-a537-e174f9e35067
+ - 1
+
+
+
+
+ -
+ 4342
+ 18319
+ 67
+ 20
+
+ -
+ 4385
+ 18329
+
+
+
+
+
+
+
+ - Center of scaling
+ - a60df7ee-99c0-46d3-8006-e26370ce3b50
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4342
+ 18339
+ 67
+ 20
+
+ -
+ 4385
+ 18349
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 66deabc1-95f1-4c7f-8e9a-2f9a3bfc06ba
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 04819f51-3ef5-4f05-a1c1-e17b9546ed74
+ - 1
+
+
+
+
+ -
+ 4342
+ 18359
+ 67
+ 20
+
+ -
+ 4385
+ 18369
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - bc389dea-b0db-4f2e-ba2d-93a1aa54799e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4439
+ 18319
+ 53
+ 30
+
+ -
+ 4467
+ 18334
+
+
+
+
+
+
+
+ - Transformation data
+ - 02e447cf-54a1-4a63-b47c-b8ec1be0b97c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4439
+ 18349
+ 53
+ 30
+
+ -
+ 4467
+ 18364
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 679891f5-4c19-4bdd-9087-054e9a29e795
+ - Point
+ - Point
+ - false
+ - bc389dea-b0db-4f2e-ba2d-93a1aa54799e
+ - 1
+
+
+
+
+ -
+ 4398
+ 18286
+ 50
+ 24
+
+ -
+ 4423.696
+ 18298.52
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 66da5c64-2186-4036-af21-cc53ca0c7db4
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 4345
+ 17517
+ 138
+ 44
+
+ -
+ 4413
+ 17539
+
+
+
+
+
+ - Base geometry
+ - 1334df70-14a0-46d0-b8d4-e7d136d27641
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - 1
+
+
+
+
+ -
+ 4347
+ 17519
+ 51
+ 20
+
+ -
+ 4374
+ 17529
+
+
+
+
+
+
+
+ - Mirror plane
+ - cf272ea5-c7c7-47a9-8bc4-6f97adc7f127
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 4347
+ 17539
+ 51
+ 20
+
+ -
+ 4374
+ 17549
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 6feb001d-7a3e-44f2-a90e-d71df80aee16
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 17519
+ 53
+ 20
+
+ -
+ 4456
+ 17529
+
+
+
+
+
+
+
+ - Transformation data
+ - 75aee8e3-9ec3-4f78-be86-c0c281460dfb
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 17539
+ 53
+ 20
+
+ -
+ 4456
+ 17549
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8ad9374d-afcb-4796-84e7-8728425be2be
+ - Curve
+ - Curve
+ - false
+ - e7b08dab-5320-4d9e-8637-2e540e26033c
+ - 1
+
+
+
+
+ -
+ 4397
+ 17417
+ 50
+ 24
+
+ -
+ 4422.946
+ 17429.52
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 50ca04a9-32b7-4eb5-a363-9fa2561e1ef6
+ - Relay
+
+ - false
+ - 53eb6504-a5e5-4e41-b7ea-9590066ead96
+ - 1
+
+
+
+
+ -
+ 4397
+ 21461
+ 40
+ 16
+
+ -
+ 4417
+ 21469
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d4fb6675-704d-4dcb-baf8-4ffc6775329f
+ - Curve
+ - Curve
+ - false
+ - dffd15f8-5a2e-49d6-b7c5-dbccad851142
+ - 1
+
+
+
+
+ -
+ 3946
+ 21844
+ 50
+ 24
+
+ -
+ 3971.742
+ 21856.46
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 53eb6504-a5e5-4e41-b7ea-9590066ead96
+ - Curve
+ - Curve
+ - false
+ - 27f46d9d-3746-4c59-b237-9b1e7884c5c4
+ - 1
+
+
+
+
+ -
+ 3946
+ 21562
+ 50
+ 24
+
+ -
+ 3971.843
+ 21574.79
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - e549f540-40ea-4cdd-a497-b3459a2e7f20
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3888
+ 21594
+ 154
+ 64
+
+ -
+ 3972
+ 21626
+
+
+
+
+
+ - Base geometry
+ - 45ae7fff-51a7-45f4-aa83-475d9e681975
+ - Geometry
+ - Geometry
+ - true
+ - d4fb6675-704d-4dcb-baf8-4ffc6775329f
+ - 1
+
+
+
+
+ -
+ 3890
+ 21596
+ 67
+ 20
+
+ -
+ 3933
+ 21606
+
+
+
+
+
+
+
+ - Center of scaling
+ - c385f527-6f52-46a4-94c7-37deaf578949
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3890
+ 21616
+ 67
+ 20
+
+ -
+ 3933
+ 21626
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 7937a93f-7dcd-4f53-89a0-6c388d42c2f4
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 3890
+ 21636
+ 67
+ 20
+
+ -
+ 3933
+ 21646
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 27f46d9d-3746-4c59-b237-9b1e7884c5c4
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3987
+ 21596
+ 53
+ 30
+
+ -
+ 4015
+ 21611
+
+
+
+
+
+
+
+ - Transformation data
+ - 2a3d402c-e839-4663-a1b6-4ede7a4f2f7e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3987
+ 21626
+ 53
+ 30
+
+ -
+ 4015
+ 21641
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d4fb6675-704d-4dcb-baf8-4ffc6775329f
+ - 53eb6504-a5e5-4e41-b7ea-9590066ead96
+ - e549f540-40ea-4cdd-a497-b3459a2e7f20
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - cac810ab-41b2-4af2-aa25-4ad3cb752d7f
+ - a18d0199-e56c-4b2e-b65e-b21bd75e936d
+ - 0bc0a15b-7cb7-4bd5-9716-06b6d3f8e53c
+ - 06e47af2-bee0-41e5-8c70-f2ada704afe3
+ - 187609a9-6152-4b0e-a953-efc45d58277b
+ - a70553ad-edd5-4332-bbf9-dd3780725459
+ - 10
+ - 9704f814-34a4-47eb-ad71-18bb3f4c4f84
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 3f13fe4e-bf76-447f-8707-32c517a7b1a2
+ - Move
+ - Move
+
+
+
+
+ -
+ 4345
+ 17453
+ 138
+ 44
+
+ -
+ 4413
+ 17475
+
+
+
+
+
+ - Base geometry
+ - cae1338b-7594-4178-902a-801425a843a1
+ - Geometry
+ - Geometry
+ - true
+ - 7d12fff6-ffe1-4ba6-98a1-ebfa3b11a9e9
+ - 1
+
+
+
+
+ -
+ 4347
+ 17455
+ 51
+ 20
+
+ -
+ 4374
+ 17465
+
+
+
+
+
+
+
+ - Translation vector
+ - 01be6c91-b0cb-4f0c-bee0-0df48307b1b0
+ - Motion
+ - Motion
+ - false
+ - 242f436c-d653-473d-8784-64dcc7e82383
+ - 1
+
+
+
+
+ -
+ 4347
+ 17475
+ 51
+ 20
+
+ -
+ 4374
+ 17485
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - e7b08dab-5320-4d9e-8637-2e540e26033c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 17455
+ 53
+ 20
+
+ -
+ 4456
+ 17465
+
+
+
+
+
+
+
+ - Transformation data
+ - cad668eb-d811-4583-9804-55cf4c398045
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4428
+ 17475
+ 53
+ 20
+
+ -
+ 4456
+ 17485
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - cac810ab-41b2-4af2-aa25-4ad3cb752d7f
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 3847
+ 21787
+ 250
+ 20
+
+ -
+ 3847.142
+ 21787.88
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a18d0199-e56c-4b2e-b65e-b21bd75e936d
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 3904
+ 21687
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 3904.302
+ 21687.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 0bc0a15b-7cb7-4bd5-9716-06b6d3f8e53c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3946
+ 21519
+ 50
+ 24
+
+ -
+ 3971.843
+ 21531.79
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 06e47af2-bee0-41e5-8c70-f2ada704afe3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 3948
+ 21976
+ 50
+ 24
+
+ -
+ 3973.793
+ 21988.63
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 597def04-13b6-4274-af8d-c0420b46bc88
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 4204
+ 22369
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4204.927
+ 22369.46
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 81a98e07-4b63-48be-8978-65191de8d614
+ - Panel
+
+ - false
+ - 0
+ - c3885442-f319-4a9e-a76e-2d260013cca6
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 4205
+ 22493
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 4205.237
+ 22493.41
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 381ea5b7-81d9-4ad1-ba1b-48c7df275998
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 4297
+ 22634
+ 251
+ 20
+
+ -
+ 4297.837
+ 22634.82
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - a446bb6f-d943-45cd-9e46-1d4b429828c1
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 4205
+ 22614
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4205.677
+ 22614.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 0598e9e1-8220-4e81-af9f-441038d63c96
+ - Expression
+
+
+
+
+
+ -
+ 4385
+ 22739
+ 79
+ 28
+
+ -
+ 4427
+ 22753
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 291feb53-4925-4c3d-be8a-db908c313d3a
+ - Variable X
+ - X
+ - true
+ - 18afda8e-f24e-4448-8fa3-5a49fbcb28ca
+ - 1
+
+
+
+
+ -
+ 4387
+ 22741
+ 14
+ 24
+
+ -
+ 4395.5
+ 22753
+
+
+
+
+
+
+
+ - Result of expression
+ - a7e6299f-016a-4b75-9f16-98b4845afdda
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 4453
+ 22741
+ 9
+ 24
+
+ -
+ 4459
+ 22753
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - d478f100-725b-4409-a7b6-375d5771f6d1
+ - Point
+ - Point
+ - false
+ - fe323d14-26b4-40ee-b6c3-d29c50862bda
+ - 1
+
+
+
+
+ -
+ 4420
+ 20268
+ 50
+ 24
+
+ -
+ 4445.657
+ 20280.54
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fe323d14-26b4-40ee-b6c3-d29c50862bda
+ - Relay
+
+ - false
+ - 51d8b6ea-0964-4fcf-99d0-55c92d4e3230
+ - 1
+
+
+
+
+ -
+ 4421
+ 20313
+ 40
+ 16
+
+ -
+ 4441
+ 20321
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9d5c8bd8-8469-41e2-a537-e174f9e35067
+ - Relay
+
+ - false
+ - 14a86aca-9611-48d7-86ab-d2b6d1cfbaf6
+ - 1
+
+
+
+
+ -
+ 4421
+ 20090
+ 40
+ 16
+
+ -
+ 4441
+ 20098
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - a41828e4-8b7d-4583-8576-6498debc414a
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 4364
+ 20126
+ 154
+ 64
+
+ -
+ 4448
+ 20158
+
+
+
+
+
+ - Base geometry
+ - 856af0c5-6153-415d-82c8-c010034641c1
+ - Geometry
+ - Geometry
+ - true
+ - d478f100-725b-4409-a7b6-375d5771f6d1
+ - 1
+
+
+
+
+ -
+ 4366
+ 20128
+ 67
+ 20
+
+ -
+ 4409
+ 20138
+
+
+
+
+
+
+
+ - Center of scaling
+ - ab950bf5-d868-4f6f-8c6c-da4f7062a957
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 4366
+ 20148
+ 67
+ 20
+
+ -
+ 4409
+ 20158
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 39c12bf7-7239-4251-b8b1-c42b96f5f6dd
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 93600863-543e-4c15-8ca0-9aa3a4c41133
+ - 1
+
+
+
+
+ -
+ 4366
+ 20168
+ 67
+ 20
+
+ -
+ 4409
+ 20178
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 14a86aca-9611-48d7-86ab-d2b6d1cfbaf6
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 4463
+ 20128
+ 53
+ 30
+
+ -
+ 4491
+ 20143
+
+
+
+
+
+
+
+ - Transformation data
+ - ea200ac9-6178-409b-800b-9443ea669567
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 4463
+ 20158
+ 53
+ 30
+
+ -
+ 4491
+ 20173
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 93600863-543e-4c15-8ca0-9aa3a4c41133
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 4325
+ 20212
+ 250
+ 20
+
+ -
+ 4325.436
+ 20212.9
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d478f100-725b-4409-a7b6-375d5771f6d1
+ - 1
+ - 65772831-622c-45f0-8b74-27794372ba84
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - c3885442-f319-4a9e-a76e-2d260013cca6
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 4297
+ 22535
+ 251
+ 20
+
+ -
+ 4297.337
+ 22535.13
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - a70553ad-edd5-4332-bbf9-dd3780725459
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 3847
+ 21743
+ 250
+ 20
+
+ -
+ 3847.29
+ 21743.09
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 3311fde3-9c8c-4c18-b745-432105d58c63
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 4344
+ 17590
+ 139
+ 64
+
+ -
+ 4429
+ 17622
+
+
+
+
+
+ - Vector {x} component
+ - e306c6df-fd8d-4c22-9e3c-ba49fb3154d9
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 4346
+ 17592
+ 68
+ 20
+
+ -
+ 4381.5
+ 17602
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - e57d3f72-e592-4a27-8b75-be7be7d188fe
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 4346
+ 17612
+ 68
+ 20
+
+ -
+ 4381.5
+ 17622
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 229d9a01-7702-4431-a27e-88aeaa39dbc6
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 4346
+ 17632
+ 68
+ 20
+
+ -
+ 4381.5
+ 17642
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 242f436c-d653-473d-8784-64dcc7e82383
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 4444
+ 17592
+ 37
+ 30
+
+ -
+ 4464
+ 17607
+
+
+
+
+
+
+
+ - Vector length
+ - bd255dca-a63c-4337-967c-fb5f8c2bc898
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4444
+ 17622
+ 37
+ 30
+
+ -
+ 4464
+ 17637
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 187609a9-6152-4b0e-a953-efc45d58277b
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 3927
+ 21887
+ 89
+ 64
+
+ -
+ 3972
+ 21919
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 1e3699a0-0e56-4e71-ae0f-701cf76d90df
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 3929
+ 21889
+ 28
+ 20
+
+ -
+ 3944.5
+ 21899
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 6062bcea-f329-4945-be65-cda5e7c6e041
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 63605c91-1a92-45da-9fec-1773e7cb4a87
+ - 1
+
+
+
+
+ -
+ 3929
+ 21909
+ 28
+ 20
+
+ -
+ 3944.5
+ 21919
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - f31d7668-9af5-4816-9e34-2e1f00f731fe
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 92872ee8-e7ec-4b2a-b425-fe4d823e6b35
+ - 1
+
+
+
+
+ -
+ 3929
+ 21929
+ 28
+ 20
+
+ -
+ 3944.5
+ 21939
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - dffd15f8-5a2e-49d6-b7c5-dbccad851142
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 3987
+ 21889
+ 27
+ 60
+
+ -
+ 4002
+ 21919
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b122e610-50d0-4981-a71c-d18f46995133
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 4397
+ 20859
+ 40
+ 16
+
+ -
+ 4417
+ 20867
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 707cf740-02e9-4c63-8e3b-3db59c713c92
+ - a443a10c-cbaf-498b-a1e4-e539f45fe4fe
+ - 8cb6586a-a146-45f7-b630-5c0b4f08febe
+ - 6e9d3bc2-d3f1-44b3-993f-98f642a4acb6
+ - 599c60ab-44a9-4f44-970e-fc9c25ddd6e4
+ - 572e5b45-03cb-4ab7-ab9e-78dc75221447
+ - 6
+ - 877f24f5-6e93-4d5d-b5ac-3127be5f934e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5149bfdc-bc6c-4002-a51d-9e0cb422878d
+ - 6d3d60fa-876b-4e10-8b2b-599a9851cc29
+ - 1602a2d3-5c89-4234-9c81-ad819a0c2965
+ - 76b834e5-b41e-47e2-a1e2-5729ad631396
+ - 2a15a24d-33c6-4098-a594-3baf3658e281
+ - ed8877d0-a7bc-4244-bde8-989946c86c69
+ - 071a9171-9778-4faa-bf43-d6c3c2346f52
+ - cf07a7b7-0678-46af-b932-176e5a129a8e
+ - 9bef6001-cd5c-4a87-86ca-d60ce0c8636d
+ - 250166c2-181d-43f7-84d6-b431aeca7a29
+ - e8b5e115-8323-4ee9-86ab-acff863fc299
+ - dd0694b8-75ec-4cda-8bbb-4fb3895eacf0
+ - 10072ca4-1b88-402e-9519-4eb0075b3552
+ - ff61e05d-8499-42ec-88b0-655a6e7c02a5
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9e8cc228-1ff8-49c4-9d11-42fc9d92ab08
+ - 9b0f3220-f524-4597-8004-73158c7fe09e
+ - e2aa490f-5efe-4d5f-ae12-c6bea9692948
+ - 743cfa93-b14b-46d1-a2a2-404b0f0db21f
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9ac39d0d-b7d7-4a16-9428-c35cd6e7c8b9
+ - 340eb253-1064-4693-a3de-5ffee5477fce
+ - ac26602c-e82c-4bef-9524-454b72863af1
+ - f11ea47f-2a3f-487e-8d64-d49319b4ef03
+ - 2f644ecf-a9a9-4c3e-a587-89788beee78a
+ - 7b8954c2-fa1f-4d7d-9348-0ac962ebb8d6
+ - 1a4d4b49-cdcb-401f-bab1-69d3c0e7709b
+ - 1418861d-2e73-4275-8864-69218f9321f8
+ - 5ae7df34-6f59-4159-bf33-ff881937aaad
+ - 2c0308e1-28bc-4c67-be3c-9b72627be6f1
+ - d7d9e988-3dfc-417d-97a3-4c58e3d2f7a5
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - fe5a739c-c046-49a7-a451-c8e3f50b7946
+ - aaef31bd-73c8-416a-855d-34135f2666f7
+ - 31dbc3e1-b3f2-4620-bbd4-0d38954f90ba
+ - fea4f0c2-1987-4792-a0be-9d1d82221862
+ - 7090ecc1-3531-4766-ac7c-8e9cef149444
+ - ffda0e6f-d8c1-4125-bb4d-7ef56ab60a72
+ - 1cf97464-a3ba-483d-aacd-1defeb8b996d
+ - 037e692a-0274-48f5-9028-92e8dd01ecf9
+ - cf7d8f9e-103e-4278-9f94-cc9dc6040910
+ - 3c0320ca-76da-4a43-9f92-f5a24feaa3e8
+ - c15d0439-8785-451e-b33a-6060a8c82673
+ - d546a55d-2bc1-491a-a8e8-69a9ad7144ab
+ - 9e0146c9-9465-464a-8c71-4c227b37e74b
+ - c058f429-bb56-407b-8e90-66ad866517fe
+ - 66ca720b-a535-4a17-9de8-eb1cb4ce99db
+ - b81bdd29-15f2-48a9-a4f7-c1c02f788be1
+ - 27b5a25c-74ec-428b-a6e2-d679e706dae5
+ - e0ef5a92-0696-4a92-a1ff-b31e6ffc2105
+ - 009f818e-acd6-4a86-a0ba-7e464cb6d83e
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - 2464e3ca-4c50-4e2b-a0b0-c68dbb7273fa
+ - ae24fa51-d8c0-4afe-b40c-6e828df05168
+ - 4b84a47d-8707-4785-9e1f-8ecac64bab68
+ - b0aaa12f-bb5e-4257-afa2-7f461529d19d
+ - b91be93c-2fa3-48dd-b1a3-b2e69034d78d
+ - ad8fd811-5c9a-46f2-9fb7-8c44f5b74452
+ - fd69c204-0c56-441a-9cfb-4ac882600323
+ - 92e72eb1-7b34-42e4-a86f-53dfdd6ea022
+ - 8b88901b-aaba-44b8-81de-4fed9c5db99a
+ - 8d5e42f0-3482-4f51-9626-68ebbefdbab9
+ - ee53f26e-b430-492a-a353-5d2c5665ee75
+ - 84ed4f5c-c495-4632-ab02-2d04a961e45f
+ - 1cbb6b9c-ea74-47e7-9bc8-21aaf33383af
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - 618a62fc-c364-493f-afdf-61708b13caf2
+ - 388543c4-041b-413c-9cc4-ed5a5ff34151
+ - 82348a3c-9eea-4fc0-9a5b-cb872f5abbc5
+ - a2fcf294-58d9-4486-bfa1-a9a3a8aa8dff
+ - e2e195fd-49d3-456b-92fb-68c4f2184a19
+ - dfbd4830-30d1-4236-9600-fc514fa8836c
+ - 77ee56bf-42ea-4de5-a9e1-55394398403b
+ - 1a33f23c-ee59-41be-9968-ab9ba5ed2344
+ - 9daec4e9-6644-4eb9-a65b-8b9266447b5b
+ - 5ab81b8c-dd2e-4b73-8d51-75bf39f3397d
+ - dbdc7d7c-dfd1-447c-8b12-a2be4e23352d
+ - 0d8169a8-cfe0-468d-a1be-f07fa24df9d8
+ - 76ca0f6d-8ba8-4ef0-8775-01969890a3b5
+ - c6c2efe1-f8cf-4896-bb6e-d683a17f3b5b
+ - bfd16498-8d15-4c7a-8272-1642d47087b4
+ - 992f34c0-9384-4928-b69f-b6f1ae913f03
+ - a9c820c4-d23b-4376-8473-a53dcbb1a46c
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - 57ee3ef1-7767-42d5-bc6f-455d29571ca3
+ - 85
+ - e77bc439-5ced-42b8-a694-b9a62bfcb688
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6d3d60fa-876b-4e10-8b2b-599a9851cc29
+ - 1602a2d3-5c89-4234-9c81-ad819a0c2965
+ - 76b834e5-b41e-47e2-a1e2-5729ad631396
+ - 2a15a24d-33c6-4098-a594-3baf3658e281
+ - ed8877d0-a7bc-4244-bde8-989946c86c69
+ - 071a9171-9778-4faa-bf43-d6c3c2346f52
+ - cf07a7b7-0678-46af-b932-176e5a129a8e
+ - 9bef6001-cd5c-4a87-86ca-d60ce0c8636d
+ - 250166c2-181d-43f7-84d6-b431aeca7a29
+ - e8b5e115-8323-4ee9-86ab-acff863fc299
+ - dd0694b8-75ec-4cda-8bbb-4fb3895eacf0
+ - 10072ca4-1b88-402e-9519-4eb0075b3552
+ - ff61e05d-8499-42ec-88b0-655a6e7c02a5
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9e8cc228-1ff8-49c4-9d11-42fc9d92ab08
+ - 9b0f3220-f524-4597-8004-73158c7fe09e
+ - e2aa490f-5efe-4d5f-ae12-c6bea9692948
+ - 743cfa93-b14b-46d1-a2a2-404b0f0db21f
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 9ac39d0d-b7d7-4a16-9428-c35cd6e7c8b9
+ - 340eb253-1064-4693-a3de-5ffee5477fce
+ - ac26602c-e82c-4bef-9524-454b72863af1
+ - f11ea47f-2a3f-487e-8d64-d49319b4ef03
+ - 2f644ecf-a9a9-4c3e-a587-89788beee78a
+ - 7b8954c2-fa1f-4d7d-9348-0ac962ebb8d6
+ - 1a4d4b49-cdcb-401f-bab1-69d3c0e7709b
+ - 1418861d-2e73-4275-8864-69218f9321f8
+ - 5ae7df34-6f59-4159-bf33-ff881937aaad
+ - 2c0308e1-28bc-4c67-be3c-9b72627be6f1
+ - d7d9e988-3dfc-417d-97a3-4c58e3d2f7a5
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - fe5a739c-c046-49a7-a451-c8e3f50b7946
+ - aaef31bd-73c8-416a-855d-34135f2666f7
+ - 31dbc3e1-b3f2-4620-bbd4-0d38954f90ba
+ - fea4f0c2-1987-4792-a0be-9d1d82221862
+ - 7090ecc1-3531-4766-ac7c-8e9cef149444
+ - ffda0e6f-d8c1-4125-bb4d-7ef56ab60a72
+ - 1cf97464-a3ba-483d-aacd-1defeb8b996d
+ - 037e692a-0274-48f5-9028-92e8dd01ecf9
+ - cf7d8f9e-103e-4278-9f94-cc9dc6040910
+ - 3c0320ca-76da-4a43-9f92-f5a24feaa3e8
+ - c15d0439-8785-451e-b33a-6060a8c82673
+ - d546a55d-2bc1-491a-a8e8-69a9ad7144ab
+ - 9e0146c9-9465-464a-8c71-4c227b37e74b
+ - c058f429-bb56-407b-8e90-66ad866517fe
+ - 66ca720b-a535-4a17-9de8-eb1cb4ce99db
+ - b81bdd29-15f2-48a9-a4f7-c1c02f788be1
+ - 27b5a25c-74ec-428b-a6e2-d679e706dae5
+ - e0ef5a92-0696-4a92-a1ff-b31e6ffc2105
+ - 009f818e-acd6-4a86-a0ba-7e464cb6d83e
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - 2464e3ca-4c50-4e2b-a0b0-c68dbb7273fa
+ - ae24fa51-d8c0-4afe-b40c-6e828df05168
+ - 4b84a47d-8707-4785-9e1f-8ecac64bab68
+ - b0aaa12f-bb5e-4257-afa2-7f461529d19d
+ - b91be93c-2fa3-48dd-b1a3-b2e69034d78d
+ - ad8fd811-5c9a-46f2-9fb7-8c44f5b74452
+ - fd69c204-0c56-441a-9cfb-4ac882600323
+ - 92e72eb1-7b34-42e4-a86f-53dfdd6ea022
+ - 8b88901b-aaba-44b8-81de-4fed9c5db99a
+ - 8d5e42f0-3482-4f51-9626-68ebbefdbab9
+ - ee53f26e-b430-492a-a353-5d2c5665ee75
+ - 84ed4f5c-c495-4632-ab02-2d04a961e45f
+ - 1cbb6b9c-ea74-47e7-9bc8-21aaf33383af
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - 618a62fc-c364-493f-afdf-61708b13caf2
+ - 388543c4-041b-413c-9cc4-ed5a5ff34151
+ - 82348a3c-9eea-4fc0-9a5b-cb872f5abbc5
+ - a2fcf294-58d9-4486-bfa1-a9a3a8aa8dff
+ - e2e195fd-49d3-456b-92fb-68c4f2184a19
+ - dfbd4830-30d1-4236-9600-fc514fa8836c
+ - 77ee56bf-42ea-4de5-a9e1-55394398403b
+ - 1a33f23c-ee59-41be-9968-ab9ba5ed2344
+ - 9daec4e9-6644-4eb9-a65b-8b9266447b5b
+ - 5ab81b8c-dd2e-4b73-8d51-75bf39f3397d
+ - dbdc7d7c-dfd1-447c-8b12-a2be4e23352d
+ - 0d8169a8-cfe0-468d-a1be-f07fa24df9d8
+ - 76ca0f6d-8ba8-4ef0-8775-01969890a3b5
+ - c6c2efe1-f8cf-4896-bb6e-d683a17f3b5b
+ - 79
+ - 5149bfdc-bc6c-4002-a51d-9e0cb422878d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0d8169a8-cfe0-468d-a1be-f07fa24df9d8
+ - 1
+ - 6d3d60fa-876b-4e10-8b2b-599a9851cc29
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 76b834e5-b41e-47e2-a1e2-5729ad631396
+ - 1
+ - 1602a2d3-5c89-4234-9c81-ad819a0c2965
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2a15a24d-33c6-4098-a594-3baf3658e281
+ - 1
+ - 76b834e5-b41e-47e2-a1e2-5729ad631396
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ed8877d0-a7bc-4244-bde8-989946c86c69
+ - 1
+ - 2a15a24d-33c6-4098-a594-3baf3658e281
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 071a9171-9778-4faa-bf43-d6c3c2346f52
+ - 1
+ - ed8877d0-a7bc-4244-bde8-989946c86c69
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cf07a7b7-0678-46af-b932-176e5a129a8e
+ - 1
+ - 071a9171-9778-4faa-bf43-d6c3c2346f52
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 250166c2-181d-43f7-84d6-b431aeca7a29
+ - 1
+ - cf07a7b7-0678-46af-b932-176e5a129a8e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9bef6001-cd5c-4a87-86ca-d60ce0c8636d
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5914
+ 21498
+ 50
+ 24
+
+ -
+ 5939.49
+ 21510.85
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9bef6001-cd5c-4a87-86ca-d60ce0c8636d
+ - 1
+ - 250166c2-181d-43f7-84d6-b431aeca7a29
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2c0308e1-28bc-4c67-be3c-9b72627be6f1
+ - 1
+ - e8b5e115-8323-4ee9-86ab-acff863fc299
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10072ca4-1b88-402e-9519-4eb0075b3552
+ - ff61e05d-8499-42ec-88b0-655a6e7c02a5
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9e8cc228-1ff8-49c4-9d11-42fc9d92ab08
+ - 9b0f3220-f524-4597-8004-73158c7fe09e
+ - e2aa490f-5efe-4d5f-ae12-c6bea9692948
+ - 743cfa93-b14b-46d1-a2a2-404b0f0db21f
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 340eb253-1064-4693-a3de-5ffee5477fce
+ - 9ac39d0d-b7d7-4a16-9428-c35cd6e7c8b9
+ - e8b5e115-8323-4ee9-86ab-acff863fc299
+ - 250166c2-181d-43f7-84d6-b431aeca7a29
+ - 618a62fc-c364-493f-afdf-61708b13caf2
+ - 388543c4-041b-413c-9cc4-ed5a5ff34151
+ - 82348a3c-9eea-4fc0-9a5b-cb872f5abbc5
+ - a2fcf294-58d9-4486-bfa1-a9a3a8aa8dff
+ - e2e195fd-49d3-456b-92fb-68c4f2184a19
+ - dfbd4830-30d1-4236-9600-fc514fa8836c
+ - 84ed4f5c-c495-4632-ab02-2d04a961e45f
+ - 1cbb6b9c-ea74-47e7-9bc8-21aaf33383af
+ - 20
+ - dd0694b8-75ec-4cda-8bbb-4fb3895eacf0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 10072ca4-1b88-402e-9519-4eb0075b3552
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 5887
+ 22660
+ 104
+ 64
+
+ -
+ 5946
+ 22692
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - fb19da30-e146-4740-a7c2-6b7c4d922e65
+ - Data
+ - Data
+ - false
+ - 0ab0bccd-80a9-4f08-85ef-09a2ea5a094a
+ - 1
+
+
+
+
+ -
+ 5889
+ 22662
+ 42
+ 20
+
+ -
+ 5911.5
+ 22672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 7aa09ab9-610b-4b1b-83f1-5d8a488e0c6e
+ - Number
+ - Number
+ - false
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - 1
+
+
+
+
+ -
+ 5889
+ 22682
+ 42
+ 20
+
+ -
+ 5911.5
+ 22692
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 4811e957-53a0-4847-b803-f4f5161085cf
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 5889
+ 22702
+ 42
+ 20
+
+ -
+ 5911.5
+ 22712
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - ea12780c-201c-472a-bbf0-053f94cd1092
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 5961
+ 22662
+ 28
+ 60
+
+ -
+ 5976.5
+ 22692
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - ff61e05d-8499-42ec-88b0-655a6e7c02a5
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 5873
+ 20732
+ 116
+ 44
+
+ -
+ 5934
+ 20754
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 41c0b509-5d0b-4d35-a470-b1f1b8ab9ea0
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - ea12780c-201c-472a-bbf0-053f94cd1092
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5875
+ 20734
+ 44
+ 20
+
+ -
+ 5898.5
+ 20744
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 5a9c0544-ef18-4386-bafe-8b5f0cc05d61
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 565bff87-c1f3-423f-ab95-05c38319cd6c
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 5875
+ 20754
+ 44
+ 20
+
+ -
+ 5898.5
+ 20764
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 383e0da6-9dca-4247-b671-a36bf30befdc
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 5949
+ 20734
+ 38
+ 20
+
+ -
+ 5969.5
+ 20744
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 161c150e-386f-40f3-875a-4b3bb95765a2
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5949
+ 20754
+ 38
+ 20
+
+ -
+ 5969.5
+ 20764
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 9e8cc228-1ff8-49c4-9d11-42fc9d92ab08
+ - Series
+ - Series
+
+
+
+
+ -
+ 5884
+ 21989
+ 101
+ 64
+
+ -
+ 5934
+ 22021
+
+
+
+
+
+ - First number in the series
+ - 7860ca71-d430-444a-b399-bb5d98b69a01
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5886
+ 21991
+ 33
+ 20
+
+ -
+ 5904
+ 22001
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - eed548b6-b3a2-4f26-bbe4-2a7f2f918f2f
+ - Step
+ - Step
+ - false
+ - dbdc7d7c-dfd1-447c-8b12-a2be4e23352d
+ - 1
+
+
+
+
+ -
+ 5886
+ 22011
+ 33
+ 20
+
+ -
+ 5904
+ 22021
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 0b0c74f9-ecbb-47a0-9905-311b6d5f066c
+ - Count
+ - Count
+ - false
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - 1
+
+
+
+
+ -
+ 5886
+ 22031
+ 33
+ 20
+
+ -
+ 5904
+ 22041
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - e036b819-f3fa-49f8-bdc3-6d85e6bc4725
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 5949
+ 21991
+ 34
+ 60
+
+ -
+ 5967.5
+ 22021
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 9b0f3220-f524-4597-8004-73158c7fe09e
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5872
+ 22842
+ 150
+ 20
+
+ -
+ 5872.17
+ 22842.7
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - e2aa490f-5efe-4d5f-ae12-c6bea9692948
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 5834
+ 22231
+ 120
+ 28
+
+ -
+ 5895
+ 22245
+
+
+
+
+
+ - Angle in degrees
+ - 8b0606a6-f486-491f-80ef-06b47d1f9a2d
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 5836
+ 22233
+ 44
+ 24
+
+ -
+ 5859.5
+ 22245
+
+
+
+
+
+
+
+ - Angle in radians
+ - c51817d3-3489-4bdf-baca-363dd1128013
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 5910
+ 22233
+ 42
+ 24
+
+ -
+ 5932.5
+ 22245
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 743cfa93-b14b-46d1-a2a2-404b0f0db21f
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 5812
+ 22597
+ 251
+ 20
+
+ -
+ 5812.381
+ 22597.69
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 9ac39d0d-b7d7-4a16-9428-c35cd6e7c8b9
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 5859
+ 19967
+ 144
+ 84
+
+ -
+ 5945
+ 20009
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - e5ebfcff-c93c-4298-8e26-a0568a88702f
+ - Vertices
+ - Vertices
+ - false
+ - 8cb6586a-a146-45f7-b630-5c0b4f08febe
+ - 1
+
+
+
+
+ -
+ 5861
+ 19969
+ 69
+ 20
+
+ -
+ 5897
+ 19979
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 7967903d-9571-4a38-925c-b448f256c64d
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19989
+ 69
+ 20
+
+ -
+ 5897
+ 19999
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 9f9f2229-477f-4142-b339-994e535cbe18
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 20009
+ 69
+ 20
+
+ -
+ 5897
+ 20019
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - fdaf3e1c-31ed-423e-a68b-3a6130502ce1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 20029
+ 69
+ 20
+
+ -
+ 5897
+ 20039
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 215d6723-c234-40af-90d3-d7c02d4a9b30
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5960
+ 19969
+ 41
+ 26
+
+ -
+ 5982
+ 19982.33
+
+
+
+
+
+
+
+ - Curve length
+ - e996e374-9cac-4b12-b02b-375aeec6d4a0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5960
+ 19995
+ 41
+ 27
+
+ -
+ 5982
+ 20009
+
+
+
+
+
+
+
+ - Curve domain
+ - 56470385-083d-4abd-9fe3-0da8c97fb9fb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5960
+ 20022
+ 41
+ 27
+
+ -
+ 5982
+ 20035.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10072ca4-1b88-402e-9519-4eb0075b3552
+ - ff61e05d-8499-42ec-88b0-655a6e7c02a5
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9e8cc228-1ff8-49c4-9d11-42fc9d92ab08
+ - 9b0f3220-f524-4597-8004-73158c7fe09e
+ - e2aa490f-5efe-4d5f-ae12-c6bea9692948
+ - 743cfa93-b14b-46d1-a2a2-404b0f0db21f
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 1a33f23c-ee59-41be-9968-ab9ba5ed2344
+ - aaef31bd-73c8-416a-855d-34135f2666f7
+ - ee53f26e-b430-492a-a353-5d2c5665ee75
+ - 77ee56bf-42ea-4de5-a9e1-55394398403b
+ - 9daec4e9-6644-4eb9-a65b-8b9266447b5b
+ - e89722ea-0b93-47ee-85d5-9f044bdbb649
+ - 14
+ - 340eb253-1064-4693-a3de-5ffee5477fce
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - ac26602c-e82c-4bef-9524-454b72863af1
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5859
+ 19799
+ 144
+ 64
+
+ -
+ 5933
+ 19831
+
+
+
+
+
+ - Curve to evaluate
+ - 1ea0fa26-3bc4-4bdc-bcef-305bff45e01e
+ - Curve
+ - Curve
+ - false
+ - 215d6723-c234-40af-90d3-d7c02d4a9b30
+ - 1
+
+
+
+
+ -
+ 5861
+ 19801
+ 57
+ 20
+
+ -
+ 5891
+ 19811
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 0ba6df0b-3aad-4dc2-8fbd-0b9b5461f4c4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19821
+ 57
+ 20
+
+ -
+ 5891
+ 19831
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - bc494ee4-2a37-4cf5-9155-aed7e577c0cb
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19841
+ 57
+ 20
+
+ -
+ 5891
+ 19851
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f8421ffc-03f8-457f-be30-396d4a563c11
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19801
+ 53
+ 20
+
+ -
+ 5976
+ 19811
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - d4327f97-d104-49b5-a665-14febf21d1cb
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19821
+ 53
+ 20
+
+ -
+ 5976
+ 19831
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - bd37eac4-2fdc-4a37-8c90-9fc89c360537
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19841
+ 53
+ 20
+
+ -
+ 5976
+ 19851
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - f11ea47f-2a3f-487e-8d64-d49319b4ef03
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5862
+ 19737
+ 138
+ 44
+
+ -
+ 5930
+ 19759
+
+
+
+
+
+ - Base geometry
+ - 0b0e267f-50c2-46e3-a547-e213de0040ee
+ - Geometry
+ - Geometry
+ - true
+ - 215d6723-c234-40af-90d3-d7c02d4a9b30
+ - 1
+
+
+
+
+ -
+ 5864
+ 19739
+ 51
+ 20
+
+ -
+ 5891
+ 19749
+
+
+
+
+
+
+
+ - Mirror plane
+ - 182f41c6-3900-4b33-8426-d59b645241ba
+ - Plane
+ - Plane
+ - false
+ - f3ab1c49-edf7-4c0e-bbb8-ebbafb2fca87
+ - 1
+
+
+
+
+ -
+ 5864
+ 19759
+ 51
+ 20
+
+ -
+ 5891
+ 19769
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - ed4f8aba-2319-4a97-9ef9-4db96e350522
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5945
+ 19739
+ 53
+ 20
+
+ -
+ 5973
+ 19749
+
+
+
+
+
+
+
+ - Transformation data
+ - c12c39c1-08b5-4f4a-ab32-47160c6eb15b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5945
+ 19759
+ 53
+ 20
+
+ -
+ 5973
+ 19769
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 2f644ecf-a9a9-4c3e-a587-89788beee78a
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 5878
+ 19883
+ 106
+ 64
+
+ -
+ 5942
+ 19915
+
+
+
+
+
+ - Line start point
+ - 6e2f9f46-f1fe-47fc-9c66-c13d55980f30
+ - Start
+ - Start
+ - false
+ - f8421ffc-03f8-457f-be30-396d4a563c11
+ - 1
+
+
+
+
+ -
+ 5880
+ 19885
+ 47
+ 20
+
+ -
+ 5905
+ 19895
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 053e29e6-ea1b-419c-8a03-c214a1d318eb
+ - Direction
+ - Direction
+ - false
+ - d4327f97-d104-49b5-a665-14febf21d1cb
+ - 1
+
+
+
+
+ -
+ 5880
+ 19905
+ 47
+ 20
+
+ -
+ 5905
+ 19915
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 75bee7b4-76a2-480b-b13c-fa418683c2fa
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5880
+ 19925
+ 47
+ 20
+
+ -
+ 5905
+ 19935
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - f3ab1c49-edf7-4c0e-bbb8-ebbafb2fca87
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 5957
+ 19885
+ 25
+ 60
+
+ -
+ 5971
+ 19915
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 7b8954c2-fa1f-4d7d-9348-0ac962ebb8d6
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5872
+ 19675
+ 118
+ 44
+
+ -
+ 5935
+ 19697
+
+
+
+
+
+ - 1
+ - Curves to join
+ - ccdd2b02-99c1-432c-b323-c828feeaaa68
+ - Curves
+ - Curves
+ - false
+ - 215d6723-c234-40af-90d3-d7c02d4a9b30
+ - ed4f8aba-2319-4a97-9ef9-4db96e350522
+ - 2
+
+
+
+
+ -
+ 5874
+ 19677
+ 46
+ 20
+
+ -
+ 5898.5
+ 19687
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - d8f01d8d-9387-41db-b68e-b9dbc7655f66
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5874
+ 19697
+ 46
+ 20
+
+ -
+ 5898.5
+ 19707
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - bd41d0fe-e0e8-4e3c-b316-50e3d5f1ff48
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5950
+ 19677
+ 38
+ 40
+
+ -
+ 5970.5
+ 19697
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1a4d4b49-cdcb-401f-bab1-69d3c0e7709b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5859
+ 19591
+ 144
+ 64
+
+ -
+ 5933
+ 19623
+
+
+
+
+
+ - Curve to evaluate
+ - e588df7e-9281-460c-8919-b325533ff874
+ - Curve
+ - Curve
+ - false
+ - bd41d0fe-e0e8-4e3c-b316-50e3d5f1ff48
+ - 1
+
+
+
+
+ -
+ 5861
+ 19593
+ 57
+ 20
+
+ -
+ 5891
+ 19603
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 20baaadf-0381-4733-8c76-d1cafe4b4336
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19613
+ 57
+ 20
+
+ -
+ 5891
+ 19623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 78c5d0e7-dfb4-4a4a-ba97-4237c7cf0a9e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19633
+ 57
+ 20
+
+ -
+ 5891
+ 19643
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 7adddac8-2bcf-442a-ab1b-72f007518d68
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19593
+ 53
+ 20
+
+ -
+ 5976
+ 19603
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 133cc957-03a4-4b91-9155-e967d46f4a53
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19613
+ 53
+ 20
+
+ -
+ 5976
+ 19623
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - f8b074c7-b0d9-411e-a8b4-4bf5621edeb2
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19633
+ 53
+ 20
+
+ -
+ 5976
+ 19643
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 1418861d-2e73-4275-8864-69218f9321f8
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 5862
+ 19508
+ 138
+ 64
+
+ -
+ 5930
+ 19540
+
+
+
+
+
+ - Base geometry
+ - 3df26992-9941-4ded-80d5-f690cbefee29
+ - Geometry
+ - Geometry
+ - true
+ - bd41d0fe-e0e8-4e3c-b316-50e3d5f1ff48
+ - 1
+
+
+
+
+ -
+ 5864
+ 19510
+ 51
+ 20
+
+ -
+ 5891
+ 19520
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 9a6ef232-212c-4129-a4c3-26e13a562d33
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 5864
+ 19530
+ 51
+ 20
+
+ -
+ 5891
+ 19540
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 9ea241bf-558a-43c9-a093-87d7d249742b
+ - Plane
+ - Plane
+ - false
+ - 7adddac8-2bcf-442a-ab1b-72f007518d68
+ - 1
+
+
+
+
+ -
+ 5864
+ 19550
+ 51
+ 20
+
+ -
+ 5891
+ 19560
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - ed83845b-f6de-46a4-a32f-237d297ea3ed
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5945
+ 19510
+ 53
+ 30
+
+ -
+ 5973
+ 19525
+
+
+
+
+
+
+
+ - Transformation data
+ - 76c8fecf-1675-4dc2-88aa-47d194544fd2
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5945
+ 19540
+ 53
+ 30
+
+ -
+ 5973
+ 19555
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 5ae7df34-6f59-4159-bf33-ff881937aaad
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 5872
+ 19445
+ 118
+ 44
+
+ -
+ 5935
+ 19467
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c514cb69-9d5f-48aa-a000-8d16f5c086f1
+ - Curves
+ - Curves
+ - false
+ - bd41d0fe-e0e8-4e3c-b316-50e3d5f1ff48
+ - ed83845b-f6de-46a4-a32f-237d297ea3ed
+ - 2
+
+
+
+
+ -
+ 5874
+ 19447
+ 46
+ 20
+
+ -
+ 5898.5
+ 19457
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 2f7143d6-5da4-424f-b4d6-37a01f38da24
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 5874
+ 19467
+ 46
+ 20
+
+ -
+ 5898.5
+ 19477
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - d1a174ae-96f5-4751-ae05-dd2514b98bec
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5950
+ 19447
+ 38
+ 40
+
+ -
+ 5970.5
+ 19467
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9ac39d0d-b7d7-4a16-9428-c35cd6e7c8b9
+ - ac26602c-e82c-4bef-9524-454b72863af1
+ - f11ea47f-2a3f-487e-8d64-d49319b4ef03
+ - 2f644ecf-a9a9-4c3e-a587-89788beee78a
+ - 7b8954c2-fa1f-4d7d-9348-0ac962ebb8d6
+ - 1a4d4b49-cdcb-401f-bab1-69d3c0e7709b
+ - 1418861d-2e73-4275-8864-69218f9321f8
+ - 5ae7df34-6f59-4159-bf33-ff881937aaad
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - 707cf740-02e9-4c63-8e3b-3db59c713c92
+ - a443a10c-cbaf-498b-a1e4-e539f45fe4fe
+ - 8cb6586a-a146-45f7-b630-5c0b4f08febe
+ - 6e9d3bc2-d3f1-44b3-993f-98f642a4acb6
+ - 572e5b45-03cb-4ab7-ab9e-78dc75221447
+ - 599c60ab-44a9-4f44-970e-fc9c25ddd6e4
+ - 15
+ - 2c0308e1-28bc-4c67-be3c-9b72627be6f1
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d7d9e988-3dfc-417d-97a3-4c58e3d2f7a5
+ - Panel
+
+ - false
+ - 0
+ - d546a55d-2bc1-491a-a8e8-69a9ad7144ab
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5865
+ 22084
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5865.91
+ 22084.2
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - Curve
+ - Curve
+ - false
+ - d1a174ae-96f5-4751-ae05-dd2514b98bec
+ - 1
+
+
+
+
+ -
+ 5914
+ 19411
+ 50
+ 24
+
+ -
+ 5939.49
+ 19423.76
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - 1
+ - fe5a739c-c046-49a7-a451-c8e3f50b7946
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - aaef31bd-73c8-416a-855d-34135f2666f7
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 5720
+ 22320
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5720.471
+ 22320.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 31dbc3e1-b3f2-4620-bbd4-0d38954f90ba
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5859
+ 19319
+ 144
+ 64
+
+ -
+ 5933
+ 19351
+
+
+
+
+
+ - Curve to evaluate
+ - 017b7074-512c-445c-b9fd-d1c12da25ce5
+ - Curve
+ - Curve
+ - false
+ - d1a174ae-96f5-4751-ae05-dd2514b98bec
+ - 1
+
+
+
+
+ -
+ 5861
+ 19321
+ 57
+ 20
+
+ -
+ 5891
+ 19331
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3cd3a3c2-3846-48fc-ae1f-81d7a2deecd9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19341
+ 57
+ 20
+
+ -
+ 5891
+ 19351
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - fc6b20d6-2388-41ba-bed3-6a2fddbd762c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 19361
+ 57
+ 20
+
+ -
+ 5891
+ 19371
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 2000c00d-fa4d-437f-a942-43d585f5570d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19321
+ 53
+ 20
+
+ -
+ 5976
+ 19331
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - bd70a4df-143a-4834-919b-f11f2167e570
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19341
+ 53
+ 20
+
+ -
+ 5976
+ 19351
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 90ef7c74-ca45-486e-bdbf-384f7afc392e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 19361
+ 53
+ 20
+
+ -
+ 5976
+ 19371
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - fea4f0c2-1987-4792-a0be-9d1d82221862
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 19097
+ 194
+ 28
+
+ -
+ 5934
+ 19111
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 68cb0590-7e31-4a16-9c10-13eb2931b64a
+ - Variable O
+ - O
+ - true
+ - f62c9084-a0c7-4e1e-ab21-230737cf544f
+ - 1
+
+
+
+
+ -
+ 5836
+ 19099
+ 14
+ 24
+
+ -
+ 5844.5
+ 19111
+
+
+
+
+
+
+
+ - Result of expression
+ - facbb8ab-a37e-476f-8b4f-3c8e6a3c9cea
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 19099
+ 9
+ 24
+
+ -
+ 6023
+ 19111
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 7090ecc1-3531-4766-ac7c-8e9cef149444
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5865
+ 19231
+ 132
+ 64
+
+ -
+ 5912
+ 19263
+
+
+
+
+
+ - Input point
+ - b879cbc7-6088-4a28-ae15-165a59ef0380
+ - Point
+ - Point
+ - false
+ - 2000c00d-fa4d-437f-a942-43d585f5570d
+ - 1
+
+
+
+
+ -
+ 5867
+ 19233
+ 30
+ 60
+
+ -
+ 5883.5
+ 19263
+
+
+
+
+
+
+
+ - Point {x} component
+ - f62c9084-a0c7-4e1e-ab21-230737cf544f
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 19233
+ 68
+ 20
+
+ -
+ 5962.5
+ 19243
+
+
+
+
+
+
+
+ - Point {y} component
+ - d1ae140f-fa3d-4384-9da2-de4f36727553
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 19253
+ 68
+ 20
+
+ -
+ 5962.5
+ 19263
+
+
+
+
+
+
+
+ - Point {z} component
+ - 974137a1-7b82-45c5-b52b-6c45ea81670c
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 19273
+ 68
+ 20
+
+ -
+ 5962.5
+ 19283
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ffda0e6f-d8c1-4125-bb4d-7ef56ab60a72
+ - Panel
+
+ - false
+ - 0
+ - facbb8ab-a37e-476f-8b4f-3c8e6a3c9cea
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 19077
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.262
+ 19077.34
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1cf97464-a3ba-483d-aacd-1defeb8b996d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 19011
+ 194
+ 28
+
+ -
+ 5934
+ 19025
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d17bf718-c6a2-403e-aa01-ee49e87e9689
+ - Variable O
+ - O
+ - true
+ - d1ae140f-fa3d-4384-9da2-de4f36727553
+ - 1
+
+
+
+
+ -
+ 5836
+ 19013
+ 14
+ 24
+
+ -
+ 5844.5
+ 19025
+
+
+
+
+
+
+
+ - Result of expression
+ - 6bfd1e1d-0caf-4d82-a8ec-46ae8e8448f5
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 19013
+ 9
+ 24
+
+ -
+ 6023
+ 19025
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 037e692a-0274-48f5-9028-92e8dd01ecf9
+ - Panel
+
+ - false
+ - 0
+ - 6bfd1e1d-0caf-4d82-a8ec-46ae8e8448f5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 18988
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.262
+ 18988.91
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - cf7d8f9e-103e-4278-9f94-cc9dc6040910
+ - Division
+ - Division
+
+
+
+
+ -
+ 5890
+ 18909
+ 82
+ 44
+
+ -
+ 5921
+ 18931
+
+
+
+
+
+ - Item to divide (dividend)
+ - 5fa4a655-41a0-4b66-ab1f-74ae7d40c047
+ - A
+ - A
+ - false
+ - ffda0e6f-d8c1-4125-bb4d-7ef56ab60a72
+ - 1
+
+
+
+
+ -
+ 5892
+ 18911
+ 14
+ 20
+
+ -
+ 5900.5
+ 18921
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 8fbf2033-8129-46df-b9e7-38738ca9f147
+ - B
+ - B
+ - false
+ - 037e692a-0274-48f5-9028-92e8dd01ecf9
+ - 1
+
+
+
+
+ -
+ 5892
+ 18931
+ 14
+ 20
+
+ -
+ 5900.5
+ 18941
+
+
+
+
+
+
+
+ - The result of the Division
+ - 17fd6fac-4073-431e-a092-c23ce850f2ae
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 18911
+ 34
+ 40
+
+ -
+ 5954.5
+ 18931
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3c0320ca-76da-4a43-9f92-f5a24feaa3e8
+ - Panel
+
+ - false
+ - 0
+ - d546a55d-2bc1-491a-a8e8-69a9ad7144ab
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 18841
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.5
+ 18841.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - c15d0439-8785-451e-b33a-6060a8c82673
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 18862
+ 194
+ 28
+
+ -
+ 5934
+ 18876
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c78c4b76-dfa0-46de-a58d-6b685665b00a
+ - Variable O
+ - O
+ - true
+ - 17fd6fac-4073-431e-a092-c23ce850f2ae
+ - 1
+
+
+
+
+ -
+ 5836
+ 18864
+ 14
+ 24
+
+ -
+ 5844.5
+ 18876
+
+
+
+
+
+
+
+ - Result of expression
+ - c2198a85-46df-4ed2-a0f9-1d59313f2394
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 18864
+ 9
+ 24
+
+ -
+ 6023
+ 18876
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d546a55d-2bc1-491a-a8e8-69a9ad7144ab
+ - Relay
+
+ - false
+ - c2198a85-46df-4ed2-a0f9-1d59313f2394
+ - 1
+
+
+
+
+ -
+ 5911
+ 18787
+ 40
+ 16
+
+ -
+ 5931
+ 18795
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 9e0146c9-9465-464a-8c71-4c227b37e74b
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 5890
+ 18724
+ 82
+ 44
+
+ -
+ 5921
+ 18746
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - 3be91c3c-bbc0-4b43-9d9d-af482060c3f0
+ - A
+ - A
+ - true
+ - 037e692a-0274-48f5-9028-92e8dd01ecf9
+ - 1
+
+
+
+
+ -
+ 5892
+ 18726
+ 14
+ 20
+
+ -
+ 5900.5
+ 18736
+
+
+
+
+
+
+
+ - Second item for addition
+ - ae34d2b7-f589-4d31-a2b2-071a073dd5da
+ - B
+ - B
+ - true
+ - ffda0e6f-d8c1-4125-bb4d-7ef56ab60a72
+ - 1
+
+
+
+
+ -
+ 5892
+ 18746
+ 14
+ 20
+
+ -
+ 5900.5
+ 18756
+
+
+
+
+
+
+
+ - Result of addition
+ - 0620b709-15fb-448a-9a29-14dffb29450e
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 18726
+ 34
+ 40
+
+ -
+ 5954.5
+ 18746
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - c058f429-bb56-407b-8e90-66ad866517fe
+ - Division
+ - Division
+
+
+
+
+ -
+ 5890
+ 18574
+ 82
+ 44
+
+ -
+ 5921
+ 18596
+
+
+
+
+
+ - Item to divide (dividend)
+ - 54a16385-0409-4e5a-a467-5b96189d9782
+ - A
+ - A
+ - false
+ - 27b5a25c-74ec-428b-a6e2-d679e706dae5
+ - 1
+
+
+
+
+ -
+ 5892
+ 18576
+ 14
+ 20
+
+ -
+ 5900.5
+ 18586
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 379e914e-8856-49a8-9166-d8574632e259
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 5892
+ 18596
+ 14
+ 20
+
+ -
+ 5900.5
+ 18606
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - f97c3e82-8700-4b97-a206-eb4190902091
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 5936
+ 18576
+ 34
+ 40
+
+ -
+ 5954.5
+ 18596
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 66ca720b-a535-4a17-9de8-eb1cb4ce99db
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 18526
+ 194
+ 28
+
+ -
+ 5934
+ 18540
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 47aaedb0-ce00-426d-9a0b-7221bfc03eb7
+ - Variable O
+ - O
+ - true
+ - f97c3e82-8700-4b97-a206-eb4190902091
+ - 1
+
+
+
+
+ -
+ 5836
+ 18528
+ 14
+ 24
+
+ -
+ 5844.5
+ 18540
+
+
+
+
+
+
+
+ - Result of expression
+ - c80408c1-ec91-40f8-be07-d0484a71820f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 18528
+ 9
+ 24
+
+ -
+ 6023
+ 18540
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b81bdd29-15f2-48a9-a4f7-c1c02f788be1
+ - Panel
+
+ - false
+ - 0
+ - c80408c1-ec91-40f8-be07-d0484a71820f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 18505
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.262
+ 18505.26
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 27b5a25c-74ec-428b-a6e2-d679e706dae5
+ - Panel
+
+ - false
+ - 0
+ - b9bf7219-694e-4068-8551-f2a66a378342
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 18657
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.262
+ 18657.17
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e0ef5a92-0696-4a92-a1ff-b31e6ffc2105
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 18677
+ 194
+ 28
+
+ -
+ 5934
+ 18691
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - c32e4b6a-971c-448c-aba2-64940b4081ec
+ - Variable O
+ - O
+ - true
+ - 0620b709-15fb-448a-9a29-14dffb29450e
+ - 1
+
+
+
+
+ -
+ 5836
+ 18679
+ 14
+ 24
+
+ -
+ 5844.5
+ 18691
+
+
+
+
+
+
+
+ - Result of expression
+ - b9bf7219-694e-4068-8551-f2a66a378342
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 18679
+ 9
+ 24
+
+ -
+ 6023
+ 18691
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 009f818e-acd6-4a86-a0ba-7e464cb6d83e
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5854
+ 18403
+ 154
+ 64
+
+ -
+ 5938
+ 18435
+
+
+
+
+
+ - Base geometry
+ - 72f9a58a-9d55-4c18-8317-ebad6b4b76c5
+ - Geometry
+ - Geometry
+ - true
+ - 2ef4538c-fc81-4634-8f8a-fec6097d3e04
+ - 1
+
+
+
+
+ -
+ 5856
+ 18405
+ 67
+ 20
+
+ -
+ 5899
+ 18415
+
+
+
+
+
+
+
+ - Center of scaling
+ - d2d9ad33-b7c4-440f-a15b-db1ce6bf96f3
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5856
+ 18425
+ 67
+ 20
+
+ -
+ 5899
+ 18435
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 51dba270-8cbb-464c-b4c9-b52036498db9
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - b81bdd29-15f2-48a9-a4f7-c1c02f788be1
+ - 1
+
+
+
+
+ -
+ 5856
+ 18445
+ 67
+ 20
+
+ -
+ 5899
+ 18455
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 184a3679-023f-40c3-b89e-5f6ed06d0ee7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5953
+ 18405
+ 53
+ 30
+
+ -
+ 5981
+ 18420
+
+
+
+
+
+
+
+ - Transformation data
+ - f39349a6-aeea-4426-a86a-0f0157430c23
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5953
+ 18435
+ 53
+ 30
+
+ -
+ 5981
+ 18450
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - Curve
+ - Curve
+ - false
+ - 184a3679-023f-40c3-b89e-5f6ed06d0ee7
+ - 1
+
+
+
+
+ -
+ 5912
+ 17810
+ 50
+ 24
+
+ -
+ 5937.24
+ 17822.76
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 2464e3ca-4c50-4e2b-a0b0-c68dbb7273fa
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 19184
+ 194
+ 28
+
+ -
+ 5934
+ 19198
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 85958977-75d3-4542-be7e-5fc030196914
+ - Variable O
+ - O
+ - true
+ - 974137a1-7b82-45c5-b52b-6c45ea81670c
+ - 1
+
+
+
+
+ -
+ 5836
+ 19186
+ 14
+ 24
+
+ -
+ 5844.5
+ 19198
+
+
+
+
+
+
+
+ - Result of expression
+ - fa239440-cb23-4301-8d8d-299436021665
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 19186
+ 9
+ 24
+
+ -
+ 6023
+ 19198
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ae24fa51-d8c0-4afe-b40c-6e828df05168
+ - Panel
+
+ - false
+ - 0
+ - fa239440-cb23-4301-8d8d-299436021665
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5859
+ 19163
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5859.131
+ 19163.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 4b84a47d-8707-4785-9e1f-8ecac64bab68
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 5859
+ 18193
+ 144
+ 64
+
+ -
+ 5933
+ 18225
+
+
+
+
+
+ - Curve to evaluate
+ - 04b11080-6967-43d9-9e84-196c7413903f
+ - Curve
+ - Curve
+ - false
+ - 184a3679-023f-40c3-b89e-5f6ed06d0ee7
+ - 1
+
+
+
+
+ -
+ 5861
+ 18195
+ 57
+ 20
+
+ -
+ 5891
+ 18205
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 737f6667-083c-4821-a33c-e6a4ae9d1dcf
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 18215
+ 57
+ 20
+
+ -
+ 5891
+ 18225
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - f7110bcc-db11-4d80-b833-247e764b6c67
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 18235
+ 57
+ 20
+
+ -
+ 5891
+ 18245
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 0f7fa351-89e8-4acb-b60e-24fe08937ff7
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 18195
+ 53
+ 20
+
+ -
+ 5976
+ 18205
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 56a66567-5d9b-48e4-a136-be460e1f71ea
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 18215
+ 53
+ 20
+
+ -
+ 5976
+ 18225
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 90f6a9cf-fa2a-4081-a32f-88917f002c13
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 18235
+ 53
+ 20
+
+ -
+ 5976
+ 18245
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - b0aaa12f-bb5e-4257-afa2-7f461529d19d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 17976
+ 194
+ 28
+
+ -
+ 5934
+ 17990
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 462070de-5d45-4b86-99c5-6d81ff4c0eb5
+ - Variable O
+ - O
+ - true
+ - 1eaf5da9-96cc-46ee-8bb3-20b58ba1cf32
+ - 1
+
+
+
+
+ -
+ 5836
+ 17978
+ 14
+ 24
+
+ -
+ 5844.5
+ 17990
+
+
+
+
+
+
+
+ - Result of expression
+ - 0044d138-c973-4e92-a9bb-b6c6ec670aca
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 17978
+ 9
+ 24
+
+ -
+ 6023
+ 17990
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - b91be93c-2fa3-48dd-b1a3-b2e69034d78d
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 5865
+ 18110
+ 132
+ 64
+
+ -
+ 5912
+ 18142
+
+
+
+
+
+ - Input point
+ - c615b5ea-29f7-465a-9632-bbd6af125c47
+ - Point
+ - Point
+ - false
+ - 0f7fa351-89e8-4acb-b60e-24fe08937ff7
+ - 1
+
+
+
+
+ -
+ 5867
+ 18112
+ 30
+ 60
+
+ -
+ 5883.5
+ 18142
+
+
+
+
+
+
+
+ - Point {x} component
+ - 1eaf5da9-96cc-46ee-8bb3-20b58ba1cf32
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 18112
+ 68
+ 20
+
+ -
+ 5962.5
+ 18122
+
+
+
+
+
+
+
+ - Point {y} component
+ - 544f07cd-40af-4581-aad0-0556691f2ea1
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 18132
+ 68
+ 20
+
+ -
+ 5962.5
+ 18142
+
+
+
+
+
+
+
+ - Point {z} component
+ - ccde3ec4-dcef-4019-8fb0-c8ea05cb3b2e
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5927
+ 18152
+ 68
+ 20
+
+ -
+ 5962.5
+ 18162
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ad8fd811-5c9a-46f2-9fb7-8c44f5b74452
+ - Panel
+
+ - false
+ - 0
+ - 0044d138-c973-4e92-a9bb-b6c6ec670aca
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 17950
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.512
+ 17950.69
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - fd69c204-0c56-441a-9cfb-4ac882600323
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 17890
+ 194
+ 28
+
+ -
+ 5934
+ 17904
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 35de56ec-ff75-4d33-b5e5-2fca9f8ae3e2
+ - Variable O
+ - O
+ - true
+ - 544f07cd-40af-4581-aad0-0556691f2ea1
+ - 1
+
+
+
+
+ -
+ 5836
+ 17892
+ 14
+ 24
+
+ -
+ 5844.5
+ 17904
+
+
+
+
+
+
+
+ - Result of expression
+ - dfe38a25-7dd8-4fb5-acb0-9644a6f36a0c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 17892
+ 9
+ 24
+
+ -
+ 6023
+ 17904
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 92e72eb1-7b34-42e4-a86f-53dfdd6ea022
+ - Panel
+
+ - false
+ - 0
+ - dfe38a25-7dd8-4fb5-acb0-9644a6f36a0c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 17865
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.521
+ 17865.05
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8b88901b-aaba-44b8-81de-4fed9c5db99a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 18062
+ 194
+ 28
+
+ -
+ 5934
+ 18076
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8c02de58-e46e-4c56-a3e6-c49c3b2d1a0a
+ - Variable O
+ - O
+ - true
+ - ccde3ec4-dcef-4019-8fb0-c8ea05cb3b2e
+ - 1
+
+
+
+
+ -
+ 5836
+ 18064
+ 14
+ 24
+
+ -
+ 5844.5
+ 18076
+
+
+
+
+
+
+
+ - Result of expression
+ - 1a3008c4-e9f4-4cfc-b1d8-1c63ea80af16
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 18064
+ 9
+ 24
+
+ -
+ 6023
+ 18076
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8d5e42f0-3482-4f51-9626-68ebbefdbab9
+ - Panel
+
+ - false
+ - 0
+ - 1a3008c4-e9f4-4cfc-b1d8-1c63ea80af16
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5858
+ 18036
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5858.262
+ 18036.9
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ee53f26e-b430-492a-a353-5d2c5665ee75
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 5749
+ 22391
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 5749.92
+ 22391.35
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 84ed4f5c-c495-4632-ab02-2d04a961e45f
+ - Panel
+
+ - false
+ - 0
+ - 076e6bde-59eb-4495-954f-32cc722c01f7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5770
+ 20400
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 5770.451
+ 20400.68
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 1cbb6b9c-ea74-47e7-9bc8-21aaf33383af
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 20684
+ 194
+ 28
+
+ -
+ 5934
+ 20698
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 14351e2d-a352-4dce-a30d-13f7b0c811f1
+ - Variable O
+ - O
+ - true
+ - 161c150e-386f-40f3-875a-4b3bb95765a2
+ - 1
+
+
+
+
+ -
+ 5836
+ 20686
+ 14
+ 24
+
+ -
+ 5844.5
+ 20698
+
+
+
+
+
+
+
+ - Result of expression
+ - 076e6bde-59eb-4495-954f-32cc722c01f7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 20686
+ 9
+ 24
+
+ -
+ 6023
+ 20698
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 5922
+ 22800
+ 50
+ 24
+
+ -
+ 5947.221
+ 22812.99
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 618a62fc-c364-493f-afdf-61708b13caf2
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 5762
+ 20966
+ 160
+ 224
+
+ -
+ 5830
+ 21078
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 30b94f63-80e3-46eb-98e9-3c3e8b625162
+ - true
+ - Curves
+ - Curves
+ - false
+ - 624d5142-3538-43e0-9a46-2e1a2f57615b
+ - 1
+
+
+
+
+ -
+ 5764
+ 20968
+ 51
+ 27
+
+ -
+ 5791
+ 20981.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 89e8bf0d-5a1b-4579-aa8b-c40c0b64c8ac
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 23201971-5f33-4f3e-8662-ab5c2cd1851a
+ - 1
+
+
+
+
+ -
+ 5764
+ 20995
+ 51
+ 28
+
+ -
+ 5791
+ 21009.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 3ab6664c-ea47-49cd-94ae-ddc13814c381
+ - true
+ - Values
+ - Values
+ - false
+ - e036b819-f3fa-49f8-bdc3-6d85e6bc4725
+ - 1
+
+
+
+
+ -
+ 5764
+ 21023
+ 51
+ 27
+
+ -
+ 5791
+ 21036.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - b55b9aa4-6a35-4151-a4f8-d6856280c28c
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5764
+ 21050
+ 51
+ 28
+
+ -
+ 5791
+ 21064.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 0e8b6341-5fbc-435e-b204-0111030a5334
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 5764
+ 21078
+ 51
+ 27
+
+ -
+ 5791
+ 21091.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 15cc15a9-a0ac-42ba-8d51-6db59b75b64f
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 5764
+ 21105
+ 51
+ 28
+
+ -
+ 5791
+ 21119.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - f811727c-4432-4bb5-98f9-0e6bfcbc5413
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 5764
+ 21133
+ 51
+ 27
+
+ -
+ 5791
+ 21146.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 123f00a9-3a73-408e-8986-ac51296a0933
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 5764
+ 21160
+ 51
+ 28
+
+ -
+ 5791
+ 21174.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - cd26c477-21f3-4756-b42c-f25fb8559b0c
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 20968
+ 75
+ 20
+
+ -
+ 5884
+ 20978
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 488e562d-f51b-431f-9cd4-32b75f4a4531
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 20988
+ 75
+ 20
+
+ -
+ 5884
+ 20998
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - f131d75e-82da-4322-a877-3cd4f19f3ab8
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21008
+ 75
+ 20
+
+ -
+ 5884
+ 21018
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 2393337e-eb0e-4ca3-9f48-4951c23a8484
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21028
+ 75
+ 20
+
+ -
+ 5884
+ 21038
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - f095fbac-7580-48bb-9033-b5757e4254f3
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21048
+ 75
+ 20
+
+ -
+ 5884
+ 21058
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 3d548f04-039f-4143-bdb9-a6dddb1fff0b
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21068
+ 75
+ 20
+
+ -
+ 5884
+ 21078
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - d827530a-d295-41c2-9e5b-00a1805a190d
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21088
+ 75
+ 20
+
+ -
+ 5884
+ 21098
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 3e91de9e-c0af-4a1d-936a-eda5f318c63b
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21108
+ 75
+ 20
+
+ -
+ 5884
+ 21118
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - b955bf99-0df6-4012-977f-ed05dd73e4c4
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21128
+ 75
+ 20
+
+ -
+ 5884
+ 21138
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 15d407f3-3440-40ae-b4c5-790a7b029d62
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21148
+ 75
+ 20
+
+ -
+ 5884
+ 21158
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - c3d3d2b6-152e-4f14-b52a-36b6ccd4fec6
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 5845
+ 21168
+ 75
+ 20
+
+ -
+ 5884
+ 21178
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 388543c4-041b-413c-9cc4-ed5a5ff34151
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 5883
+ 21391
+ 96
+ 44
+
+ -
+ 5933
+ 21413
+
+
+
+
+
+ - Curve to evaluate
+ - 2520b0bf-c202-41d7-a18c-b1bc156b4196
+ - Curve
+ - Curve
+ - false
+ - 624d5142-3538-43e0-9a46-2e1a2f57615b
+ - 1
+
+
+
+
+ -
+ 5885
+ 21393
+ 33
+ 40
+
+ -
+ 5903
+ 21413
+
+
+
+
+
+
+
+ - Curve start point
+ - ae385d39-43eb-4be6-b31f-5b4f6e27a106
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 21393
+ 29
+ 20
+
+ -
+ 5964
+ 21403
+
+
+
+
+
+
+
+ - Curve end point
+ - 317e52fb-06e3-4a76-8f15-76072e971ed0
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 5948
+ 21413
+ 29
+ 20
+
+ -
+ 5964
+ 21423
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 82348a3c-9eea-4fc0-9a5b-cb872f5abbc5
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 5873
+ 21263
+ 126
+ 84
+
+ -
+ 5931
+ 21305
+
+
+
+
+
+ - Rectangle base plane
+ - deb3af6d-a95a-4920-b2f1-417300344b2a
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5875
+ 21265
+ 41
+ 20
+
+ -
+ 5897
+ 21275
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - b29a199f-8a2c-454e-93a1-57a6658caffa
+ - Point A
+ - Point A
+ - false
+ - ae385d39-43eb-4be6-b31f-5b4f6e27a106
+ - 1
+
+
+
+
+ -
+ 5875
+ 21285
+ 41
+ 20
+
+ -
+ 5897
+ 21295
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 6009e3bd-33f7-4347-9862-b289fa84366d
+ - Point B
+ - Point B
+ - false
+ - 317e52fb-06e3-4a76-8f15-76072e971ed0
+ - 1
+
+
+
+
+ -
+ 5875
+ 21305
+ 41
+ 20
+
+ -
+ 5897
+ 21315
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - e5da011e-edbf-421e-b1a2-e091044e4872
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 5875
+ 21325
+ 41
+ 20
+
+ -
+ 5897
+ 21335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 23201971-5f33-4f3e-8662-ab5c2cd1851a
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 5946
+ 21265
+ 51
+ 40
+
+ -
+ 5973
+ 21285
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 69e5b0cf-7c4a-4dbc-96d3-fb8448932a87
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5946
+ 21305
+ 51
+ 40
+
+ -
+ 5973
+ 21325
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - a2fcf294-58d9-4486-bfa1-a9a3a8aa8dff
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 5922
+ 21086
+ 126
+ 104
+
+ -
+ 5989
+ 21138
+
+
+
+
+
+ - External curve as a graph
+ - da39b5ab-edbb-46ed-8a11-f79ba73d4723
+ - true
+ - Curve
+ - Curve
+ - false
+ - 624d5142-3538-43e0-9a46-2e1a2f57615b
+ - 1
+
+
+
+
+ -
+ 5924
+ 21088
+ 50
+ 20
+
+ -
+ 5950.5
+ 21098
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 3945667c-564a-4471-8a59-a307b926916d
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - 23201971-5f33-4f3e-8662-ab5c2cd1851a
+ - 1
+
+
+
+
+ -
+ 5924
+ 21108
+ 50
+ 20
+
+ -
+ 5950.5
+ 21118
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - d184cb1e-a243-4ded-92f7-6aa511a1dec5
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - e036b819-f3fa-49f8-bdc3-6d85e6bc4725
+ - 1
+
+
+
+
+ -
+ 5924
+ 21128
+ 50
+ 20
+
+ -
+ 5950.5
+ 21138
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 66d1e029-7c05-47a6-8bcf-886e06184999
+ - true
+ - Input
+ - Input
+ - true
+ - a90de09f-63e5-4d06-84a3-2847e4c77a02
+ - 1
+
+
+
+
+ -
+ 5924
+ 21148
+ 50
+ 20
+
+ -
+ 5950.5
+ 21158
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 6841fadc-0840-43f8-8bdc-551a45e2244a
+ - true
+ - Output
+ - Output
+ - true
+ - a90de09f-63e5-4d06-84a3-2847e4c77a02
+ - 1
+
+
+
+
+ -
+ 5924
+ 21168
+ 50
+ 20
+
+ -
+ 5950.5
+ 21178
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 318c3e92-4338-45ae-a12f-3900644e4fe3
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 6004
+ 21088
+ 42
+ 100
+
+ -
+ 6026.5
+ 21138
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - e2e195fd-49d3-456b-92fb-68c4f2184a19
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5897
+ 20883
+ 89
+ 64
+
+ -
+ 5942
+ 20915
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 8a76d2df-8165-40c8-afc5-cd90eb58936d
+ - Gate
+ - Gate
+ - false
+ - 96b65f86-5d49-47f7-858f-e222f23b0d11
+ - 1
+
+
+
+
+ -
+ 5899
+ 20885
+ 28
+ 20
+
+ -
+ 5914.5
+ 20895
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 3cd42460-c6df-41bd-a61b-ae3ea1ac12e6
+ - false
+ - Stream 0
+ - 0
+ - true
+ - cd26c477-21f3-4756-b42c-f25fb8559b0c
+ - 1
+
+
+
+
+ -
+ 5899
+ 20905
+ 28
+ 20
+
+ -
+ 5914.5
+ 20915
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 4364f945-e520-4930-becc-8433bdeb21df
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 318c3e92-4338-45ae-a12f-3900644e4fe3
+ - 1
+
+
+
+
+ -
+ 5899
+ 20925
+ 28
+ 20
+
+ -
+ 5914.5
+ 20935
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 565bff87-c1f3-423f-ab95-05c38319cd6c
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5957
+ 20885
+ 27
+ 60
+
+ -
+ 5972
+ 20915
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - dfbd4830-30d1-4236-9600-fc514fa8836c
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 5874
+ 20805
+ 150
+ 20
+
+ -
+ 5874.881
+ 20805.28
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 77ee56bf-42ea-4de5-a9e1-55394398403b
+ - Panel
+
+ - false
+ - 1
+ - 0b7df59e-e9c0-4d51-8e88-5dccef34a90b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5848
+ 21587
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 5848.951
+ 21587.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 1a33f23c-ee59-41be-9968-ab9ba5ed2344
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 5872
+ 21530
+ 122
+ 28
+
+ -
+ 5936
+ 21544
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 45c649d5-f023-4ca6-8f1e-e319ec8e5989
+ - Numbers
+ - Numbers
+ - false
+ - e036b819-f3fa-49f8-bdc3-6d85e6bc4725
+ - 1
+
+
+
+
+ -
+ 5874
+ 21532
+ 47
+ 24
+
+ -
+ 5899
+ 21544
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - a90de09f-63e5-4d06-84a3-2847e4c77a02
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 5951
+ 21532
+ 41
+ 24
+
+ -
+ 5973
+ 21544
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9daec4e9-6644-4eb9-a65b-8b9266447b5b
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5834
+ 21944
+ 194
+ 28
+
+ -
+ 5934
+ 21958
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - af57daa0-47ac-4c6e-8f04-590e904057a6
+ - true
+ - Variable O
+ - O
+ - true
+ - e036b819-f3fa-49f8-bdc3-6d85e6bc4725
+ - 1
+
+
+
+
+ -
+ 5836
+ 21946
+ 14
+ 24
+
+ -
+ 5844.5
+ 21958
+
+
+
+
+
+
+
+ - Result of expression
+ - 0b7df59e-e9c0-4d51-8e88-5dccef34a90b
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6017
+ 21946
+ 9
+ 24
+
+ -
+ 6023
+ 21958
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 5ab81b8c-dd2e-4b73-8d51-75bf39f3397d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 5748
+ 22176
+ 367
+ 28
+
+ -
+ 5934
+ 22190
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 6823ae57-746b-4d1c-9908-4f2783f92320
+ - Variable O
+ - O
+ - true
+ - c51817d3-3489-4bdf-baca-363dd1128013
+ - 1
+
+
+
+
+ -
+ 5750
+ 22178
+ 14
+ 24
+
+ -
+ 5758.5
+ 22190
+
+
+
+
+
+
+
+ - Result of expression
+ - d7fd5e8b-1c9f-4987-a795-6ba9eb43583f
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 6104
+ 22178
+ 9
+ 24
+
+ -
+ 6110
+ 22190
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - dbdc7d7c-dfd1-447c-8b12-a2be4e23352d
+ - Panel
+
+ - false
+ - 0
+ - d7fd5e8b-1c9f-4987-a795-6ba9eb43583f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 5849
+ 22124
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5849.09
+ 22124.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - 1
+ - 0d8169a8-cfe0-468d-a1be-f07fa24df9d8
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 76ca0f6d-8ba8-4ef0-8775-01969890a3b5
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5854
+ 18318
+ 154
+ 64
+
+ -
+ 5938
+ 18350
+
+
+
+
+
+ - Base geometry
+ - 65a67567-cd85-400b-8ed1-8bba38840797
+ - Geometry
+ - Geometry
+ - true
+ - 8cb6586a-a146-45f7-b630-5c0b4f08febe
+ - 1
+
+
+
+
+ -
+ 5856
+ 18320
+ 67
+ 20
+
+ -
+ 5899
+ 18330
+
+
+
+
+
+
+
+ - Center of scaling
+ - 7e8c75c5-c6f1-4dc3-bc25-c99ae436fd9c
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5856
+ 18340
+ 67
+ 20
+
+ -
+ 5899
+ 18350
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 131ded55-107b-4eae-a6a0-837b3de9ca7e
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - b81bdd29-15f2-48a9-a4f7-c1c02f788be1
+ - 1
+
+
+
+
+ -
+ 5856
+ 18360
+ 67
+ 20
+
+ -
+ 5899
+ 18370
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 00032961-ed79-4d24-b422-b15ce9aa1b1d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5953
+ 18320
+ 53
+ 30
+
+ -
+ 5981
+ 18335
+
+
+
+
+
+
+
+ - Transformation data
+ - 4004b560-b79e-4fcb-a5ff-94f5cc742896
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5953
+ 18350
+ 53
+ 30
+
+ -
+ 5981
+ 18365
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - c6c2efe1-f8cf-4896-bb6e-d683a17f3b5b
+ - Point
+ - Point
+ - false
+ - 00032961-ed79-4d24-b422-b15ce9aa1b1d
+ - 1
+
+
+
+
+ -
+ 5913
+ 18288
+ 50
+ 24
+
+ -
+ 5938.24
+ 18300.94
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - bfd16498-8d15-4c7a-8272-1642d47087b4
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 5859
+ 17518
+ 138
+ 44
+
+ -
+ 5927
+ 17540
+
+
+
+
+
+ - Base geometry
+ - c735e74d-6fe6-4495-b999-ba4956ef5de0
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - 1
+
+
+
+
+ -
+ 5861
+ 17520
+ 51
+ 20
+
+ -
+ 5888
+ 17530
+
+
+
+
+
+
+
+ - Mirror plane
+ - 71fa7d04-716a-415a-bd17-0d5df78c1287
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 5861
+ 17540
+ 51
+ 20
+
+ -
+ 5888
+ 17550
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 1e943a47-c054-4533-9090-32f464ea2477
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5942
+ 17520
+ 53
+ 20
+
+ -
+ 5970
+ 17530
+
+
+
+
+
+
+
+ - Transformation data
+ - 461c84b6-1703-4d48-a5b0-e4b87d914786
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5942
+ 17540
+ 53
+ 20
+
+ -
+ 5970
+ 17550
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 992f34c0-9384-4928-b69f-b6f1ae913f03
+ - Curve
+ - Curve
+ - false
+ - cde8ca26-88e4-411a-8832-a0f9f2b8efd8
+ - 1
+
+
+
+
+ -
+ 5912
+ 17419
+ 50
+ 24
+
+ -
+ 5937.49
+ 17431.94
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 624d5142-3538-43e0-9a46-2e1a2f57615b
+ - Relay
+
+ - false
+ - aa6adbaa-932b-42e7-99a8-17690d6af46c
+ - 1
+
+
+
+
+ -
+ 5911
+ 21462
+ 40
+ 16
+
+ -
+ 5931
+ 21470
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 797ad11f-349e-4536-9541-cc752a7f0661
+ - Curve
+ - Curve
+ - false
+ - c035a839-8867-4a62-ac47-bf237dd115c4
+ - 1
+
+
+
+
+ -
+ 5461
+ 21846
+ 50
+ 24
+
+ -
+ 5486.286
+ 21858.88
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - aa6adbaa-932b-42e7-99a8-17690d6af46c
+ - Curve
+ - Curve
+ - false
+ - 3abe96e1-be0e-4180-b824-17f6b49c4563
+ - 1
+
+
+
+
+ -
+ 5461
+ 21565
+ 50
+ 24
+
+ -
+ 5486.387
+ 21577.21
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 423dd1e6-3a04-416e-b177-f9fcf9efba03
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5402
+ 21595
+ 154
+ 64
+
+ -
+ 5486
+ 21627
+
+
+
+
+
+ - Base geometry
+ - 166ab929-4563-4e71-9a2d-685b0cd645e9
+ - Geometry
+ - Geometry
+ - true
+ - 797ad11f-349e-4536-9541-cc752a7f0661
+ - 1
+
+
+
+
+ -
+ 5404
+ 21597
+ 67
+ 20
+
+ -
+ 5447
+ 21607
+
+
+
+
+
+
+
+ - Center of scaling
+ - 82c8209f-62af-4ca6-a343-13139207abb3
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5404
+ 21617
+ 67
+ 20
+
+ -
+ 5447
+ 21627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 2cd173c0-7ce1-42f6-94f5-23af7e9368bb
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 5404
+ 21637
+ 67
+ 20
+
+ -
+ 5447
+ 21647
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 3abe96e1-be0e-4180-b824-17f6b49c4563
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5501
+ 21597
+ 53
+ 30
+
+ -
+ 5529
+ 21612
+
+
+
+
+
+
+
+ - Transformation data
+ - 046226a4-d7f8-4d5d-b2bf-14cd7451e3b4
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5501
+ 21627
+ 53
+ 30
+
+ -
+ 5529
+ 21642
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 797ad11f-349e-4536-9541-cc752a7f0661
+ - aa6adbaa-932b-42e7-99a8-17690d6af46c
+ - 423dd1e6-3a04-416e-b177-f9fcf9efba03
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 95f5eb60-9a7d-494e-b6d6-1f4e4545765b
+ - 961a7622-509b-4acc-96e7-d08da2d19800
+ - b3aa515d-00b6-459e-9b0a-9eb604062316
+ - c0aa9751-62ad-49b3-9990-bd1901aec0b1
+ - 4d5a9053-ffac-48e1-8beb-ffdc31f04bbf
+ - 2f2b26be-424b-4849-9820-1517475330af
+ - 10
+ - ae01f5b0-72e5-4d2e-b986-97be69ba9e94
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - a9c820c4-d23b-4376-8473-a53dcbb1a46c
+ - Move
+ - Move
+
+
+
+
+ -
+ 5859
+ 17454
+ 138
+ 44
+
+ -
+ 5927
+ 17476
+
+
+
+
+
+ - Base geometry
+ - 5d20c475-88b4-4d34-8841-f7a822d159e7
+ - Geometry
+ - Geometry
+ - true
+ - 3f1947f1-3f92-4e10-b16a-63d868183413
+ - 1
+
+
+
+
+ -
+ 5861
+ 17456
+ 51
+ 20
+
+ -
+ 5888
+ 17466
+
+
+
+
+
+
+
+ - Translation vector
+ - 65c4ac1c-5e6c-44f5-9d50-8aae299a3151
+ - Motion
+ - Motion
+ - false
+ - b753320c-2c8b-4e80-a4ab-50a7c4f3ace7
+ - 1
+
+
+
+
+ -
+ 5861
+ 17476
+ 51
+ 20
+
+ -
+ 5888
+ 17486
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - cde8ca26-88e4-411a-8832-a0f9f2b8efd8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5942
+ 17456
+ 53
+ 20
+
+ -
+ 5970
+ 17466
+
+
+
+
+
+
+
+ - Transformation data
+ - 78e5636c-a3e0-40c9-a6cb-964b294e54b0
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5942
+ 17476
+ 53
+ 20
+
+ -
+ 5970
+ 17486
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 95f5eb60-9a7d-494e-b6d6-1f4e4545765b
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 5361
+ 21790
+ 250
+ 20
+
+ -
+ 5361.686
+ 21790.3
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 961a7622-509b-4acc-96e7-d08da2d19800
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 5418
+ 21689
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5418.846
+ 21689.92
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - b3aa515d-00b6-459e-9b0a-9eb604062316
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5461
+ 21522
+ 50
+ 24
+
+ -
+ 5486.387
+ 21534.21
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c0aa9751-62ad-49b3-9990-bd1901aec0b1
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 5463
+ 21979
+ 50
+ 24
+
+ -
+ 5488.337
+ 21991.05
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 03d855b5-9f61-438b-9bf0-87ebcbf4876a
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5719
+ 22371
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5719.471
+ 22371.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 49ddde76-0dcc-4cc7-9494-fb215c32cc49
+ - Panel
+
+ - false
+ - 0
+ - 12369739-5e43-4fc3-93e8-b5c72400ba82
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 5719
+ 22495
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 5719.781
+ 22495.83
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 92438a85-6a1b-44ff-ad43-09275b578055
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 5812
+ 22637
+ 251
+ 20
+
+ -
+ 5812.381
+ 22637.24
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 357e6819-27fe-4f42-aeba-efcdd76e2002
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 5720
+ 22617
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 5720.221
+ 22617.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - e89722ea-0b93-47ee-85d5-9f044bdbb649
+ - Expression
+
+
+
+
+
+ -
+ 5899
+ 22740
+ 79
+ 28
+
+ -
+ 5941
+ 22754
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e5f9f3d6-a79f-4c89-880e-d466d00a99f3
+ - Variable X
+ - X
+ - true
+ - 5dd735ad-8c4e-4457-bd38-e14eee0646bf
+ - 1
+
+
+
+
+ -
+ 5901
+ 22742
+ 14
+ 24
+
+ -
+ 5909.5
+ 22754
+
+
+
+
+
+
+
+ - Result of expression
+ - 0ab0bccd-80a9-4f08-85ef-09a2ea5a094a
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 5967
+ 22742
+ 9
+ 24
+
+ -
+ 5973
+ 22754
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 707cf740-02e9-4c63-8e3b-3db59c713c92
+ - Point
+ - Point
+ - false
+ - a443a10c-cbaf-498b-a1e4-e539f45fe4fe
+ - 1
+
+
+
+
+ -
+ 5935
+ 20270
+ 50
+ 24
+
+ -
+ 5960.201
+ 20282.96
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a443a10c-cbaf-498b-a1e4-e539f45fe4fe
+ - Relay
+
+ - false
+ - 161c150e-386f-40f3-875a-4b3bb95765a2
+ - 1
+
+
+
+
+ -
+ 5935
+ 20314
+ 40
+ 16
+
+ -
+ 5955
+ 20322
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 8cb6586a-a146-45f7-b630-5c0b4f08febe
+ - Relay
+
+ - false
+ - 8492e57a-ee14-4a00-ad41-35ac66770585
+ - 1
+
+
+
+
+ -
+ 5935
+ 20091
+ 40
+ 16
+
+ -
+ 5955
+ 20099
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 6e9d3bc2-d3f1-44b3-993f-98f642a4acb6
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 5878
+ 20127
+ 154
+ 64
+
+ -
+ 5962
+ 20159
+
+
+
+
+
+ - Base geometry
+ - 6cba7fa1-614d-4c72-bed9-e66ee9c19bd5
+ - Geometry
+ - Geometry
+ - true
+ - 707cf740-02e9-4c63-8e3b-3db59c713c92
+ - 1
+
+
+
+
+ -
+ 5880
+ 20129
+ 67
+ 20
+
+ -
+ 5923
+ 20139
+
+
+
+
+
+
+
+ - Center of scaling
+ - 20ac9e84-cd47-4e07-89e4-1a517065dbb0
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 5880
+ 20149
+ 67
+ 20
+
+ -
+ 5923
+ 20159
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4fe7a574-26bb-4cec-a971-cd70c37320e9
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 599c60ab-44a9-4f44-970e-fc9c25ddd6e4
+ - 1
+
+
+
+
+ -
+ 5880
+ 20169
+ 67
+ 20
+
+ -
+ 5923
+ 20179
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 8492e57a-ee14-4a00-ad41-35ac66770585
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 5977
+ 20129
+ 53
+ 30
+
+ -
+ 6005
+ 20144
+
+
+
+
+
+
+
+ - Transformation data
+ - 2b6f01d3-58a0-4bf5-bfbf-e12e48fff21a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 5977
+ 20159
+ 53
+ 30
+
+ -
+ 6005
+ 20174
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 599c60ab-44a9-4f44-970e-fc9c25ddd6e4
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 5839
+ 20215
+ 250
+ 20
+
+ -
+ 5839.98
+ 20215.32
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 707cf740-02e9-4c63-8e3b-3db59c713c92
+ - 1
+ - 572e5b45-03cb-4ab7-ab9e-78dc75221447
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 12369739-5e43-4fc3-93e8-b5c72400ba82
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 5811
+ 22537
+ 251
+ 20
+
+ -
+ 5811.881
+ 22537.55
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 2f2b26be-424b-4849-9820-1517475330af
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 5361
+ 21745
+ 250
+ 20
+
+ -
+ 5361.834
+ 21745.51
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 57ee3ef1-7767-42d5-bc6f-455d29571ca3
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 5858
+ 17591
+ 139
+ 64
+
+ -
+ 5943
+ 17623
+
+
+
+
+
+ - Vector {x} component
+ - 49c3af90-e637-457e-a10b-8e9c037d7e54
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 17593
+ 68
+ 20
+
+ -
+ 5895.5
+ 17603
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 973b4fce-a6ba-4f56-aa82-7a0f2b6ba568
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 17613
+ 68
+ 20
+
+ -
+ 5895.5
+ 17623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - e93e67b6-c10e-408a-99d4-5cb5ade28b0f
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 5860
+ 17633
+ 68
+ 20
+
+ -
+ 5895.5
+ 17643
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - b753320c-2c8b-4e80-a4ab-50a7c4f3ace7
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 5958
+ 17593
+ 37
+ 30
+
+ -
+ 5978
+ 17608
+
+
+
+
+
+
+
+ - Vector length
+ - 0b45f341-9a1b-4551-b1a7-59177533af9f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 5958
+ 17623
+ 37
+ 30
+
+ -
+ 5978
+ 17638
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 4d5a9053-ffac-48e1-8beb-ffdc31f04bbf
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 5441
+ 21888
+ 89
+ 64
+
+ -
+ 5486
+ 21920
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 040aa4d7-2ee7-4a46-8da2-ca36bf2d99d4
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 5443
+ 21890
+ 28
+ 20
+
+ -
+ 5458.5
+ 21900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 0d14be51-b37f-4b39-8144-4f0d9ab4d1a8
+ - false
+ - Stream 0
+ - 0
+ - true
+ - d4034eaa-4c6f-4be1-b330-6f528bb505ca
+ - 1
+
+
+
+
+ -
+ 5443
+ 21910
+ 28
+ 20
+
+ -
+ 5458.5
+ 21920
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - be5841a2-ca68-4af0-bf67-59eb01a3fb72
+ - false
+ - Stream 1
+ - 1
+ - true
+ - ffec4d71-4ff5-4e80-877f-78e4fee070d7
+ - 1
+
+
+
+
+ -
+ 5443
+ 21930
+ 28
+ 20
+
+ -
+ 5458.5
+ 21940
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - c035a839-8867-4a62-ac47-bf237dd115c4
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 5501
+ 21890
+ 27
+ 60
+
+ -
+ 5516
+ 21920
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 96b65f86-5d49-47f7-858f-e222f23b0d11
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 5911
+ 20860
+ 40
+ 16
+
+ -
+ 5931
+ 20868
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 44b37048-c31c-4e55-aa4a-0a740586d36f
+ - 9a96a98b-9d42-4cd5-9284-e3ec69b5d0ba
+ - 30001983-c314-4c6c-88d3-45dee8332dbb
+ - 9f95dc08-d6f9-4d10-a5dd-ef1fc47e0022
+ - ddb6fc0a-d855-4568-a2d9-a2271d2cdc89
+ - c87e5f22-762f-485a-b818-05e9c603f0ea
+ - 6
+ - 96fc153b-64eb-4726-a7da-bc834149e081
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7fd79caf-0e14-4808-88d4-342224a4e1e3
+ - 6d222cec-5efb-4cd1-a700-a3a04a704e6a
+ - a1f3ac78-f4fe-4b00-bfda-3aee0db7bc60
+ - 0806a1f0-0c8a-4d08-8c3a-9148cca556a4
+ - acf248e9-58de-4927-b666-2e85b7bcd89b
+ - e5536d41-c0e5-4c68-9efb-d6cb067ad353
+ - c23029ce-7c6c-4acb-8916-a300effb33da
+ - 0f9763da-ce85-4edb-bd19-daa811d5ac2a
+ - 1b52c30e-38eb-4b54-81c1-175c933929b5
+ - ce8a4e5b-9b06-4346-8eac-8abafe65eba2
+ - 96aeff2a-0486-418a-bb6f-efa7c70fc406
+ - 5b6edc87-710c-4778-b371-0572f76a6eea
+ - 55e34e14-778f-4551-b0f6-e8048ee9ad94
+ - 9fb686ac-14c7-4630-8173-c477e863703d
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9c769439-ffcd-4cfb-950b-855f1c4a933b
+ - 804efc16-4473-4cee-a45d-a43056b33935
+ - 8d4113ae-a157-4929-9f46-cd13f33c78ff
+ - 9811c142-0f73-4ce7-a44a-409f6677caac
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 0d02c7f9-645d-4eff-aa8b-42044e536d9a
+ - ca39bf69-1f22-4107-a155-1a412b05990d
+ - 6dfa2e40-0b93-4d78-bfef-d1b0498ae063
+ - 6e32738f-b233-4380-b3f3-e003cdb73a30
+ - 5fc5e35b-f787-42c4-8dcc-f1adcf4ff668
+ - 46747f67-4428-487c-a7b2-b8d0cd6b7843
+ - 707358ec-acc2-4978-96df-dd2c5ef1712b
+ - 3d2d5cc6-1866-4d03-aec5-a83e0a7fc247
+ - fc0a22ac-f8b8-4e1a-8cb9-411342529415
+ - a3a59315-e267-4aed-a39a-7268f8037e96
+ - 135c614d-28b6-42e1-a219-d63d1c92b406
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - 828d389f-4f26-4fd5-9d27-1eab46d2dbc2
+ - b16c7be5-f1f6-4ee1-9aa3-eb466cc5a884
+ - f7b89038-5175-49ed-97f0-fee8f703ec8f
+ - 88d97611-26d5-435e-85e1-fdc01e1ae443
+ - 36dbebc4-a3c4-4ff6-a03c-7eed77105921
+ - 235a8524-d28f-4b64-ac0c-a2c704f2e604
+ - 152ea8d2-dd91-4423-81d2-698f1b7be65a
+ - 7658cd8b-a1b4-4e74-a5f0-4701d8468b92
+ - 7cf7d828-280e-4457-ba22-1fc72d61b0c9
+ - 1b05147b-2872-4537-9a1b-888a55510d3d
+ - 51fe0398-fd36-4ce9-85b2-6385fdf8b946
+ - c72da2af-8375-4f8b-a200-edaf292758da
+ - 56cccad3-2219-440f-8577-8a25cce2f6f2
+ - 6630b57b-b7bb-4b55-956e-65c0add88eed
+ - 59d3d0ec-df0f-4f6c-b8e0-9ff112c4c214
+ - 2e2e5360-9054-450f-b0d9-828af6d004a2
+ - 3c104a70-9abd-4da6-94c2-b50d2ed71e81
+ - e6da33ac-d80f-4c54-b680-eeeaba3ff614
+ - 421e1f40-1c39-41b5-9c1e-9d61ed50a5db
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - 9a13c0dc-bb24-4f72-9571-14bdd66675e2
+ - 52f49153-a197-410a-a02d-d440c32f4e97
+ - 6c787197-7373-48f6-b7b9-bd4e9712d98a
+ - 6598a20f-173e-4b4d-b898-bc05449f7670
+ - d75a7971-0179-42aa-ac3f-88ee1bdbf459
+ - 728cb53a-2801-4767-9579-9c49d7aee2a0
+ - 8bf07c87-64b8-4f7d-aba2-4db12e7834d9
+ - ae6114a6-87aa-49b5-b01e-dc0db60731f7
+ - f83f0c0b-8580-47e9-9e4d-22fba721ab53
+ - 8f96ae32-b5d0-4ce8-bbff-8994e10e5d6d
+ - ce4704df-7da3-42aa-b64f-e8f20157b818
+ - 1bdfd856-521c-417a-971c-0d51ccf78be5
+ - e3edc1b6-5051-47a2-b2b7-c3711c58cd4f
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - 7d55e7dc-f827-43b8-aa47-c9dd146598fd
+ - dba667c8-74dc-4a1c-8c1d-1520ea051571
+ - 464914e0-2900-4dca-aa88-05c9526638e9
+ - 69873ce1-1baf-454a-99ee-7b63778fffc3
+ - 389fe958-f5ce-4018-a63d-256b87398808
+ - 69930a87-8a03-4408-ae2c-9567e94f0b7c
+ - 6c3f0605-6ecc-4a04-a5cd-81072b39c4af
+ - 0b55e68c-d601-4d71-a7f3-b1bff8c50ecb
+ - 40543166-758e-4c68-bb76-3839522e6d80
+ - e5fb97f5-2ceb-41bd-94d3-482fef5e394a
+ - 5c04e166-bc57-46dc-a33b-d120622015af
+ - c6487f3a-957c-4dc0-9ad1-1c7e89785626
+ - 1a0699ec-728f-4d5c-ac63-16306667120b
+ - 7c0a0934-8289-47a0-b3bb-55187a18e850
+ - ab7eae8f-fda2-4b10-b284-a3a367e7bbb5
+ - c82a47b4-09f2-4505-bf49-68485889f195
+ - dd3874b1-a64f-4b2a-a29b-12cb278e881e
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - 480c272f-7843-426f-a04e-5a5346efaa51
+ - 85
+ - 7d0e08b0-16cd-4c96-afee-4f49fb3a16a0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6d222cec-5efb-4cd1-a700-a3a04a704e6a
+ - a1f3ac78-f4fe-4b00-bfda-3aee0db7bc60
+ - 0806a1f0-0c8a-4d08-8c3a-9148cca556a4
+ - acf248e9-58de-4927-b666-2e85b7bcd89b
+ - e5536d41-c0e5-4c68-9efb-d6cb067ad353
+ - c23029ce-7c6c-4acb-8916-a300effb33da
+ - 0f9763da-ce85-4edb-bd19-daa811d5ac2a
+ - 1b52c30e-38eb-4b54-81c1-175c933929b5
+ - ce8a4e5b-9b06-4346-8eac-8abafe65eba2
+ - 96aeff2a-0486-418a-bb6f-efa7c70fc406
+ - 5b6edc87-710c-4778-b371-0572f76a6eea
+ - 55e34e14-778f-4551-b0f6-e8048ee9ad94
+ - 9fb686ac-14c7-4630-8173-c477e863703d
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9c769439-ffcd-4cfb-950b-855f1c4a933b
+ - 804efc16-4473-4cee-a45d-a43056b33935
+ - 8d4113ae-a157-4929-9f46-cd13f33c78ff
+ - 9811c142-0f73-4ce7-a44a-409f6677caac
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 0d02c7f9-645d-4eff-aa8b-42044e536d9a
+ - ca39bf69-1f22-4107-a155-1a412b05990d
+ - 6dfa2e40-0b93-4d78-bfef-d1b0498ae063
+ - 6e32738f-b233-4380-b3f3-e003cdb73a30
+ - 5fc5e35b-f787-42c4-8dcc-f1adcf4ff668
+ - 46747f67-4428-487c-a7b2-b8d0cd6b7843
+ - 707358ec-acc2-4978-96df-dd2c5ef1712b
+ - 3d2d5cc6-1866-4d03-aec5-a83e0a7fc247
+ - fc0a22ac-f8b8-4e1a-8cb9-411342529415
+ - a3a59315-e267-4aed-a39a-7268f8037e96
+ - 135c614d-28b6-42e1-a219-d63d1c92b406
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - 828d389f-4f26-4fd5-9d27-1eab46d2dbc2
+ - b16c7be5-f1f6-4ee1-9aa3-eb466cc5a884
+ - f7b89038-5175-49ed-97f0-fee8f703ec8f
+ - 88d97611-26d5-435e-85e1-fdc01e1ae443
+ - 36dbebc4-a3c4-4ff6-a03c-7eed77105921
+ - 235a8524-d28f-4b64-ac0c-a2c704f2e604
+ - 152ea8d2-dd91-4423-81d2-698f1b7be65a
+ - 7658cd8b-a1b4-4e74-a5f0-4701d8468b92
+ - 7cf7d828-280e-4457-ba22-1fc72d61b0c9
+ - 1b05147b-2872-4537-9a1b-888a55510d3d
+ - 51fe0398-fd36-4ce9-85b2-6385fdf8b946
+ - c72da2af-8375-4f8b-a200-edaf292758da
+ - 56cccad3-2219-440f-8577-8a25cce2f6f2
+ - 6630b57b-b7bb-4b55-956e-65c0add88eed
+ - 59d3d0ec-df0f-4f6c-b8e0-9ff112c4c214
+ - 2e2e5360-9054-450f-b0d9-828af6d004a2
+ - 3c104a70-9abd-4da6-94c2-b50d2ed71e81
+ - e6da33ac-d80f-4c54-b680-eeeaba3ff614
+ - 421e1f40-1c39-41b5-9c1e-9d61ed50a5db
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - 9a13c0dc-bb24-4f72-9571-14bdd66675e2
+ - 52f49153-a197-410a-a02d-d440c32f4e97
+ - 6c787197-7373-48f6-b7b9-bd4e9712d98a
+ - 6598a20f-173e-4b4d-b898-bc05449f7670
+ - d75a7971-0179-42aa-ac3f-88ee1bdbf459
+ - 728cb53a-2801-4767-9579-9c49d7aee2a0
+ - 8bf07c87-64b8-4f7d-aba2-4db12e7834d9
+ - ae6114a6-87aa-49b5-b01e-dc0db60731f7
+ - f83f0c0b-8580-47e9-9e4d-22fba721ab53
+ - 8f96ae32-b5d0-4ce8-bbff-8994e10e5d6d
+ - ce4704df-7da3-42aa-b64f-e8f20157b818
+ - 1bdfd856-521c-417a-971c-0d51ccf78be5
+ - e3edc1b6-5051-47a2-b2b7-c3711c58cd4f
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - 7d55e7dc-f827-43b8-aa47-c9dd146598fd
+ - dba667c8-74dc-4a1c-8c1d-1520ea051571
+ - 464914e0-2900-4dca-aa88-05c9526638e9
+ - 69873ce1-1baf-454a-99ee-7b63778fffc3
+ - 389fe958-f5ce-4018-a63d-256b87398808
+ - 69930a87-8a03-4408-ae2c-9567e94f0b7c
+ - 6c3f0605-6ecc-4a04-a5cd-81072b39c4af
+ - 0b55e68c-d601-4d71-a7f3-b1bff8c50ecb
+ - 40543166-758e-4c68-bb76-3839522e6d80
+ - e5fb97f5-2ceb-41bd-94d3-482fef5e394a
+ - 5c04e166-bc57-46dc-a33b-d120622015af
+ - c6487f3a-957c-4dc0-9ad1-1c7e89785626
+ - 1a0699ec-728f-4d5c-ac63-16306667120b
+ - 7c0a0934-8289-47a0-b3bb-55187a18e850
+ - 79
+ - 7fd79caf-0e14-4808-88d4-342224a4e1e3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c6487f3a-957c-4dc0-9ad1-1c7e89785626
+ - 1
+ - 6d222cec-5efb-4cd1-a700-a3a04a704e6a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0806a1f0-0c8a-4d08-8c3a-9148cca556a4
+ - 1
+ - a1f3ac78-f4fe-4b00-bfda-3aee0db7bc60
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - acf248e9-58de-4927-b666-2e85b7bcd89b
+ - 1
+ - 0806a1f0-0c8a-4d08-8c3a-9148cca556a4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e5536d41-c0e5-4c68-9efb-d6cb067ad353
+ - 1
+ - acf248e9-58de-4927-b666-2e85b7bcd89b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c23029ce-7c6c-4acb-8916-a300effb33da
+ - 1
+ - e5536d41-c0e5-4c68-9efb-d6cb067ad353
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0f9763da-ce85-4edb-bd19-daa811d5ac2a
+ - 1
+ - c23029ce-7c6c-4acb-8916-a300effb33da
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ce8a4e5b-9b06-4346-8eac-8abafe65eba2
+ - 1
+ - 0f9763da-ce85-4edb-bd19-daa811d5ac2a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1b52c30e-38eb-4b54-81c1-175c933929b5
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7574
+ 21483
+ 50
+ 24
+
+ -
+ 7599.518
+ 21495.56
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1b52c30e-38eb-4b54-81c1-175c933929b5
+ - 1
+ - ce8a4e5b-9b06-4346-8eac-8abafe65eba2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a3a59315-e267-4aed-a39a-7268f8037e96
+ - 1
+ - 96aeff2a-0486-418a-bb6f-efa7c70fc406
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 55e34e14-778f-4551-b0f6-e8048ee9ad94
+ - 9fb686ac-14c7-4630-8173-c477e863703d
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9c769439-ffcd-4cfb-950b-855f1c4a933b
+ - 804efc16-4473-4cee-a45d-a43056b33935
+ - 8d4113ae-a157-4929-9f46-cd13f33c78ff
+ - 9811c142-0f73-4ce7-a44a-409f6677caac
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - ca39bf69-1f22-4107-a155-1a412b05990d
+ - 0d02c7f9-645d-4eff-aa8b-42044e536d9a
+ - 96aeff2a-0486-418a-bb6f-efa7c70fc406
+ - ce8a4e5b-9b06-4346-8eac-8abafe65eba2
+ - 7d55e7dc-f827-43b8-aa47-c9dd146598fd
+ - dba667c8-74dc-4a1c-8c1d-1520ea051571
+ - 464914e0-2900-4dca-aa88-05c9526638e9
+ - 69873ce1-1baf-454a-99ee-7b63778fffc3
+ - 389fe958-f5ce-4018-a63d-256b87398808
+ - 69930a87-8a03-4408-ae2c-9567e94f0b7c
+ - 1bdfd856-521c-417a-971c-0d51ccf78be5
+ - e3edc1b6-5051-47a2-b2b7-c3711c58cd4f
+ - 20
+ - 5b6edc87-710c-4778-b371-0572f76a6eea
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 55e34e14-778f-4551-b0f6-e8048ee9ad94
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 7547
+ 22644
+ 104
+ 64
+
+ -
+ 7606
+ 22676
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - d17191a3-8cf7-4cdd-9a7a-873b3116691a
+ - Data
+ - Data
+ - false
+ - 9796bec2-1cbe-43a2-a02e-48c1a736aa58
+ - 1
+
+
+
+
+ -
+ 7549
+ 22646
+ 42
+ 20
+
+ -
+ 7571.5
+ 22656
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 496388b0-3050-4d70-aaa7-02b565d26119
+ - Number
+ - Number
+ - false
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - 1
+
+
+
+
+ -
+ 7549
+ 22666
+ 42
+ 20
+
+ -
+ 7571.5
+ 22676
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 8fd7f3a7-6472-4242-b534-9a1ac53f36fd
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 7549
+ 22686
+ 42
+ 20
+
+ -
+ 7571.5
+ 22696
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 80a18b86-c32d-4785-80b8-babca5c987f7
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 7621
+ 22646
+ 28
+ 60
+
+ -
+ 7636.5
+ 22676
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 9fb686ac-14c7-4630-8173-c477e863703d
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 7533
+ 20716
+ 116
+ 44
+
+ -
+ 7594
+ 20738
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 300daab0-1c47-4f24-8f1e-532a6ec99e8b
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 80a18b86-c32d-4785-80b8-babca5c987f7
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7535
+ 20718
+ 44
+ 20
+
+ -
+ 7558.5
+ 20728
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 17206028-4db8-439b-af7f-36a1883f5082
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - f3d645b5-0fac-4f20-a9f1-779c44fc248e
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7535
+ 20738
+ 44
+ 20
+
+ -
+ 7558.5
+ 20748
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 9209a52b-7a61-4ae2-a1a0-1895279448b6
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 7609
+ 20718
+ 38
+ 20
+
+ -
+ 7629.5
+ 20728
+
+
+
+
+
+
+
+ - Output parameter Points
+ - a61bb92d-8752-43bd-b0f3-9fe07f3d2ca7
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7609
+ 20738
+ 38
+ 20
+
+ -
+ 7629.5
+ 20748
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - 9c769439-ffcd-4cfb-950b-855f1c4a933b
+ - Series
+ - Series
+
+
+
+
+ -
+ 7544
+ 21973
+ 101
+ 64
+
+ -
+ 7594
+ 22005
+
+
+
+
+
+ - First number in the series
+ - 430e00ef-58a6-434d-b801-e76da3120453
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7546
+ 21975
+ 33
+ 20
+
+ -
+ 7564
+ 21985
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 6f766805-4bdd-4435-a0e9-674f281196e3
+ - Step
+ - Step
+ - false
+ - 5c04e166-bc57-46dc-a33b-d120622015af
+ - 1
+
+
+
+
+ -
+ 7546
+ 21995
+ 33
+ 20
+
+ -
+ 7564
+ 22005
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 8cb48179-9b4e-4e9d-b902-6fbd008cb5e3
+ - Count
+ - Count
+ - false
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - 1
+
+
+
+
+ -
+ 7546
+ 22015
+ 33
+ 20
+
+ -
+ 7564
+ 22025
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 9067d090-92be-43ef-b7ee-1948343ee84a
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 7609
+ 21975
+ 34
+ 60
+
+ -
+ 7627.5
+ 22005
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 804efc16-4473-4cee-a45d-a43056b33935
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7532
+ 22827
+ 150
+ 20
+
+ -
+ 7532.197
+ 22827.41
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 8d4113ae-a157-4929-9f46-cd13f33c78ff
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 7494
+ 22215
+ 120
+ 28
+
+ -
+ 7555
+ 22229
+
+
+
+
+
+ - Angle in degrees
+ - 7823d213-2a69-43a5-88aa-8605f015f541
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 7496
+ 22217
+ 44
+ 24
+
+ -
+ 7519.5
+ 22229
+
+
+
+
+
+
+
+ - Angle in radians
+ - 637ed566-807c-46f7-812d-f13415712d2f
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 7570
+ 22217
+ 42
+ 24
+
+ -
+ 7592.5
+ 22229
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 9811c142-0f73-4ce7-a44a-409f6677caac
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 7472
+ 22582
+ 251
+ 20
+
+ -
+ 7472.408
+ 22582.4
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - 0d02c7f9-645d-4eff-aa8b-42044e536d9a
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 7519
+ 19951
+ 144
+ 84
+
+ -
+ 7605
+ 19993
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 02d0d648-fe9d-4b52-921d-97151ed427b7
+ - Vertices
+ - Vertices
+ - false
+ - 30001983-c314-4c6c-88d3-45dee8332dbb
+ - 1
+
+
+
+
+ -
+ 7521
+ 19953
+ 69
+ 20
+
+ -
+ 7557
+ 19963
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 20888d93-d5e1-42f8-b897-38e8046f5339
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19973
+ 69
+ 20
+
+ -
+ 7557
+ 19983
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - 3a74e7ac-076e-4e54-aadf-5813a78da55a
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19993
+ 69
+ 20
+
+ -
+ 7557
+ 20003
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - c87cd040-006c-4315-9e33-7fb11cedebb1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 20013
+ 69
+ 20
+
+ -
+ 7557
+ 20023
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 9508e098-ef16-4c0d-be88-998ab5655a4c
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7620
+ 19953
+ 41
+ 26
+
+ -
+ 7642
+ 19966.33
+
+
+
+
+
+
+
+ - Curve length
+ - 35103367-48f6-4e56-b271-03e19ec0e187
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7620
+ 19979
+ 41
+ 27
+
+ -
+ 7642
+ 19993
+
+
+
+
+
+
+
+ - Curve domain
+ - 252af1a6-d359-4d5a-888b-c50e668843e5
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7620
+ 20006
+ 41
+ 27
+
+ -
+ 7642
+ 20019.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 55e34e14-778f-4551-b0f6-e8048ee9ad94
+ - 9fb686ac-14c7-4630-8173-c477e863703d
+ - c224342c-801f-4459-9224-44879ddf539f
+ - 9c769439-ffcd-4cfb-950b-855f1c4a933b
+ - 804efc16-4473-4cee-a45d-a43056b33935
+ - 8d4113ae-a157-4929-9f46-cd13f33c78ff
+ - 9811c142-0f73-4ce7-a44a-409f6677caac
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 0b55e68c-d601-4d71-a7f3-b1bff8c50ecb
+ - b16c7be5-f1f6-4ee1-9aa3-eb466cc5a884
+ - ce4704df-7da3-42aa-b64f-e8f20157b818
+ - 6c3f0605-6ecc-4a04-a5cd-81072b39c4af
+ - 40543166-758e-4c68-bb76-3839522e6d80
+ - 1db267cd-0509-41e9-a6a8-e8deb71f75d9
+ - 14
+ - ca39bf69-1f22-4107-a155-1a412b05990d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 6dfa2e40-0b93-4d78-bfef-d1b0498ae063
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7519
+ 19783
+ 144
+ 64
+
+ -
+ 7593
+ 19815
+
+
+
+
+
+ - Curve to evaluate
+ - 21b6b0f6-c220-4995-b9e1-0813c1ebbf75
+ - Curve
+ - Curve
+ - false
+ - 9508e098-ef16-4c0d-be88-998ab5655a4c
+ - 1
+
+
+
+
+ -
+ 7521
+ 19785
+ 57
+ 20
+
+ -
+ 7551
+ 19795
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 031fa92f-df30-4014-86eb-6b48f621f5f0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19805
+ 57
+ 20
+
+ -
+ 7551
+ 19815
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - c93fb2d4-f320-4885-a4b6-4f98c9d5e34c
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19825
+ 57
+ 20
+
+ -
+ 7551
+ 19835
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 94262e80-8dd0-445b-82f7-4d5a4ea30cbf
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19785
+ 53
+ 20
+
+ -
+ 7636
+ 19795
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 2cef40e5-8774-4d3f-b736-e2af82b1227e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19805
+ 53
+ 20
+
+ -
+ 7636
+ 19815
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - a3e21184-562d-4b3d-91ff-ad865b3f39be
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19825
+ 53
+ 20
+
+ -
+ 7636
+ 19835
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 6e32738f-b233-4380-b3f3-e003cdb73a30
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7522
+ 19721
+ 138
+ 44
+
+ -
+ 7590
+ 19743
+
+
+
+
+
+ - Base geometry
+ - 297ad678-36e1-4063-84c9-bed9809f2ce0
+ - Geometry
+ - Geometry
+ - true
+ - 9508e098-ef16-4c0d-be88-998ab5655a4c
+ - 1
+
+
+
+
+ -
+ 7524
+ 19723
+ 51
+ 20
+
+ -
+ 7551
+ 19733
+
+
+
+
+
+
+
+ - Mirror plane
+ - d484ee32-483a-4ae8-94bc-a2536ec9c7bc
+ - Plane
+ - Plane
+ - false
+ - 0ce9c9df-40ef-46cb-85ac-7aa25e06b6e7
+ - 1
+
+
+
+
+ -
+ 7524
+ 19743
+ 51
+ 20
+
+ -
+ 7551
+ 19753
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - fbe59d4b-fa47-4c41-9d13-7c73982c69a3
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7605
+ 19723
+ 53
+ 20
+
+ -
+ 7633
+ 19733
+
+
+
+
+
+
+
+ - Transformation data
+ - a93274d2-c194-4c7a-bdd7-20377a0b466f
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7605
+ 19743
+ 53
+ 20
+
+ -
+ 7633
+ 19753
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 5fc5e35b-f787-42c4-8dcc-f1adcf4ff668
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7538
+ 19867
+ 106
+ 64
+
+ -
+ 7602
+ 19899
+
+
+
+
+
+ - Line start point
+ - 10035cb2-c576-4150-8c6d-4aa8f587483e
+ - Start
+ - Start
+ - false
+ - 94262e80-8dd0-445b-82f7-4d5a4ea30cbf
+ - 1
+
+
+
+
+ -
+ 7540
+ 19869
+ 47
+ 20
+
+ -
+ 7565
+ 19879
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 09b2a66b-84d1-493d-9a42-8ba243246987
+ - Direction
+ - Direction
+ - false
+ - 2cef40e5-8774-4d3f-b736-e2af82b1227e
+ - 1
+
+
+
+
+ -
+ 7540
+ 19889
+ 47
+ 20
+
+ -
+ 7565
+ 19899
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 6df394dc-5be4-4cee-93da-7367c2de9fe1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 19909
+ 47
+ 20
+
+ -
+ 7565
+ 19919
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 0ce9c9df-40ef-46cb-85ac-7aa25e06b6e7
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 7617
+ 19869
+ 25
+ 60
+
+ -
+ 7631
+ 19899
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 46747f67-4428-487c-a7b2-b8d0cd6b7843
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7532
+ 19659
+ 118
+ 44
+
+ -
+ 7595
+ 19681
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 61ad25ea-4890-4bd5-afd5-4eeb9bb0a980
+ - Curves
+ - Curves
+ - false
+ - 9508e098-ef16-4c0d-be88-998ab5655a4c
+ - fbe59d4b-fa47-4c41-9d13-7c73982c69a3
+ - 2
+
+
+
+
+ -
+ 7534
+ 19661
+ 46
+ 20
+
+ -
+ 7558.5
+ 19671
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - bdc69664-512f-487b-bc67-6c635792a4ce
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7534
+ 19681
+ 46
+ 20
+
+ -
+ 7558.5
+ 19691
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 52e645aa-7d1e-49c8-8c8f-bea3e1732d5d
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7610
+ 19661
+ 38
+ 40
+
+ -
+ 7630.5
+ 19681
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 707358ec-acc2-4978-96df-dd2c5ef1712b
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7519
+ 19575
+ 144
+ 64
+
+ -
+ 7593
+ 19607
+
+
+
+
+
+ - Curve to evaluate
+ - 3011e852-77c3-4103-9629-d5df735bf5ba
+ - Curve
+ - Curve
+ - false
+ - 52e645aa-7d1e-49c8-8c8f-bea3e1732d5d
+ - 1
+
+
+
+
+ -
+ 7521
+ 19577
+ 57
+ 20
+
+ -
+ 7551
+ 19587
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - d7b4a83c-18e8-4ca9-b6cc-c1ecb7f19d4e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19597
+ 57
+ 20
+
+ -
+ 7551
+ 19607
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 6328dc9a-a51e-4f46-8273-06e986795e15
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19617
+ 57
+ 20
+
+ -
+ 7551
+ 19627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 934b8427-0c04-45cc-a176-c79b7fc8bb71
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19577
+ 53
+ 20
+
+ -
+ 7636
+ 19587
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - a7220f23-ed00-4b0a-8711-458051494285
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19597
+ 53
+ 20
+
+ -
+ 7636
+ 19607
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - deaf69f1-0aeb-4ff5-b784-c37d014b861e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19617
+ 53
+ 20
+
+ -
+ 7636
+ 19627
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 3d2d5cc6-1866-4d03-aec5-a83e0a7fc247
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 7522
+ 19492
+ 138
+ 64
+
+ -
+ 7590
+ 19524
+
+
+
+
+
+ - Base geometry
+ - 8cdecb19-f747-4c6d-9d1e-3f6041fa3034
+ - Geometry
+ - Geometry
+ - true
+ - 52e645aa-7d1e-49c8-8c8f-bea3e1732d5d
+ - 1
+
+
+
+
+ -
+ 7524
+ 19494
+ 51
+ 20
+
+ -
+ 7551
+ 19504
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - eaa68737-e697-4c3f-bccd-d9e30813ac7d
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 7524
+ 19514
+ 51
+ 20
+
+ -
+ 7551
+ 19524
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 7edece2a-d919-41e4-8de1-198a40ff22dc
+ - Plane
+ - Plane
+ - false
+ - 934b8427-0c04-45cc-a176-c79b7fc8bb71
+ - 1
+
+
+
+
+ -
+ 7524
+ 19534
+ 51
+ 20
+
+ -
+ 7551
+ 19544
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 1182dc2a-aaea-4fbf-a1fe-ea8d4113798d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7605
+ 19494
+ 53
+ 30
+
+ -
+ 7633
+ 19509
+
+
+
+
+
+
+
+ - Transformation data
+ - 0b0b1a8f-3821-458b-9d92-6bb2bc09d32a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7605
+ 19524
+ 53
+ 30
+
+ -
+ 7633
+ 19539
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - fc0a22ac-f8b8-4e1a-8cb9-411342529415
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7532
+ 19429
+ 118
+ 44
+
+ -
+ 7595
+ 19451
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 178a5c6c-80ee-43e5-979d-a516d56935ab
+ - Curves
+ - Curves
+ - false
+ - 52e645aa-7d1e-49c8-8c8f-bea3e1732d5d
+ - 1182dc2a-aaea-4fbf-a1fe-ea8d4113798d
+ - 2
+
+
+
+
+ -
+ 7534
+ 19431
+ 46
+ 20
+
+ -
+ 7558.5
+ 19441
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 4f5132ae-16fb-4c4a-9408-97658a62b936
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7534
+ 19451
+ 46
+ 20
+
+ -
+ 7558.5
+ 19461
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 6fda1002-bf75-4295-91e2-57271e487305
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7610
+ 19431
+ 38
+ 40
+
+ -
+ 7630.5
+ 19451
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 0d02c7f9-645d-4eff-aa8b-42044e536d9a
+ - 6dfa2e40-0b93-4d78-bfef-d1b0498ae063
+ - 6e32738f-b233-4380-b3f3-e003cdb73a30
+ - 5fc5e35b-f787-42c4-8dcc-f1adcf4ff668
+ - 46747f67-4428-487c-a7b2-b8d0cd6b7843
+ - 707358ec-acc2-4978-96df-dd2c5ef1712b
+ - 3d2d5cc6-1866-4d03-aec5-a83e0a7fc247
+ - fc0a22ac-f8b8-4e1a-8cb9-411342529415
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - 44b37048-c31c-4e55-aa4a-0a740586d36f
+ - 9a96a98b-9d42-4cd5-9284-e3ec69b5d0ba
+ - 30001983-c314-4c6c-88d3-45dee8332dbb
+ - 9f95dc08-d6f9-4d10-a5dd-ef1fc47e0022
+ - c87e5f22-762f-485a-b818-05e9c603f0ea
+ - ddb6fc0a-d855-4568-a2d9-a2271d2cdc89
+ - 15
+ - a3a59315-e267-4aed-a39a-7268f8037e96
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 135c614d-28b6-42e1-a219-d63d1c92b406
+ - Panel
+
+ - false
+ - 0
+ - c72da2af-8375-4f8b-a200-edaf292758da
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7525
+ 22068
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7525.938
+ 22068.91
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - Curve
+ - Curve
+ - false
+ - 6fda1002-bf75-4295-91e2-57271e487305
+ - 1
+
+
+
+
+ -
+ 7574
+ 19396
+ 50
+ 24
+
+ -
+ 7599.518
+ 19408.47
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - 1
+ - 828d389f-4f26-4fd5-9d27-1eab46d2dbc2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b16c7be5-f1f6-4ee1-9aa3-eb466cc5a884
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 7380
+ 22305
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7380.498
+ 22305.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - f7b89038-5175-49ed-97f0-fee8f703ec8f
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7519
+ 19303
+ 144
+ 64
+
+ -
+ 7593
+ 19335
+
+
+
+
+
+ - Curve to evaluate
+ - 35af2178-0d51-4a1f-825d-b3d9ed5efab6
+ - Curve
+ - Curve
+ - false
+ - 6fda1002-bf75-4295-91e2-57271e487305
+ - 1
+
+
+
+
+ -
+ 7521
+ 19305
+ 57
+ 20
+
+ -
+ 7551
+ 19315
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 7807ac5f-6891-46f7-b0d3-a191d9633399
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19325
+ 57
+ 20
+
+ -
+ 7551
+ 19335
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 3058ccb8-c18f-4716-a520-7530b08fc5e9
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 19345
+ 57
+ 20
+
+ -
+ 7551
+ 19355
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - afdeb27a-cb06-4fce-8d04-973ffb5ced6d
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19305
+ 53
+ 20
+
+ -
+ 7636
+ 19315
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 76a71cf1-cdcc-4cc9-b2be-8098b6eb2168
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19325
+ 53
+ 20
+
+ -
+ 7636
+ 19335
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 3f9b874e-df35-4fc1-85bc-8361293efd48
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 19345
+ 53
+ 20
+
+ -
+ 7636
+ 19355
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 88d97611-26d5-435e-85e1-fdc01e1ae443
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 19081
+ 194
+ 28
+
+ -
+ 7594
+ 19095
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 164d026b-9f2c-48ea-aadc-46f1f28f42ab
+ - Variable O
+ - O
+ - true
+ - 23fe09ff-a145-40b0-a164-7d25b3eab274
+ - 1
+
+
+
+
+ -
+ 7496
+ 19083
+ 14
+ 24
+
+ -
+ 7504.5
+ 19095
+
+
+
+
+
+
+
+ - Result of expression
+ - d459a91c-bc84-49c4-ab09-1c25aee006d6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 19083
+ 9
+ 24
+
+ -
+ 7683
+ 19095
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 36dbebc4-a3c4-4ff6-a03c-7eed77105921
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7525
+ 19215
+ 132
+ 64
+
+ -
+ 7572
+ 19247
+
+
+
+
+
+ - Input point
+ - 31552fb1-ba2d-4773-95f2-16293e7e1b6e
+ - Point
+ - Point
+ - false
+ - afdeb27a-cb06-4fce-8d04-973ffb5ced6d
+ - 1
+
+
+
+
+ -
+ 7527
+ 19217
+ 30
+ 60
+
+ -
+ 7543.5
+ 19247
+
+
+
+
+
+
+
+ - Point {x} component
+ - 23fe09ff-a145-40b0-a164-7d25b3eab274
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 19217
+ 68
+ 20
+
+ -
+ 7622.5
+ 19227
+
+
+
+
+
+
+
+ - Point {y} component
+ - c76dbffb-3ad9-4777-b237-d91767fe372a
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 19237
+ 68
+ 20
+
+ -
+ 7622.5
+ 19247
+
+
+
+
+
+
+
+ - Point {z} component
+ - d825a26e-1046-43c4-aa72-ec8009512657
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 19257
+ 68
+ 20
+
+ -
+ 7622.5
+ 19267
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 235a8524-d28f-4b64-ac0c-a2c704f2e604
+ - Panel
+
+ - false
+ - 0
+ - d459a91c-bc84-49c4-ab09-1c25aee006d6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 19062
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.289
+ 19062.05
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 152ea8d2-dd91-4423-81d2-698f1b7be65a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 18995
+ 194
+ 28
+
+ -
+ 7594
+ 19009
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ee77447c-d43a-4ecc-b02d-01a82efdf9e4
+ - Variable O
+ - O
+ - true
+ - c76dbffb-3ad9-4777-b237-d91767fe372a
+ - 1
+
+
+
+
+ -
+ 7496
+ 18997
+ 14
+ 24
+
+ -
+ 7504.5
+ 19009
+
+
+
+
+
+
+
+ - Result of expression
+ - ac4cc66d-7dae-4cf6-a661-a1ec65427859
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 18997
+ 9
+ 24
+
+ -
+ 7683
+ 19009
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7658cd8b-a1b4-4e74-a5f0-4701d8468b92
+ - Panel
+
+ - false
+ - 0
+ - ac4cc66d-7dae-4cf6-a661-a1ec65427859
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 18973
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.289
+ 18973.63
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7cf7d828-280e-4457-ba22-1fc72d61b0c9
+ - Division
+ - Division
+
+
+
+
+ -
+ 7550
+ 18893
+ 82
+ 44
+
+ -
+ 7581
+ 18915
+
+
+
+
+
+ - Item to divide (dividend)
+ - 7e0dac2d-59c3-4ed8-85fc-83891c9743e8
+ - A
+ - A
+ - false
+ - 235a8524-d28f-4b64-ac0c-a2c704f2e604
+ - 1
+
+
+
+
+ -
+ 7552
+ 18895
+ 14
+ 20
+
+ -
+ 7560.5
+ 18905
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 3eabd983-4c97-47f2-b6a8-c03868b2bd3b
+ - B
+ - B
+ - false
+ - 7658cd8b-a1b4-4e74-a5f0-4701d8468b92
+ - 1
+
+
+
+
+ -
+ 7552
+ 18915
+ 14
+ 20
+
+ -
+ 7560.5
+ 18925
+
+
+
+
+
+
+
+ - The result of the Division
+ - df8201ba-ce81-4d42-8a3c-95286d5a881c
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7596
+ 18895
+ 34
+ 40
+
+ -
+ 7614.5
+ 18915
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1b05147b-2872-4537-9a1b-888a55510d3d
+ - Panel
+
+ - false
+ - 0
+ - c72da2af-8375-4f8b-a200-edaf292758da
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 18826
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.527
+ 18826.12
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 51fe0398-fd36-4ce9-85b2-6385fdf8b946
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 18846
+ 194
+ 28
+
+ -
+ 7594
+ 18860
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f372874c-f8d1-4176-831a-a15011ca750e
+ - Variable O
+ - O
+ - true
+ - df8201ba-ce81-4d42-8a3c-95286d5a881c
+ - 1
+
+
+
+
+ -
+ 7496
+ 18848
+ 14
+ 24
+
+ -
+ 7504.5
+ 18860
+
+
+
+
+
+
+
+ - Result of expression
+ - 0b7c9268-5511-409e-a1e0-df53778058fd
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 18848
+ 9
+ 24
+
+ -
+ 7683
+ 18860
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - c72da2af-8375-4f8b-a200-edaf292758da
+ - Relay
+
+ - false
+ - 0b7c9268-5511-409e-a1e0-df53778058fd
+ - 1
+
+
+
+
+ -
+ 7571
+ 18771
+ 40
+ 16
+
+ -
+ 7591
+ 18779
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 56cccad3-2219-440f-8577-8a25cce2f6f2
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 7550
+ 18708
+ 82
+ 44
+
+ -
+ 7581
+ 18730
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - e9a280bc-b029-4e39-b507-bb08a166b4c0
+ - A
+ - A
+ - true
+ - 7658cd8b-a1b4-4e74-a5f0-4701d8468b92
+ - 1
+
+
+
+
+ -
+ 7552
+ 18710
+ 14
+ 20
+
+ -
+ 7560.5
+ 18720
+
+
+
+
+
+
+
+ - Second item for addition
+ - 41071ba3-f34a-4bb7-bb6e-fdf43b31056b
+ - B
+ - B
+ - true
+ - 235a8524-d28f-4b64-ac0c-a2c704f2e604
+ - 1
+
+
+
+
+ -
+ 7552
+ 18730
+ 14
+ 20
+
+ -
+ 7560.5
+ 18740
+
+
+
+
+
+
+
+ - Result of addition
+ - 9c043701-2a90-4a63-9cef-403638fe3802
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7596
+ 18710
+ 34
+ 40
+
+ -
+ 7614.5
+ 18730
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 6630b57b-b7bb-4b55-956e-65c0add88eed
+ - Division
+ - Division
+
+
+
+
+ -
+ 7550
+ 18558
+ 82
+ 44
+
+ -
+ 7581
+ 18580
+
+
+
+
+
+ - Item to divide (dividend)
+ - ec124671-51c1-4da6-8abc-521102851a7b
+ - A
+ - A
+ - false
+ - 3c104a70-9abd-4da6-94c2-b50d2ed71e81
+ - 1
+
+
+
+
+ -
+ 7552
+ 18560
+ 14
+ 20
+
+ -
+ 7560.5
+ 18570
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 42484507-1d9b-48a8-8c25-96ac0939b2e2
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 7552
+ 18580
+ 14
+ 20
+
+ -
+ 7560.5
+ 18590
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - 911cfeb2-6a07-49cc-a933-bb0786740e72
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7596
+ 18560
+ 34
+ 40
+
+ -
+ 7614.5
+ 18580
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 59d3d0ec-df0f-4f6c-b8e0-9ff112c4c214
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 18510
+ 194
+ 28
+
+ -
+ 7594
+ 18524
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7279fd2f-28fe-41f7-8502-60affce70d57
+ - Variable O
+ - O
+ - true
+ - 911cfeb2-6a07-49cc-a933-bb0786740e72
+ - 1
+
+
+
+
+ -
+ 7496
+ 18512
+ 14
+ 24
+
+ -
+ 7504.5
+ 18524
+
+
+
+
+
+
+
+ - Result of expression
+ - bf59cde7-344a-4f58-bbe4-9b2580c56796
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 18512
+ 9
+ 24
+
+ -
+ 7683
+ 18524
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2e2e5360-9054-450f-b0d9-828af6d004a2
+ - Panel
+
+ - false
+ - 0
+ - bf59cde7-344a-4f58-bbe4-9b2580c56796
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 18489
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.289
+ 18489.97
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3c104a70-9abd-4da6-94c2-b50d2ed71e81
+ - Panel
+
+ - false
+ - 0
+ - f4e0f3a1-e1f8-431f-84a9-4d78e4bc8f8b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 18641
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.289
+ 18641.88
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e6da33ac-d80f-4c54-b680-eeeaba3ff614
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 18661
+ 194
+ 28
+
+ -
+ 7594
+ 18675
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a6328d19-9311-48e2-8c98-8e81db0e6c07
+ - Variable O
+ - O
+ - true
+ - 9c043701-2a90-4a63-9cef-403638fe3802
+ - 1
+
+
+
+
+ -
+ 7496
+ 18663
+ 14
+ 24
+
+ -
+ 7504.5
+ 18675
+
+
+
+
+
+
+
+ - Result of expression
+ - f4e0f3a1-e1f8-431f-84a9-4d78e4bc8f8b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 18663
+ 9
+ 24
+
+ -
+ 7683
+ 18675
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 421e1f40-1c39-41b5-9c1e-9d61ed50a5db
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7514
+ 18387
+ 154
+ 64
+
+ -
+ 7598
+ 18419
+
+
+
+
+
+ - Base geometry
+ - 753f0a2f-fe50-45cd-afcb-b9c4fbcc38c3
+ - Geometry
+ - Geometry
+ - true
+ - 1c683cd3-d178-40f6-af46-51830c911e87
+ - 1
+
+
+
+
+ -
+ 7516
+ 18389
+ 67
+ 20
+
+ -
+ 7559
+ 18399
+
+
+
+
+
+
+
+ - Center of scaling
+ - eedce016-66e6-411c-8961-84bb286f2a5c
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7516
+ 18409
+ 67
+ 20
+
+ -
+ 7559
+ 18419
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 39471cdf-88cf-4030-bd4e-190a6f77e3fb
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 2e2e5360-9054-450f-b0d9-828af6d004a2
+ - 1
+
+
+
+
+ -
+ 7516
+ 18429
+ 67
+ 20
+
+ -
+ 7559
+ 18439
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 59788862-a115-4256-a5f1-2c1ae9fd45bf
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7613
+ 18389
+ 53
+ 30
+
+ -
+ 7641
+ 18404
+
+
+
+
+
+
+
+ - Transformation data
+ - f5640de2-0d2f-4a1a-940f-d4ac31e6f717
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7613
+ 18419
+ 53
+ 30
+
+ -
+ 7641
+ 18434
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - Curve
+ - Curve
+ - false
+ - 59788862-a115-4256-a5f1-2c1ae9fd45bf
+ - 1
+
+
+
+
+ -
+ 7572
+ 17795
+ 50
+ 24
+
+ -
+ 7597.268
+ 17807.47
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9a13c0dc-bb24-4f72-9571-14bdd66675e2
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 19168
+ 194
+ 28
+
+ -
+ 7594
+ 19182
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 038349da-4897-4e80-989c-41c774aa0843
+ - Variable O
+ - O
+ - true
+ - d825a26e-1046-43c4-aa72-ec8009512657
+ - 1
+
+
+
+
+ -
+ 7496
+ 19170
+ 14
+ 24
+
+ -
+ 7504.5
+ 19182
+
+
+
+
+
+
+
+ - Result of expression
+ - 96dbc9e9-a90a-4927-9815-5d217f633697
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 19170
+ 9
+ 24
+
+ -
+ 7683
+ 19182
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 52f49153-a197-410a-a02d-d440c32f4e97
+ - Panel
+
+ - false
+ - 0
+ - 96dbc9e9-a90a-4927-9815-5d217f633697
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7519
+ 19147
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7519.158
+ 19147.82
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 6c787197-7373-48f6-b7b9-bd4e9712d98a
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7519
+ 18177
+ 144
+ 64
+
+ -
+ 7593
+ 18209
+
+
+
+
+
+ - Curve to evaluate
+ - 4a06683b-84e6-4ce8-b99f-6e87affe5e54
+ - Curve
+ - Curve
+ - false
+ - 59788862-a115-4256-a5f1-2c1ae9fd45bf
+ - 1
+
+
+
+
+ -
+ 7521
+ 18179
+ 57
+ 20
+
+ -
+ 7551
+ 18189
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 646f9e67-d82f-4303-97bd-13b8d7a6549a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 18199
+ 57
+ 20
+
+ -
+ 7551
+ 18209
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - cf5edd30-b60b-4687-91f0-8350199a19c3
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 18219
+ 57
+ 20
+
+ -
+ 7551
+ 18229
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - d158ff9d-7623-445c-b059-6258d9873e6c
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 18179
+ 53
+ 20
+
+ -
+ 7636
+ 18189
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 289d42f7-11bd-45d9-8e36-43f6212646e7
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 18199
+ 53
+ 20
+
+ -
+ 7636
+ 18209
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 5d16361b-f464-420e-9706-0a866da381f8
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 18219
+ 53
+ 20
+
+ -
+ 7636
+ 18229
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 6598a20f-173e-4b4d-b898-bc05449f7670
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 17960
+ 194
+ 28
+
+ -
+ 7594
+ 17974
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 43341800-f14c-4adb-901e-69667ac91f0f
+ - Variable O
+ - O
+ - true
+ - 303beb65-d916-4a32-80ee-54ecb0c01173
+ - 1
+
+
+
+
+ -
+ 7496
+ 17962
+ 14
+ 24
+
+ -
+ 7504.5
+ 17974
+
+
+
+
+
+
+
+ - Result of expression
+ - c0e5fd91-ab85-4934-8739-5c6d2ab5fbd7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 17962
+ 9
+ 24
+
+ -
+ 7683
+ 17974
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - d75a7971-0179-42aa-ac3f-88ee1bdbf459
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7525
+ 18094
+ 132
+ 64
+
+ -
+ 7572
+ 18126
+
+
+
+
+
+ - Input point
+ - b347279b-39f8-4150-b21e-06923c9928f7
+ - Point
+ - Point
+ - false
+ - d158ff9d-7623-445c-b059-6258d9873e6c
+ - 1
+
+
+
+
+ -
+ 7527
+ 18096
+ 30
+ 60
+
+ -
+ 7543.5
+ 18126
+
+
+
+
+
+
+
+ - Point {x} component
+ - 303beb65-d916-4a32-80ee-54ecb0c01173
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 18096
+ 68
+ 20
+
+ -
+ 7622.5
+ 18106
+
+
+
+
+
+
+
+ - Point {y} component
+ - 1871c037-74d8-425d-97d1-e0b523c62524
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 18116
+ 68
+ 20
+
+ -
+ 7622.5
+ 18126
+
+
+
+
+
+
+
+ - Point {z} component
+ - ac1a1dd9-a6f1-42fc-8ed8-1f1dc751a6cf
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7587
+ 18136
+ 68
+ 20
+
+ -
+ 7622.5
+ 18146
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 728cb53a-2801-4767-9579-9c49d7aee2a0
+ - Panel
+
+ - false
+ - 0
+ - c0e5fd91-ab85-4934-8739-5c6d2ab5fbd7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 17935
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.539
+ 17935.4
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8bf07c87-64b8-4f7d-aba2-4db12e7834d9
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 17874
+ 194
+ 28
+
+ -
+ 7594
+ 17888
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 29d58b74-5f3b-4041-a997-b60382bd9fec
+ - Variable O
+ - O
+ - true
+ - 1871c037-74d8-425d-97d1-e0b523c62524
+ - 1
+
+
+
+
+ -
+ 7496
+ 17876
+ 14
+ 24
+
+ -
+ 7504.5
+ 17888
+
+
+
+
+
+
+
+ - Result of expression
+ - d7bce812-39f3-4d48-b8fc-0c073a6a9af3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 17876
+ 9
+ 24
+
+ -
+ 7683
+ 17888
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ae6114a6-87aa-49b5-b01e-dc0db60731f7
+ - Panel
+
+ - false
+ - 0
+ - d7bce812-39f3-4d48-b8fc-0c073a6a9af3
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 17849
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.549
+ 17849.77
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f83f0c0b-8580-47e9-9e4d-22fba721ab53
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 18046
+ 194
+ 28
+
+ -
+ 7594
+ 18060
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1602e22c-9254-40c0-aabc-302a3b843656
+ - Variable O
+ - O
+ - true
+ - ac1a1dd9-a6f1-42fc-8ed8-1f1dc751a6cf
+ - 1
+
+
+
+
+ -
+ 7496
+ 18048
+ 14
+ 24
+
+ -
+ 7504.5
+ 18060
+
+
+
+
+
+
+
+ - Result of expression
+ - c0844f1a-890d-48a5-b4bd-ab8b6f4f6568
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 18048
+ 9
+ 24
+
+ -
+ 7683
+ 18060
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8f96ae32-b5d0-4ce8-bbff-8994e10e5d6d
+ - Panel
+
+ - false
+ - 0
+ - c0844f1a-890d-48a5-b4bd-ab8b6f4f6568
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7518
+ 18021
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7518.289
+ 18021.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ce4704df-7da3-42aa-b64f-e8f20157b818
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 7409
+ 22376
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 7409.947
+ 22376.06
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1bdfd856-521c-417a-971c-0d51ccf78be5
+ - Panel
+
+ - false
+ - 0
+ - fda4edfd-fd26-4b31-ae4f-131c5263e87b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7430
+ 20385
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 7430.479
+ 20385.39
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e3edc1b6-5051-47a2-b2b7-c3711c58cd4f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 20668
+ 194
+ 28
+
+ -
+ 7594
+ 20682
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 3c6507cd-fbe9-41e6-8ede-85eabab1b06b
+ - Variable O
+ - O
+ - true
+ - a61bb92d-8752-43bd-b0f3-9fe07f3d2ca7
+ - 1
+
+
+
+
+ -
+ 7496
+ 20670
+ 14
+ 24
+
+ -
+ 7504.5
+ 20682
+
+
+
+
+
+
+
+ - Result of expression
+ - fda4edfd-fd26-4b31-ae4f-131c5263e87b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 20670
+ 9
+ 24
+
+ -
+ 7683
+ 20682
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 7582
+ 22785
+ 50
+ 24
+
+ -
+ 7607.248
+ 22797.71
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 7d55e7dc-f827-43b8-aa47-c9dd146598fd
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 7422
+ 20950
+ 160
+ 224
+
+ -
+ 7490
+ 21062
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 03ef97c0-2b10-4607-b2f8-501154796b25
+ - true
+ - Curves
+ - Curves
+ - false
+ - a5b887d8-746e-4a70-9ef8-8936bfedafae
+ - 1
+
+
+
+
+ -
+ 7424
+ 20952
+ 51
+ 27
+
+ -
+ 7451
+ 20965.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - f5644fd1-9e73-4c6c-979c-aa4b22aee85a
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - dde8bb55-a063-41c2-9ee4-6e8ac92a8032
+ - 1
+
+
+
+
+ -
+ 7424
+ 20979
+ 51
+ 28
+
+ -
+ 7451
+ 20993.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - 24bd7645-3816-403f-bb6b-b43c729bf530
+ - true
+ - Values
+ - Values
+ - false
+ - 9067d090-92be-43ef-b7ee-1948343ee84a
+ - 1
+
+
+
+
+ -
+ 7424
+ 21007
+ 51
+ 27
+
+ -
+ 7451
+ 21020.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 10846f42-7201-45f6-a4da-55ed6a0973d0
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7424
+ 21034
+ 51
+ 28
+
+ -
+ 7451
+ 21048.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 589f176f-9a8c-4cef-8d5f-99d03d7deb93
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 7424
+ 21062
+ 51
+ 27
+
+ -
+ 7451
+ 21075.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - b48f3723-e0d3-4efd-a6e0-13cfdf65a74a
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 7424
+ 21089
+ 51
+ 28
+
+ -
+ 7451
+ 21103.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - 206d2a25-9cfe-4493-a5b9-0c343b61c334
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 7424
+ 21117
+ 51
+ 27
+
+ -
+ 7451
+ 21130.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - 5c5d9b17-3ce7-4526-be19-428d0d33e982
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 7424
+ 21144
+ 51
+ 28
+
+ -
+ 7451
+ 21158.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - cecb00b6-8035-4ef8-996e-9b223f6c361d
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 20952
+ 75
+ 20
+
+ -
+ 7544
+ 20962
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 14c46740-3e52-4641-a50c-c6ee71f200bf
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 20972
+ 75
+ 20
+
+ -
+ 7544
+ 20982
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - e0437c01-a11d-4c84-8a4e-aefffd5f5703
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 20992
+ 75
+ 20
+
+ -
+ 7544
+ 21002
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 92e7dd7c-3de7-4a37-bb3c-89c5e7027a82
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21012
+ 75
+ 20
+
+ -
+ 7544
+ 21022
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - b5806344-b199-44ae-adfc-a00aa48deec5
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21032
+ 75
+ 20
+
+ -
+ 7544
+ 21042
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - e34ba579-7cd5-488e-9cb3-2f02ca16d714
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21052
+ 75
+ 20
+
+ -
+ 7544
+ 21062
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 30e7f18d-9dbf-49ef-825b-ad58d84ee6bc
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21072
+ 75
+ 20
+
+ -
+ 7544
+ 21082
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 4387d49f-0230-4385-9795-983189e2dbb9
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21092
+ 75
+ 20
+
+ -
+ 7544
+ 21102
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - fce90d81-fdc5-47bb-b481-cca9c1e4f9df
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21112
+ 75
+ 20
+
+ -
+ 7544
+ 21122
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - bcfbe363-6402-451f-86c0-3a50c4bdfff2
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21132
+ 75
+ 20
+
+ -
+ 7544
+ 21142
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 330a5a37-f9d9-422f-a3d0-711593704cff
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 7505
+ 21152
+ 75
+ 20
+
+ -
+ 7544
+ 21162
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - dba667c8-74dc-4a1c-8c1d-1520ea051571
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7543
+ 21375
+ 96
+ 44
+
+ -
+ 7593
+ 21397
+
+
+
+
+
+ - Curve to evaluate
+ - d50bb5c3-7eb4-4033-8bf0-e71f9c817ecb
+ - Curve
+ - Curve
+ - false
+ - a5b887d8-746e-4a70-9ef8-8936bfedafae
+ - 1
+
+
+
+
+ -
+ 7545
+ 21377
+ 33
+ 40
+
+ -
+ 7563
+ 21397
+
+
+
+
+
+
+
+ - Curve start point
+ - a3cf7f15-c35c-4958-a4fb-60f39818ec7c
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 21377
+ 29
+ 20
+
+ -
+ 7624
+ 21387
+
+
+
+
+
+
+
+ - Curve end point
+ - 61bae804-51f8-4a41-97c9-81b80c560ab5
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7608
+ 21397
+ 29
+ 20
+
+ -
+ 7624
+ 21407
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 464914e0-2900-4dca-aa88-05c9526638e9
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7533
+ 21247
+ 126
+ 84
+
+ -
+ 7591
+ 21289
+
+
+
+
+
+ - Rectangle base plane
+ - 9bceac1a-793e-4b63-a008-d5874c65a4f7
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7535
+ 21249
+ 41
+ 20
+
+ -
+ 7557
+ 21259
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 23405188-ff32-4c02-b2ff-ad84da00c7d7
+ - Point A
+ - Point A
+ - false
+ - a3cf7f15-c35c-4958-a4fb-60f39818ec7c
+ - 1
+
+
+
+
+ -
+ 7535
+ 21269
+ 41
+ 20
+
+ -
+ 7557
+ 21279
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 44ee55c5-4700-4c7e-8871-f779dcd3f27d
+ - Point B
+ - Point B
+ - false
+ - 61bae804-51f8-4a41-97c9-81b80c560ab5
+ - 1
+
+
+
+
+ -
+ 7535
+ 21289
+ 41
+ 20
+
+ -
+ 7557
+ 21299
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 12f2185c-7a34-423f-a82b-16ad009c01a6
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7535
+ 21309
+ 41
+ 20
+
+ -
+ 7557
+ 21319
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - dde8bb55-a063-41c2-9ee4-6e8ac92a8032
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7606
+ 21249
+ 51
+ 40
+
+ -
+ 7633
+ 21269
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 286e6a6e-c183-499a-9460-f9abc11bf2fc
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7606
+ 21289
+ 51
+ 40
+
+ -
+ 7633
+ 21309
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 69873ce1-1baf-454a-99ee-7b63778fffc3
+ - true
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 7582
+ 21070
+ 126
+ 104
+
+ -
+ 7649
+ 21122
+
+
+
+
+
+ - External curve as a graph
+ - e3b67a48-8111-4e2a-98a6-2739ce26a10c
+ - true
+ - Curve
+ - Curve
+ - false
+ - a5b887d8-746e-4a70-9ef8-8936bfedafae
+ - 1
+
+
+
+
+ -
+ 7584
+ 21072
+ 50
+ 20
+
+ -
+ 7610.5
+ 21082
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 1977b298-e616-44b0-9ea0-6fe0bb14759b
+ - true
+ - Boundary
+ - Boundary
+ - true
+ - dde8bb55-a063-41c2-9ee4-6e8ac92a8032
+ - 1
+
+
+
+
+ -
+ 7584
+ 21092
+ 50
+ 20
+
+ -
+ 7610.5
+ 21102
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - 6876b9a3-df56-4a29-975f-07ac85234d39
+ - true
+ - Numbers
+ - Numbers
+ - false
+ - 9067d090-92be-43ef-b7ee-1948343ee84a
+ - 1
+
+
+
+
+ -
+ 7584
+ 21112
+ 50
+ 20
+
+ -
+ 7610.5
+ 21122
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 4fbda31f-b42e-47b3-a05d-ff6f28de6fbb
+ - true
+ - Input
+ - Input
+ - true
+ - 1e5255b4-ca0a-4711-90ae-f0766891699b
+ - 1
+
+
+
+
+ -
+ 7584
+ 21132
+ 50
+ 20
+
+ -
+ 7610.5
+ 21142
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 2c8f194b-f7a9-4b01-a381-7714146e35f7
+ - true
+ - Output
+ - Output
+ - true
+ - 1e5255b4-ca0a-4711-90ae-f0766891699b
+ - 1
+
+
+
+
+ -
+ 7584
+ 21152
+ 50
+ 20
+
+ -
+ 7610.5
+ 21162
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - e0c9fb70-227d-4b96-97e4-784cdd542951
+ - true
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 7664
+ 21072
+ 42
+ 100
+
+ -
+ 7686.5
+ 21122
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 389fe958-f5ce-4018-a63d-256b87398808
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7557
+ 20867
+ 89
+ 64
+
+ -
+ 7602
+ 20899
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 24a713ea-7dc6-40d0-a72d-51d02742226c
+ - Gate
+ - Gate
+ - false
+ - 106a93b0-0601-48d7-b498-a6b907cb491a
+ - 1
+
+
+
+
+ -
+ 7559
+ 20869
+ 28
+ 20
+
+ -
+ 7574.5
+ 20879
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 69c38839-7eea-451d-80a8-f92b7e2dde1e
+ - false
+ - Stream 0
+ - 0
+ - true
+ - cecb00b6-8035-4ef8-996e-9b223f6c361d
+ - 1
+
+
+
+
+ -
+ 7559
+ 20889
+ 28
+ 20
+
+ -
+ 7574.5
+ 20899
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - a261929b-b801-4c46-b48e-84d5cc21f24f
+ - false
+ - Stream 1
+ - 1
+ - true
+ - e0c9fb70-227d-4b96-97e4-784cdd542951
+ - 1
+
+
+
+
+ -
+ 7559
+ 20909
+ 28
+ 20
+
+ -
+ 7574.5
+ 20919
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - f3d645b5-0fac-4f20-a9f1-779c44fc248e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7617
+ 20869
+ 27
+ 60
+
+ -
+ 7632
+ 20899
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 69930a87-8a03-4408-ae2c-9567e94f0b7c
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7534
+ 20789
+ 150
+ 20
+
+ -
+ 7534.908
+ 20789.99
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6c3f0605-6ecc-4a04-a5cd-81072b39c4af
+ - Panel
+
+ - false
+ - 1
+ - ea6ce031-2da6-4f84-b7a5-56e154d99385
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7508
+ 21572
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 7508.979
+ 21572.27
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 0b55e68c-d601-4d71-a7f3-b1bff8c50ecb
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 7532
+ 21514
+ 122
+ 28
+
+ -
+ 7596
+ 21528
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 66480d3d-7d34-44f8-ae28-f780cca89bb8
+ - Numbers
+ - Numbers
+ - false
+ - 9067d090-92be-43ef-b7ee-1948343ee84a
+ - 1
+
+
+
+
+ -
+ 7534
+ 21516
+ 47
+ 24
+
+ -
+ 7559
+ 21528
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 1e5255b4-ca0a-4711-90ae-f0766891699b
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7611
+ 21516
+ 41
+ 24
+
+ -
+ 7633
+ 21528
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 40543166-758e-4c68-bb76-3839522e6d80
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7494
+ 21928
+ 194
+ 28
+
+ -
+ 7594
+ 21942
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f388a59f-eeaa-4f9f-a5ba-638cee1380db
+ - true
+ - Variable O
+ - O
+ - true
+ - 9067d090-92be-43ef-b7ee-1948343ee84a
+ - 1
+
+
+
+
+ -
+ 7496
+ 21930
+ 14
+ 24
+
+ -
+ 7504.5
+ 21942
+
+
+
+
+
+
+
+ - Result of expression
+ - ea6ce031-2da6-4f84-b7a5-56e154d99385
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7677
+ 21930
+ 9
+ 24
+
+ -
+ 7683
+ 21942
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - e5fb97f5-2ceb-41bd-94d3-482fef5e394a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7408
+ 22160
+ 367
+ 28
+
+ -
+ 7594
+ 22174
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e497c6fc-03b0-41cf-94e6-a2f6e711b397
+ - Variable O
+ - O
+ - true
+ - 637ed566-807c-46f7-812d-f13415712d2f
+ - 1
+
+
+
+
+ -
+ 7410
+ 22162
+ 14
+ 24
+
+ -
+ 7418.5
+ 22174
+
+
+
+
+
+
+
+ - Result of expression
+ - 491f1856-dea3-47a7-98e8-1f38d63f7688
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7764
+ 22162
+ 9
+ 24
+
+ -
+ 7770
+ 22174
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 5c04e166-bc57-46dc-a33b-d120622015af
+ - Panel
+
+ - false
+ - 0
+ - 491f1856-dea3-47a7-98e8-1f38d63f7688
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7509
+ 22109
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7509.117
+ 22109.13
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - 1
+ - c6487f3a-957c-4dc0-9ad1-1c7e89785626
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 1a0699ec-728f-4d5c-ac63-16306667120b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7514
+ 18302
+ 154
+ 64
+
+ -
+ 7598
+ 18334
+
+
+
+
+
+ - Base geometry
+ - d1bbec8e-dc1e-4fbe-9f3c-5dedabd1ac21
+ - Geometry
+ - Geometry
+ - true
+ - 30001983-c314-4c6c-88d3-45dee8332dbb
+ - 1
+
+
+
+
+ -
+ 7516
+ 18304
+ 67
+ 20
+
+ -
+ 7559
+ 18314
+
+
+
+
+
+
+
+ - Center of scaling
+ - 1bcdeef3-6e3c-4b0d-ac53-75fd34403efd
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7516
+ 18324
+ 67
+ 20
+
+ -
+ 7559
+ 18334
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - e9f28d44-9a1b-4493-887a-a41ac09cfa8f
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 2e2e5360-9054-450f-b0d9-828af6d004a2
+ - 1
+
+
+
+
+ -
+ 7516
+ 18344
+ 67
+ 20
+
+ -
+ 7559
+ 18354
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - aa10e8f5-5ad6-4906-8d82-a67597ae045a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7613
+ 18304
+ 53
+ 30
+
+ -
+ 7641
+ 18319
+
+
+
+
+
+
+
+ - Transformation data
+ - 4790e0c1-d97f-479d-b527-17a9caa9c539
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7613
+ 18334
+ 53
+ 30
+
+ -
+ 7641
+ 18349
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 7c0a0934-8289-47a0-b3bb-55187a18e850
+ - Point
+ - Point
+ - false
+ - aa10e8f5-5ad6-4906-8d82-a67597ae045a
+ - 1
+
+
+
+
+ -
+ 7573
+ 18273
+ 50
+ 24
+
+ -
+ 7598.268
+ 18285.65
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - ab7eae8f-fda2-4b10-b284-a3a367e7bbb5
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7519
+ 17502
+ 138
+ 44
+
+ -
+ 7587
+ 17524
+
+
+
+
+
+ - Base geometry
+ - a4702bed-c268-4ea2-97a6-f6a3346e2cc3
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - 1
+
+
+
+
+ -
+ 7521
+ 17504
+ 51
+ 20
+
+ -
+ 7548
+ 17514
+
+
+
+
+
+
+
+ - Mirror plane
+ - 91377831-431c-42d0-a726-a1ae118e65d9
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7521
+ 17524
+ 51
+ 20
+
+ -
+ 7548
+ 17534
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 5739075c-340c-4c72-ae5a-0f65a773f9f8
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7602
+ 17504
+ 53
+ 20
+
+ -
+ 7630
+ 17514
+
+
+
+
+
+
+
+ - Transformation data
+ - 66838ca7-4628-40cf-89b2-f0d29bd82b8d
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7602
+ 17524
+ 53
+ 20
+
+ -
+ 7630
+ 17534
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c82a47b4-09f2-4505-bf49-68485889f195
+ - Curve
+ - Curve
+ - false
+ - eb6cdc92-153b-407b-a04c-3de1dc55eb93
+ - 1
+
+
+
+
+ -
+ 7572
+ 17404
+ 50
+ 24
+
+ -
+ 7597.518
+ 17416.65
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - a5b887d8-746e-4a70-9ef8-8936bfedafae
+ - Relay
+
+ - false
+ - 1c443774-20bf-43a6-bfdd-0965796750c4
+ - 1
+
+
+
+
+ -
+ 7571
+ 21446
+ 40
+ 16
+
+ -
+ 7591
+ 21454
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9df09ad9-dcf8-427e-b9df-be18605e028e
+ - Curve
+ - Curve
+ - false
+ - 07c1ea70-9f34-4cb2-9732-c0811f7a89a4
+ - 1
+
+
+
+
+ -
+ 7121
+ 21831
+ 50
+ 24
+
+ -
+ 7146.313
+ 21843.6
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 1c443774-20bf-43a6-bfdd-0965796750c4
+ - Curve
+ - Curve
+ - false
+ - 3fdd8382-a423-4413-b749-ed0066a0de11
+ - 1
+
+
+
+
+ -
+ 7121
+ 21549
+ 50
+ 24
+
+ -
+ 7146.414
+ 21561.93
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 932ae951-9b07-48f7-b357-e5d8f9d2f9a9
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7062
+ 21579
+ 154
+ 64
+
+ -
+ 7146
+ 21611
+
+
+
+
+
+ - Base geometry
+ - 99f37123-363c-4829-9d14-c91c8f0f022b
+ - Geometry
+ - Geometry
+ - true
+ - 9df09ad9-dcf8-427e-b9df-be18605e028e
+ - 1
+
+
+
+
+ -
+ 7064
+ 21581
+ 67
+ 20
+
+ -
+ 7107
+ 21591
+
+
+
+
+
+
+
+ - Center of scaling
+ - 8b31dc17-2efa-4eff-93cc-b12744ce0b61
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7064
+ 21601
+ 67
+ 20
+
+ -
+ 7107
+ 21611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - b9b3f36d-25f0-45bd-bb89-db9fb4b19f4f
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 7064
+ 21621
+ 67
+ 20
+
+ -
+ 7107
+ 21631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 3fdd8382-a423-4413-b749-ed0066a0de11
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7161
+ 21581
+ 53
+ 30
+
+ -
+ 7189
+ 21596
+
+
+
+
+
+
+
+ - Transformation data
+ - 6e6b47bf-3832-429f-9bde-baaeb49a203e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7161
+ 21611
+ 53
+ 30
+
+ -
+ 7189
+ 21626
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9df09ad9-dcf8-427e-b9df-be18605e028e
+ - 1c443774-20bf-43a6-bfdd-0965796750c4
+ - 932ae951-9b07-48f7-b357-e5d8f9d2f9a9
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 9f1cdcbb-80df-41d8-af5b-78cf23360689
+ - e2cb120f-5b44-48a4-b3b6-aa9cb7214f81
+ - f543f7a5-c350-4099-80ea-5df138f96ddc
+ - 2a6c9856-3283-42b9-ad0d-b196a81f7300
+ - 9e0ce62b-127c-4d18-bb00-e332cc94cdd6
+ - 2a8104db-2b14-4f9d-818b-f57b27a43158
+ - 10
+ - 6ecf204f-19ca-4f1b-8a1f-9c37f1b6643c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - dd3874b1-a64f-4b2a-a29b-12cb278e881e
+ - Move
+ - Move
+
+
+
+
+ -
+ 7519
+ 17438
+ 138
+ 44
+
+ -
+ 7587
+ 17460
+
+
+
+
+
+ - Base geometry
+ - ef3b6713-0301-41ea-8e69-85385924a914
+ - Geometry
+ - Geometry
+ - true
+ - 7082e895-b111-4112-9e7a-5de8d7c7c95c
+ - 1
+
+
+
+
+ -
+ 7521
+ 17440
+ 51
+ 20
+
+ -
+ 7548
+ 17450
+
+
+
+
+
+
+
+ - Translation vector
+ - e0139871-b442-4ee7-8ec2-2994830bfb01
+ - Motion
+ - Motion
+ - false
+ - c662a3f5-c686-480e-a9f6-c0e87c370038
+ - 1
+
+
+
+
+ -
+ 7521
+ 17460
+ 51
+ 20
+
+ -
+ 7548
+ 17470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - eb6cdc92-153b-407b-a04c-3de1dc55eb93
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7602
+ 17440
+ 53
+ 20
+
+ -
+ 7630
+ 17450
+
+
+
+
+
+
+
+ - Transformation data
+ - f156a45f-a667-464c-a0ac-4bc67b275a41
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7602
+ 17460
+ 53
+ 20
+
+ -
+ 7630
+ 17470
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 9f1cdcbb-80df-41d8-af5b-78cf23360689
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 7021
+ 21775
+ 250
+ 20
+
+ -
+ 7021.713
+ 21775.02
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e2cb120f-5b44-48a4-b3b6-aa9cb7214f81
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 7078
+ 21674
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7078.873
+ 21674.63
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - f543f7a5-c350-4099-80ea-5df138f96ddc
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7121
+ 21506
+ 50
+ 24
+
+ -
+ 7146.414
+ 21518.93
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2a6c9856-3283-42b9-ad0d-b196a81f7300
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7123
+ 21963
+ 50
+ 24
+
+ -
+ 7148.364
+ 21975.77
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9d2d4e65-876f-43a9-8908-b4890697e12b
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 7379
+ 22356
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7379.498
+ 22356.6
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ef7e30c0-eb5a-49f7-8900-fd7057e65dd6
+ - Panel
+
+ - false
+ - 0
+ - 8d817556-0832-443c-be60-e7ab66e4da64
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 7379
+ 22480
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 7379.809
+ 22480.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ff242935-ffcc-4ea6-9bd3-48e1bb088415
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 7472
+ 22621
+ 251
+ 20
+
+ -
+ 7472.408
+ 22621.96
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c6f55555-4ed5-4ecc-95a8-aa541d445714
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 7380
+ 22602
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7380.248
+ 22602.12
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 1db267cd-0509-41e9-a6a8-e8deb71f75d9
+ - Expression
+
+
+
+
+
+ -
+ 7559
+ 22724
+ 79
+ 28
+
+ -
+ 7601
+ 22738
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - cc621504-512d-4ac6-91b1-281673b76aec
+ - Variable X
+ - X
+ - true
+ - 59c34dbd-eb3c-4e58-b214-d73e4bd181b8
+ - 1
+
+
+
+
+ -
+ 7561
+ 22726
+ 14
+ 24
+
+ -
+ 7569.5
+ 22738
+
+
+
+
+
+
+
+ - Result of expression
+ - 9796bec2-1cbe-43a2-a02e-48c1a736aa58
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 7627
+ 22726
+ 9
+ 24
+
+ -
+ 7633
+ 22738
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 44b37048-c31c-4e55-aa4a-0a740586d36f
+ - Point
+ - Point
+ - false
+ - 9a96a98b-9d42-4cd5-9284-e3ec69b5d0ba
+ - 1
+
+
+
+
+ -
+ 7595
+ 20255
+ 50
+ 24
+
+ -
+ 7620.229
+ 20267.68
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9a96a98b-9d42-4cd5-9284-e3ec69b5d0ba
+ - Relay
+
+ - false
+ - a61bb92d-8752-43bd-b0f3-9fe07f3d2ca7
+ - 1
+
+
+
+
+ -
+ 7595
+ 20298
+ 40
+ 16
+
+ -
+ 7615
+ 20306
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 30001983-c314-4c6c-88d3-45dee8332dbb
+ - Relay
+
+ - false
+ - eab696e2-c4e3-4ce2-8816-2f67db84bbc0
+ - 1
+
+
+
+
+ -
+ 7595
+ 20075
+ 40
+ 16
+
+ -
+ 7615
+ 20083
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 9f95dc08-d6f9-4d10-a5dd-ef1fc47e0022
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7538
+ 20111
+ 154
+ 64
+
+ -
+ 7622
+ 20143
+
+
+
+
+
+ - Base geometry
+ - c258f749-5dca-4794-8a90-569d0f6fe12d
+ - Geometry
+ - Geometry
+ - true
+ - 44b37048-c31c-4e55-aa4a-0a740586d36f
+ - 1
+
+
+
+
+ -
+ 7540
+ 20113
+ 67
+ 20
+
+ -
+ 7583
+ 20123
+
+
+
+
+
+
+
+ - Center of scaling
+ - ecca6d47-7eba-496e-a8c9-fa3038220daf
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7540
+ 20133
+ 67
+ 20
+
+ -
+ 7583
+ 20143
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a5d635d8-75b8-4734-ae2f-be4c2572b02c
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - ddb6fc0a-d855-4568-a2d9-a2271d2cdc89
+ - 1
+
+
+
+
+ -
+ 7540
+ 20153
+ 67
+ 20
+
+ -
+ 7583
+ 20163
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - eab696e2-c4e3-4ce2-8816-2f67db84bbc0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7637
+ 20113
+ 53
+ 30
+
+ -
+ 7665
+ 20128
+
+
+
+
+
+
+
+ - Transformation data
+ - 7473926d-4375-48df-88e8-32f22d663cf8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7637
+ 20143
+ 53
+ 30
+
+ -
+ 7665
+ 20158
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ddb6fc0a-d855-4568-a2d9-a2271d2cdc89
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 7500
+ 20200
+ 250
+ 20
+
+ -
+ 7500.008
+ 20200.04
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 44b37048-c31c-4e55-aa4a-0a740586d36f
+ - 1
+ - c87e5f22-762f-485a-b818-05e9c603f0ea
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 8d817556-0832-443c-be60-e7ab66e4da64
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 7471
+ 22522
+ 251
+ 20
+
+ -
+ 7471.908
+ 22522.27
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 2a8104db-2b14-4f9d-818b-f57b27a43158
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 7021
+ 21730
+ 250
+ 20
+
+ -
+ 7021.861
+ 21730.22
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 480c272f-7843-426f-a04e-5a5346efaa51
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 7518
+ 17575
+ 139
+ 64
+
+ -
+ 7603
+ 17607
+
+
+
+
+
+ - Vector {x} component
+ - 5eeddf17-5605-4187-93dc-d5d5fadafba9
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 17577
+ 68
+ 20
+
+ -
+ 7555.5
+ 17587
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 7.5
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 45bafb6b-be67-4a00-af45-fb58b57c015f
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 17597
+ 68
+ 20
+
+ -
+ 7555.5
+ 17607
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - 65ab5509-1800-42dd-9467-31e90422db1a
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7520
+ 17617
+ 68
+ 20
+
+ -
+ 7555.5
+ 17627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - c662a3f5-c686-480e-a9f6-c0e87c370038
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 7618
+ 17577
+ 37
+ 30
+
+ -
+ 7638
+ 17592
+
+
+
+
+
+
+
+ - Vector length
+ - 07a8e585-f594-4e1f-a6c6-89b80802af7f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7618
+ 17607
+ 37
+ 30
+
+ -
+ 7638
+ 17622
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 9e0ce62b-127c-4d18-bb00-e332cc94cdd6
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7101
+ 21872
+ 89
+ 64
+
+ -
+ 7146
+ 21904
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 4a06d7ae-7dae-4bfb-980a-7b072ad2e86f
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 7103
+ 21874
+ 28
+ 20
+
+ -
+ 7118.5
+ 21884
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - b24f515f-c478-4697-87a6-9b0dfab933a7
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 5494d448-a9bd-4b32-86e1-470ecb156672
+ - 1
+
+
+
+
+ -
+ 7103
+ 21894
+ 28
+ 20
+
+ -
+ 7118.5
+ 21904
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 03c23076-caed-430e-ae23-020b5b65651f
+ - false
+ - Stream 1
+ - 1
+ - true
+ - b09beea0-b303-4bd8-86ed-e165609c0970
+ - 1
+
+
+
+
+ -
+ 7103
+ 21914
+ 28
+ 20
+
+ -
+ 7118.5
+ 21924
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 07c1ea70-9f34-4cb2-9732-c0811f7a89a4
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7161
+ 21874
+ 27
+ 60
+
+ -
+ 7176
+ 21904
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 106a93b0-0601-48d7-b498-a6b907cb491a
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 7571
+ 20844
+ 40
+ 16
+
+ -
+ 7591
+ 20852
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7755e3e6-ee6a-4ca5-b0ae-de3494cb158d
+ - 1f429ea5-caf2-4335-839e-c4a1fc6e4f3b
+ - d2c8396a-8532-419d-8481-bdd10c5ce58a
+ - db1b8d5e-412a-4412-9349-bb9ad1eae269
+ - 57ec1eb2-bdf2-4ae4-9b47-059230205343
+ - 5c9b2941-e7bb-44a7-8d6a-1ff9d33be17e
+ - 6
+ - e7fb6ba5-e63b-42da-a6dc-00266123c4e9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 78ba8d97-20e4-48d4-b488-06cd19be5bd4
+ - 8b43278d-a015-4bf3-ae9b-67056074812e
+ - 91b3a261-507f-4dc7-b340-12fe35761068
+ - 02751fe1-3a98-426e-afcf-5ecbb995108d
+ - 68e44c45-f8e9-41a0-a756-15b1e702a860
+ - 96560ed6-d048-4e65-bec7-90a53c6e70d9
+ - cbcdbd2d-d103-4cb5-9042-187b4284dd51
+ - 332103c5-7760-411a-9ded-39aee3a6955b
+ - c1fa8501-0e6f-4710-aef6-6ae81d7fcd46
+ - 49ff4401-8150-494a-bb82-f23540526c63
+ - cd022c50-d05a-419d-9381-0a403bcafbf3
+ - e13e30a7-17a6-462e-a483-e43c92ba2d20
+ - 058ad49d-69a3-48ec-ba62-11bd3a0cd5eb
+ - 1039284a-7fb8-4f65-8a63-a8b8847c847e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - d7213532-5e84-4452-8be6-de7278fd0d5b
+ - 170e89e6-0823-483d-b6da-8a61c53027b7
+ - 82b9d602-bf3a-4de6-b944-fe2247c951ab
+ - 1286c6f1-4f75-44ec-b334-7880fb5f8dd6
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - eb2a842f-a395-41a0-a667-f7168a1b8090
+ - 777a1d64-6482-4221-8c26-8ff31e84f24a
+ - 1d617850-f3e5-4787-bd84-3281835cabb5
+ - 6d717f7d-ebf6-4079-9aa3-f85139a8884f
+ - ab070339-75ac-48af-8207-0ca30bf14d26
+ - 38b3604b-77db-495a-8a08-a39707d7a30c
+ - 1e27447a-66be-4102-a4b5-8b1390997178
+ - fb7a1f8d-54ee-4990-b936-573b815e4ff1
+ - 97c40c85-0b82-4dae-888c-d721101ac522
+ - dbd93ad4-4190-4668-8af3-d07c04c66dc6
+ - 13560c87-2332-4330-a49f-82b99b1436c4
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - 49609cea-1a70-45c3-80dc-ea251ad00f53
+ - bf597752-e6d4-4ce1-83f3-62cfda6b3f4f
+ - beb59961-19f0-428e-9f46-fe2528ab7890
+ - 0304cf48-a7fc-4bcc-8650-66449de2135a
+ - a8d21499-77ba-4cb5-b537-1b492d0b072d
+ - 3f2c26a5-5bd0-4ea3-a2f3-bd6cde2079ab
+ - 5ba680bf-5f36-48f2-b02f-fc20f272de3d
+ - 3b2adea6-57f3-403d-b72b-1544d3bf2abf
+ - 551339a5-7ce0-4224-9324-ed0296881b78
+ - fac3ba7c-9c82-400d-8c85-ee5c865de4a4
+ - a8da2956-af99-4098-8c44-b5ecafad51ab
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - 4850df6e-1289-45cc-bc62-0c065424321f
+ - 7cc36c08-4a10-44c0-9661-d1009f358693
+ - 0dae7229-a981-46e0-bb9d-860d9430cf7b
+ - 3f846370-657a-4b9d-ad02-96c4d9f2915e
+ - 4a4f4785-005f-4c36-abe9-497bfc357b48
+ - 55787898-278b-4394-8fb9-e372fd6c279e
+ - 16241c5b-95ba-488a-8cb8-302f94aab8b1
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 8b2e8ccc-1d3f-4467-8a7d-76db9d271482
+ - f57c4b4a-115b-43b2-994f-2217561c619c
+ - 48c1450b-113e-4f0e-883e-18eca0eec5a3
+ - 02fbeae1-9aa8-46e0-9d9c-664e1e333613
+ - 1853c135-e40d-42f1-b137-d067d992777d
+ - ea44be3b-6a32-40ae-8c3e-f3a93a5747b7
+ - e2c05755-5629-4a6c-b861-546e7afab9ab
+ - 48de1dbe-2eec-4842-ac37-4b7870464e31
+ - d49af78f-71dd-4c54-8395-8dbfc64b7443
+ - b32cfad3-c586-46bc-b8b7-c18cda99cc37
+ - 3fe78e12-dc17-4eef-876e-a7218b28ee25
+ - cae291b5-909f-42aa-82b4-b311788dad66
+ - d6a65cf3-3c57-4aab-8be1-8f4ffb307b50
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - 57ca2b82-e6ca-4f33-9af0-b056547d4b2c
+ - 5449d956-2675-4285-951d-b70810171010
+ - 67fedd6d-2205-4e18-9171-cbde1d5c2e46
+ - 340f190e-6016-465d-ac0f-373367888e16
+ - a08ec1bc-7d44-4b5f-86b0-78148107593e
+ - 348dcc14-62a3-4d82-9951-97beb79884ee
+ - 175ce8c8-265b-4672-b747-2e617bce8bae
+ - 27ce5316-f16d-488a-a1b9-8aa96103f1a7
+ - 4cffdb4a-a1ed-49d7-ac90-5f7a82c4f4d0
+ - 7f7a3dbe-41bb-4147-86f8-d889f01d5876
+ - f6a9ded4-3b5b-4b16-90c6-185afd448198
+ - 43753d2c-fbd3-4f99-8b7e-646c3b4a63f0
+ - beb8b866-28da-4aab-b549-e1451e63528b
+ - 09967293-5e47-4acc-bdd9-021303a75163
+ - 2fc80a44-8804-4877-b49b-3501b0d8d6f4
+ - 9fc3eda7-d22b-4858-9e35-874868e02c53
+ - add20bae-e52c-49ee-bb21-e5508403ec1c
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - 11f7fad5-5c45-4475-b82b-a3f9574c63cf
+ - 85
+ - 79e4112a-ea9e-4e33-b1f4-b2c7ebbb6c1f
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8b43278d-a015-4bf3-ae9b-67056074812e
+ - 91b3a261-507f-4dc7-b340-12fe35761068
+ - 02751fe1-3a98-426e-afcf-5ecbb995108d
+ - 68e44c45-f8e9-41a0-a756-15b1e702a860
+ - 96560ed6-d048-4e65-bec7-90a53c6e70d9
+ - cbcdbd2d-d103-4cb5-9042-187b4284dd51
+ - 332103c5-7760-411a-9ded-39aee3a6955b
+ - c1fa8501-0e6f-4710-aef6-6ae81d7fcd46
+ - 49ff4401-8150-494a-bb82-f23540526c63
+ - cd022c50-d05a-419d-9381-0a403bcafbf3
+ - e13e30a7-17a6-462e-a483-e43c92ba2d20
+ - 058ad49d-69a3-48ec-ba62-11bd3a0cd5eb
+ - 1039284a-7fb8-4f65-8a63-a8b8847c847e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - d7213532-5e84-4452-8be6-de7278fd0d5b
+ - 170e89e6-0823-483d-b6da-8a61c53027b7
+ - 82b9d602-bf3a-4de6-b944-fe2247c951ab
+ - 1286c6f1-4f75-44ec-b334-7880fb5f8dd6
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - eb2a842f-a395-41a0-a667-f7168a1b8090
+ - 777a1d64-6482-4221-8c26-8ff31e84f24a
+ - 1d617850-f3e5-4787-bd84-3281835cabb5
+ - 6d717f7d-ebf6-4079-9aa3-f85139a8884f
+ - ab070339-75ac-48af-8207-0ca30bf14d26
+ - 38b3604b-77db-495a-8a08-a39707d7a30c
+ - 1e27447a-66be-4102-a4b5-8b1390997178
+ - fb7a1f8d-54ee-4990-b936-573b815e4ff1
+ - 97c40c85-0b82-4dae-888c-d721101ac522
+ - dbd93ad4-4190-4668-8af3-d07c04c66dc6
+ - 13560c87-2332-4330-a49f-82b99b1436c4
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - 49609cea-1a70-45c3-80dc-ea251ad00f53
+ - bf597752-e6d4-4ce1-83f3-62cfda6b3f4f
+ - beb59961-19f0-428e-9f46-fe2528ab7890
+ - 0304cf48-a7fc-4bcc-8650-66449de2135a
+ - a8d21499-77ba-4cb5-b537-1b492d0b072d
+ - 3f2c26a5-5bd0-4ea3-a2f3-bd6cde2079ab
+ - 5ba680bf-5f36-48f2-b02f-fc20f272de3d
+ - 3b2adea6-57f3-403d-b72b-1544d3bf2abf
+ - 551339a5-7ce0-4224-9324-ed0296881b78
+ - fac3ba7c-9c82-400d-8c85-ee5c865de4a4
+ - a8da2956-af99-4098-8c44-b5ecafad51ab
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - 4850df6e-1289-45cc-bc62-0c065424321f
+ - 7cc36c08-4a10-44c0-9661-d1009f358693
+ - 0dae7229-a981-46e0-bb9d-860d9430cf7b
+ - 3f846370-657a-4b9d-ad02-96c4d9f2915e
+ - 4a4f4785-005f-4c36-abe9-497bfc357b48
+ - 55787898-278b-4394-8fb9-e372fd6c279e
+ - 16241c5b-95ba-488a-8cb8-302f94aab8b1
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 8b2e8ccc-1d3f-4467-8a7d-76db9d271482
+ - f57c4b4a-115b-43b2-994f-2217561c619c
+ - 48c1450b-113e-4f0e-883e-18eca0eec5a3
+ - 02fbeae1-9aa8-46e0-9d9c-664e1e333613
+ - 1853c135-e40d-42f1-b137-d067d992777d
+ - ea44be3b-6a32-40ae-8c3e-f3a93a5747b7
+ - e2c05755-5629-4a6c-b861-546e7afab9ab
+ - 48de1dbe-2eec-4842-ac37-4b7870464e31
+ - d49af78f-71dd-4c54-8395-8dbfc64b7443
+ - b32cfad3-c586-46bc-b8b7-c18cda99cc37
+ - 3fe78e12-dc17-4eef-876e-a7218b28ee25
+ - cae291b5-909f-42aa-82b4-b311788dad66
+ - d6a65cf3-3c57-4aab-8be1-8f4ffb307b50
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - 57ca2b82-e6ca-4f33-9af0-b056547d4b2c
+ - 5449d956-2675-4285-951d-b70810171010
+ - 67fedd6d-2205-4e18-9171-cbde1d5c2e46
+ - 340f190e-6016-465d-ac0f-373367888e16
+ - a08ec1bc-7d44-4b5f-86b0-78148107593e
+ - 348dcc14-62a3-4d82-9951-97beb79884ee
+ - 175ce8c8-265b-4672-b747-2e617bce8bae
+ - 27ce5316-f16d-488a-a1b9-8aa96103f1a7
+ - 4cffdb4a-a1ed-49d7-ac90-5f7a82c4f4d0
+ - 7f7a3dbe-41bb-4147-86f8-d889f01d5876
+ - f6a9ded4-3b5b-4b16-90c6-185afd448198
+ - 43753d2c-fbd3-4f99-8b7e-646c3b4a63f0
+ - beb8b866-28da-4aab-b549-e1451e63528b
+ - 09967293-5e47-4acc-bdd9-021303a75163
+ - 79
+ - 78ba8d97-20e4-48d4-b488-06cd19be5bd4
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 43753d2c-fbd3-4f99-8b7e-646c3b4a63f0
+ - 1
+ - 8b43278d-a015-4bf3-ae9b-67056074812e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 02751fe1-3a98-426e-afcf-5ecbb995108d
+ - 1
+ - 91b3a261-507f-4dc7-b340-12fe35761068
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 68e44c45-f8e9-41a0-a756-15b1e702a860
+ - 1
+ - 02751fe1-3a98-426e-afcf-5ecbb995108d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 96560ed6-d048-4e65-bec7-90a53c6e70d9
+ - 1
+ - 68e44c45-f8e9-41a0-a756-15b1e702a860
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cbcdbd2d-d103-4cb5-9042-187b4284dd51
+ - 1
+ - 96560ed6-d048-4e65-bec7-90a53c6e70d9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 332103c5-7760-411a-9ded-39aee3a6955b
+ - 1
+ - cbcdbd2d-d103-4cb5-9042-187b4284dd51
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 49ff4401-8150-494a-bb82-f23540526c63
+ - 1
+ - 332103c5-7760-411a-9ded-39aee3a6955b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c1fa8501-0e6f-4710-aef6-6ae81d7fcd46
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9252
+ 21577
+ 50
+ 24
+
+ -
+ 9277.684
+ 21589.01
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c1fa8501-0e6f-4710-aef6-6ae81d7fcd46
+ - 1
+ - 49ff4401-8150-494a-bb82-f23540526c63
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - dbd93ad4-4190-4668-8af3-d07c04c66dc6
+ - 1
+ - cd022c50-d05a-419d-9381-0a403bcafbf3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 058ad49d-69a3-48ec-ba62-11bd3a0cd5eb
+ - 1039284a-7fb8-4f65-8a63-a8b8847c847e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - d7213532-5e84-4452-8be6-de7278fd0d5b
+ - 170e89e6-0823-483d-b6da-8a61c53027b7
+ - 82b9d602-bf3a-4de6-b944-fe2247c951ab
+ - 1286c6f1-4f75-44ec-b334-7880fb5f8dd6
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 777a1d64-6482-4221-8c26-8ff31e84f24a
+ - eb2a842f-a395-41a0-a667-f7168a1b8090
+ - cd022c50-d05a-419d-9381-0a403bcafbf3
+ - 49ff4401-8150-494a-bb82-f23540526c63
+ - 57ca2b82-e6ca-4f33-9af0-b056547d4b2c
+ - 5449d956-2675-4285-951d-b70810171010
+ - 67fedd6d-2205-4e18-9171-cbde1d5c2e46
+ - 340f190e-6016-465d-ac0f-373367888e16
+ - a08ec1bc-7d44-4b5f-86b0-78148107593e
+ - 348dcc14-62a3-4d82-9951-97beb79884ee
+ - cae291b5-909f-42aa-82b4-b311788dad66
+ - d6a65cf3-3c57-4aab-8be1-8f4ffb307b50
+ - 20
+ - e13e30a7-17a6-462e-a483-e43c92ba2d20
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 058ad49d-69a3-48ec-ba62-11bd3a0cd5eb
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 9225
+ 22737
+ 104
+ 64
+
+ -
+ 9284
+ 22769
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 0a3ed188-e985-452e-9ff5-cd0a32dae120
+ - Data
+ - Data
+ - false
+ - 3441c199-dcc1-4b33-934b-cfbae9c4275e
+ - 1
+
+
+
+
+ -
+ 9227
+ 22739
+ 42
+ 20
+
+ -
+ 9249.5
+ 22749
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 39ec433b-0285-4cb6-b72b-ae0de8502430
+ - Number
+ - Number
+ - false
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - 1
+
+
+
+
+ -
+ 9227
+ 22759
+ 42
+ 20
+
+ -
+ 9249.5
+ 22769
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - e98f6c79-061f-423b-b564-c00fe80a78e0
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 9227
+ 22779
+ 42
+ 20
+
+ -
+ 9249.5
+ 22789
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 33b9cd87-5f23-4af9-99be-03484f0d3cd1
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 9299
+ 22739
+ 28
+ 60
+
+ -
+ 9314.5
+ 22769
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 1039284a-7fb8-4f65-8a63-a8b8847c847e
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 9211
+ 20809
+ 116
+ 44
+
+ -
+ 9272
+ 20831
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - 12d5745b-b37e-43c0-843a-56929a8c4807
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 33b9cd87-5f23-4af9-99be-03484f0d3cd1
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9213
+ 20811
+ 44
+ 20
+
+ -
+ 9236.5
+ 20821
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 7e6b428e-4fb4-49f8-8d14-87f691d21b7f
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 42c35aa7-cdbc-4be6-97e3-313e6cf9e229
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 9213
+ 20831
+ 44
+ 20
+
+ -
+ 9236.5
+ 20841
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - 3192b03b-e4b1-411f-ab6c-4012a9b71cda
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 20811
+ 38
+ 20
+
+ -
+ 9307.5
+ 20821
+
+
+
+
+
+
+
+ - Output parameter Points
+ - 981930d9-4b2a-4b10-8210-cbef51e1dcc0
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 20831
+ 38
+ 20
+
+ -
+ 9307.5
+ 20841
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - d7213532-5e84-4452-8be6-de7278fd0d5b
+ - Series
+ - Series
+
+
+
+
+ -
+ 9222
+ 22066
+ 101
+ 64
+
+ -
+ 9272
+ 22098
+
+
+
+
+
+ - First number in the series
+ - 48bcc301-5606-4043-b5aa-9d1fe2b346de
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9224
+ 22068
+ 33
+ 20
+
+ -
+ 9242
+ 22078
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - bec12e81-b467-4fbe-b8d1-513264384ecc
+ - Step
+ - Step
+ - false
+ - f6a9ded4-3b5b-4b16-90c6-185afd448198
+ - 1
+
+
+
+
+ -
+ 9224
+ 22088
+ 33
+ 20
+
+ -
+ 9242
+ 22098
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 83ada186-9e38-4809-8b20-5b3656b3f1bd
+ - Count
+ - Count
+ - false
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - 1
+
+
+
+
+ -
+ 9224
+ 22108
+ 33
+ 20
+
+ -
+ 9242
+ 22118
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 5cd2669e-4aec-471a-b8a7-2754c45d0366
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 9287
+ 22068
+ 34
+ 60
+
+ -
+ 9305.5
+ 22098
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 170e89e6-0823-483d-b6da-8a61c53027b7
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9210
+ 22920
+ 150
+ 20
+
+ -
+ 9210.363
+ 22920.86
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 82b9d602-bf3a-4de6-b944-fe2247c951ab
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 9172
+ 22308
+ 120
+ 28
+
+ -
+ 9233
+ 22322
+
+
+
+
+
+ - Angle in degrees
+ - 7787b94f-a008-46ca-84c7-30f149dcfd14
+ - Degrees
+ - Degrees
+ - false
+ - 03a6dc84-f1f0-401e-ab4c-5cd21e8e5b00
+ - 1
+
+
+
+
+ -
+ 9174
+ 22310
+ 44
+ 24
+
+ -
+ 9197.5
+ 22322
+
+
+
+
+
+
+
+ - Angle in radians
+ - 0c73dfab-a73a-4c0b-8a5f-cfa5642dea2e
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 9248
+ 22310
+ 42
+ 24
+
+ -
+ 9270.5
+ 22322
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 1286c6f1-4f75-44ec-b334-7880fb5f8dd6
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 9150
+ 22675
+ 251
+ 20
+
+ -
+ 9150.574
+ 22675.85
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - eb2a842f-a395-41a0-a667-f7168a1b8090
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 9197
+ 20044
+ 144
+ 84
+
+ -
+ 9283
+ 20086
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 8c946e43-ae5a-4866-a8c3-b9235c87365d
+ - Vertices
+ - Vertices
+ - false
+ - d2c8396a-8532-419d-8481-bdd10c5ce58a
+ - 1
+
+
+
+
+ -
+ 9199
+ 20046
+ 69
+ 20
+
+ -
+ 9235
+ 20056
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 8655a585-24a4-4608-a2a0-fed84f02f2df
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 20066
+ 69
+ 20
+
+ -
+ 9235
+ 20076
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - ce08e837-a42b-4294-97ce-29210331a9e3
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 20086
+ 69
+ 20
+
+ -
+ 9235
+ 20096
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 9953718f-457b-45fc-afce-079d4f6df2f1
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 20106
+ 69
+ 20
+
+ -
+ 9235
+ 20116
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 785870ed-7168-4194-a6cb-1315975c5831
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9298
+ 20046
+ 41
+ 26
+
+ -
+ 9320
+ 20059.33
+
+
+
+
+
+
+
+ - Curve length
+ - d999d374-f05d-4786-a492-dae5e85f1fcd
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9298
+ 20072
+ 41
+ 27
+
+ -
+ 9320
+ 20086
+
+
+
+
+
+
+
+ - Curve domain
+ - 54a99784-cfb0-47d5-888b-0f1b05f937cb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9298
+ 20099
+ 41
+ 27
+
+ -
+ 9320
+ 20112.67
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 058ad49d-69a3-48ec-ba62-11bd3a0cd5eb
+ - 1039284a-7fb8-4f65-8a63-a8b8847c847e
+ - c224342c-801f-4459-9224-44879ddf539f
+ - d7213532-5e84-4452-8be6-de7278fd0d5b
+ - 170e89e6-0823-483d-b6da-8a61c53027b7
+ - 82b9d602-bf3a-4de6-b944-fe2247c951ab
+ - 1286c6f1-4f75-44ec-b334-7880fb5f8dd6
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - 27ce5316-f16d-488a-a1b9-8aa96103f1a7
+ - bf597752-e6d4-4ce1-83f3-62cfda6b3f4f
+ - 3fe78e12-dc17-4eef-876e-a7218b28ee25
+ - 175ce8c8-265b-4672-b747-2e617bce8bae
+ - 4cffdb4a-a1ed-49d7-ac90-5f7a82c4f4d0
+ - 4d684f21-0b75-4a95-80eb-e6ed0eb1ba49
+ - 14
+ - 777a1d64-6482-4221-8c26-8ff31e84f24a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1d617850-f3e5-4787-bd84-3281835cabb5
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9197
+ 19876
+ 144
+ 64
+
+ -
+ 9271
+ 19908
+
+
+
+
+
+ - Curve to evaluate
+ - 9ab92278-21d1-47db-9bd2-e5db6b7df77d
+ - Curve
+ - Curve
+ - false
+ - 785870ed-7168-4194-a6cb-1315975c5831
+ - 1
+
+
+
+
+ -
+ 9199
+ 19878
+ 57
+ 20
+
+ -
+ 9229
+ 19888
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - faaf8c2d-63fb-466d-9428-5b9c24f3a42e
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19898
+ 57
+ 20
+
+ -
+ 9229
+ 19908
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 9fe530b0-b1e8-4c75-b77c-713304da3b8e
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19918
+ 57
+ 20
+
+ -
+ 9229
+ 19928
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f60adb7d-32a2-4956-8da7-e1cb3cc7d50e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19878
+ 53
+ 20
+
+ -
+ 9314
+ 19888
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 64338788-525b-45bb-a662-c0cad4655f9c
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19898
+ 53
+ 20
+
+ -
+ 9314
+ 19908
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 07540a67-cca8-4a1c-8c78-62c7b479d5a7
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19918
+ 53
+ 20
+
+ -
+ 9314
+ 19928
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 6d717f7d-ebf6-4079-9aa3-f85139a8884f
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9200
+ 19814
+ 138
+ 44
+
+ -
+ 9268
+ 19836
+
+
+
+
+
+ - Base geometry
+ - 37a0c615-9a90-4a7a-929b-78e101e9fba7
+ - Geometry
+ - Geometry
+ - true
+ - 785870ed-7168-4194-a6cb-1315975c5831
+ - 1
+
+
+
+
+ -
+ 9202
+ 19816
+ 51
+ 20
+
+ -
+ 9229
+ 19826
+
+
+
+
+
+
+
+ - Mirror plane
+ - d27da496-947e-4073-9b75-31a080cc851f
+ - Plane
+ - Plane
+ - false
+ - 5b9a01c4-a772-4fcb-af6b-04c554cc4a6d
+ - 1
+
+
+
+
+ -
+ 9202
+ 19836
+ 51
+ 20
+
+ -
+ 9229
+ 19846
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - f32e5621-6a5e-4367-8e01-4bbe59d960a7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9283
+ 19816
+ 53
+ 20
+
+ -
+ 9311
+ 19826
+
+
+
+
+
+
+
+ - Transformation data
+ - 903da1f0-6758-4a70-892c-ba182ae90c1b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9283
+ 19836
+ 53
+ 20
+
+ -
+ 9311
+ 19846
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - ab070339-75ac-48af-8207-0ca30bf14d26
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 9216
+ 19960
+ 106
+ 64
+
+ -
+ 9280
+ 19992
+
+
+
+
+
+ - Line start point
+ - b53c4623-b816-49c4-837b-0d51a03f84b5
+ - Start
+ - Start
+ - false
+ - f60adb7d-32a2-4956-8da7-e1cb3cc7d50e
+ - 1
+
+
+
+
+ -
+ 9218
+ 19962
+ 47
+ 20
+
+ -
+ 9243
+ 19972
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 6282e896-3d03-462c-ad96-71c24e5e8035
+ - Direction
+ - Direction
+ - false
+ - 64338788-525b-45bb-a662-c0cad4655f9c
+ - 1
+
+
+
+
+ -
+ 9218
+ 19982
+ 47
+ 20
+
+ -
+ 9243
+ 19992
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 251cd52b-2e63-48f0-adb5-543e38cb6186
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9218
+ 20002
+ 47
+ 20
+
+ -
+ 9243
+ 20012
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 5b9a01c4-a772-4fcb-af6b-04c554cc4a6d
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 9295
+ 19962
+ 25
+ 60
+
+ -
+ 9309
+ 19992
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 38b3604b-77db-495a-8a08-a39707d7a30c
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9210
+ 19752
+ 118
+ 44
+
+ -
+ 9273
+ 19774
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 67a544fa-5ce7-4172-99e4-4674816ea679
+ - Curves
+ - Curves
+ - false
+ - 785870ed-7168-4194-a6cb-1315975c5831
+ - f32e5621-6a5e-4367-8e01-4bbe59d960a7
+ - 2
+
+
+
+
+ -
+ 9212
+ 19754
+ 46
+ 20
+
+ -
+ 9236.5
+ 19764
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - a164235e-7a15-48e0-a8bf-17f5da2e14c4
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9212
+ 19774
+ 46
+ 20
+
+ -
+ 9236.5
+ 19784
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 56734868-78d6-417f-8d03-973fbd89d392
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9288
+ 19754
+ 38
+ 40
+
+ -
+ 9308.5
+ 19774
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 1e27447a-66be-4102-a4b5-8b1390997178
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9197
+ 19668
+ 144
+ 64
+
+ -
+ 9271
+ 19700
+
+
+
+
+
+ - Curve to evaluate
+ - ae2805ee-2ddc-4cd6-9e9c-dbdccf6b14af
+ - Curve
+ - Curve
+ - false
+ - 56734868-78d6-417f-8d03-973fbd89d392
+ - 1
+
+
+
+
+ -
+ 9199
+ 19670
+ 57
+ 20
+
+ -
+ 9229
+ 19680
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 42f8d2dd-c039-4b26-99fc-e207517000a0
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19690
+ 57
+ 20
+
+ -
+ 9229
+ 19700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 4ad0c720-9725-45fc-8aa2-9d38d4ac9873
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19710
+ 57
+ 20
+
+ -
+ 9229
+ 19720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 479438c8-cc4d-4ec6-b97a-a48c9246d670
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19670
+ 53
+ 20
+
+ -
+ 9314
+ 19680
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 651773b1-f446-47b5-a9da-57955b1a717a
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19690
+ 53
+ 20
+
+ -
+ 9314
+ 19700
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - ba8f2ad3-4106-4903-aa88-9cb417bb552b
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19710
+ 53
+ 20
+
+ -
+ 9314
+ 19720
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - fb7a1f8d-54ee-4990-b936-573b815e4ff1
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 9200
+ 19585
+ 138
+ 64
+
+ -
+ 9268
+ 19617
+
+
+
+
+
+ - Base geometry
+ - 6487c664-3c9e-4d2b-b6d5-63b79efc50d8
+ - Geometry
+ - Geometry
+ - true
+ - 56734868-78d6-417f-8d03-973fbd89d392
+ - 1
+
+
+
+
+ -
+ 9202
+ 19587
+ 51
+ 20
+
+ -
+ 9229
+ 19597
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - 626f3b25-df77-4d58-835f-35b8e77efaa1
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 9202
+ 19607
+ 51
+ 20
+
+ -
+ 9229
+ 19617
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 378c33e7-73f0-4ed2-987f-62f389d5e365
+ - Plane
+ - Plane
+ - false
+ - 479438c8-cc4d-4ec6-b97a-a48c9246d670
+ - 1
+
+
+
+
+ -
+ 9202
+ 19627
+ 51
+ 20
+
+ -
+ 9229
+ 19637
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 7305da96-05a5-4a88-8e52-9c731ded1fad
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9283
+ 19587
+ 53
+ 30
+
+ -
+ 9311
+ 19602
+
+
+
+
+
+
+
+ - Transformation data
+ - c6af23b7-4609-4fed-b121-fbc74a3ba695
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9283
+ 19617
+ 53
+ 30
+
+ -
+ 9311
+ 19632
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 97c40c85-0b82-4dae-888c-d721101ac522
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9210
+ 19522
+ 118
+ 44
+
+ -
+ 9273
+ 19544
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c9ebe400-76d5-4b49-84d8-684703748810
+ - Curves
+ - Curves
+ - false
+ - 56734868-78d6-417f-8d03-973fbd89d392
+ - 7305da96-05a5-4a88-8e52-9c731ded1fad
+ - 2
+
+
+
+
+ -
+ 9212
+ 19524
+ 46
+ 20
+
+ -
+ 9236.5
+ 19534
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - cdf7a826-69de-4c0c-a49c-8ade12a872ee
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9212
+ 19544
+ 46
+ 20
+
+ -
+ 9236.5
+ 19554
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 7bcdddd9-8842-4768-ad13-16ebbcdf2485
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9288
+ 19524
+ 38
+ 40
+
+ -
+ 9308.5
+ 19544
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - eb2a842f-a395-41a0-a667-f7168a1b8090
+ - 1d617850-f3e5-4787-bd84-3281835cabb5
+ - 6d717f7d-ebf6-4079-9aa3-f85139a8884f
+ - ab070339-75ac-48af-8207-0ca30bf14d26
+ - 38b3604b-77db-495a-8a08-a39707d7a30c
+ - 1e27447a-66be-4102-a4b5-8b1390997178
+ - fb7a1f8d-54ee-4990-b936-573b815e4ff1
+ - 97c40c85-0b82-4dae-888c-d721101ac522
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - 7755e3e6-ee6a-4ca5-b0ae-de3494cb158d
+ - 1f429ea5-caf2-4335-839e-c4a1fc6e4f3b
+ - d2c8396a-8532-419d-8481-bdd10c5ce58a
+ - db1b8d5e-412a-4412-9349-bb9ad1eae269
+ - 5c9b2941-e7bb-44a7-8d6a-1ff9d33be17e
+ - 57ec1eb2-bdf2-4ae4-9b47-059230205343
+ - 15
+ - dbd93ad4-4190-4668-8af3-d07c04c66dc6
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 13560c87-2332-4330-a49f-82b99b1436c4
+ - Panel
+
+ - false
+ - 0
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9204
+ 22162
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9204.104
+ 22162.36
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - Curve
+ - Curve
+ - false
+ - 7bcdddd9-8842-4768-ad13-16ebbcdf2485
+ - 1
+
+
+
+
+ -
+ 9252
+ 19489
+ 50
+ 24
+
+ -
+ 9277.684
+ 19501.92
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - 1
+ - 49609cea-1a70-45c3-80dc-ea251ad00f53
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bf597752-e6d4-4ce1-83f3-62cfda6b3f4f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 9058
+ 22399
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9058.664
+ 22399.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - beb59961-19f0-428e-9f46-fe2528ab7890
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9197
+ 19396
+ 144
+ 64
+
+ -
+ 9271
+ 19428
+
+
+
+
+
+ - Curve to evaluate
+ - d2edc271-8fa2-4379-9866-305f92739db3
+ - Curve
+ - Curve
+ - false
+ - 7bcdddd9-8842-4768-ad13-16ebbcdf2485
+ - 1
+
+
+
+
+ -
+ 9199
+ 19398
+ 57
+ 20
+
+ -
+ 9229
+ 19408
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c9a77e6e-10e4-4900-8f14-f53a4ca3ce78
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19418
+ 57
+ 20
+
+ -
+ 9229
+ 19428
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 58f813c2-8c1b-446e-869b-94c376452343
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 19438
+ 57
+ 20
+
+ -
+ 9229
+ 19448
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - bb1f2c43-4acb-481a-9a05-548b3525f9aa
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19398
+ 53
+ 20
+
+ -
+ 9314
+ 19408
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 00f1c670-0e68-4058-81e2-cd0bb7e0e952
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19418
+ 53
+ 20
+
+ -
+ 9314
+ 19428
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - d9e2db33-b2ca-46f1-95bc-2c348e42374c
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 19438
+ 53
+ 20
+
+ -
+ 9314
+ 19448
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0304cf48-a7fc-4bcc-8650-66449de2135a
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 19174
+ 194
+ 28
+
+ -
+ 9272
+ 19188
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9e2cd79e-49c9-471b-ab02-6e27794d7ab3
+ - Variable O
+ - O
+ - true
+ - f0ad1cca-33c4-40d1-b1ab-5626290430c5
+ - 1
+
+
+
+
+ -
+ 9174
+ 19176
+ 14
+ 24
+
+ -
+ 9182.5
+ 19188
+
+
+
+
+
+
+
+ - Result of expression
+ - 95a80966-48fc-46d4-894e-2e337adae68e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 19176
+ 9
+ 24
+
+ -
+ 9361
+ 19188
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - a8d21499-77ba-4cb5-b537-1b492d0b072d
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9203
+ 19308
+ 132
+ 64
+
+ -
+ 9250
+ 19340
+
+
+
+
+
+ - Input point
+ - acb11ef5-76a3-49b3-a75a-b8903a186891
+ - Point
+ - Point
+ - false
+ - bb1f2c43-4acb-481a-9a05-548b3525f9aa
+ - 1
+
+
+
+
+ -
+ 9205
+ 19310
+ 30
+ 60
+
+ -
+ 9221.5
+ 19340
+
+
+
+
+
+
+
+ - Point {x} component
+ - f0ad1cca-33c4-40d1-b1ab-5626290430c5
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 19310
+ 68
+ 20
+
+ -
+ 9300.5
+ 19320
+
+
+
+
+
+
+
+ - Point {y} component
+ - 6b708634-6450-40a7-911d-c0990e63d131
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 19330
+ 68
+ 20
+
+ -
+ 9300.5
+ 19340
+
+
+
+
+
+
+
+ - Point {z} component
+ - 8c1d0499-da22-4d25-9bcd-93852c241588
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 19350
+ 68
+ 20
+
+ -
+ 9300.5
+ 19360
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f2c26a5-5bd0-4ea3-a2f3-bd6cde2079ab
+ - Panel
+
+ - false
+ - 0
+ - 95a80966-48fc-46d4-894e-2e337adae68e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 19155
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.455
+ 19155.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5ba680bf-5f36-48f2-b02f-fc20f272de3d
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 19088
+ 194
+ 28
+
+ -
+ 9272
+ 19102
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 886162c7-0004-44bb-b245-02e14506027e
+ - Variable O
+ - O
+ - true
+ - 6b708634-6450-40a7-911d-c0990e63d131
+ - 1
+
+
+
+
+ -
+ 9174
+ 19090
+ 14
+ 24
+
+ -
+ 9182.5
+ 19102
+
+
+
+
+
+
+
+ - Result of expression
+ - 8259b3ad-7bf2-4c66-8b75-b449c63a7de6
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 19090
+ 9
+ 24
+
+ -
+ 9361
+ 19102
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3b2adea6-57f3-403d-b72b-1544d3bf2abf
+ - Panel
+
+ - false
+ - 0
+ - 8259b3ad-7bf2-4c66-8b75-b449c63a7de6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 19067
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.455
+ 19067.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 551339a5-7ce0-4224-9324-ed0296881b78
+ - Division
+ - Division
+
+
+
+
+ -
+ 9228
+ 18986
+ 82
+ 44
+
+ -
+ 9259
+ 19008
+
+
+
+
+
+ - Item to divide (dividend)
+ - 1663c29c-e0bb-4a6d-a2b4-986b5cd29530
+ - A
+ - A
+ - false
+ - 3f2c26a5-5bd0-4ea3-a2f3-bd6cde2079ab
+ - 1
+
+
+
+
+ -
+ 9230
+ 18988
+ 14
+ 20
+
+ -
+ 9238.5
+ 18998
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - c48e1b8a-1a3d-48f2-a5a2-05cb99eea602
+ - B
+ - B
+ - false
+ - 3b2adea6-57f3-403d-b72b-1544d3bf2abf
+ - 1
+
+
+
+
+ -
+ 9230
+ 19008
+ 14
+ 20
+
+ -
+ 9238.5
+ 19018
+
+
+
+
+
+
+
+ - The result of the Division
+ - c4ea3552-07a3-4752-98b4-709a106f0d82
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9274
+ 18988
+ 34
+ 40
+
+ -
+ 9292.5
+ 19008
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fac3ba7c-9c82-400d-8c85-ee5c865de4a4
+ - Panel
+
+ - false
+ - 0
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 18900
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.693
+ 18900.56
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - a8da2956-af99-4098-8c44-b5ecafad51ab
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 18939
+ 194
+ 28
+
+ -
+ 9272
+ 18953
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 02c56d24-49df-46f2-a1d9-1f98f6966225
+ - Variable O
+ - O
+ - true
+ - c4ea3552-07a3-4752-98b4-709a106f0d82
+ - 1
+
+
+
+
+ -
+ 9174
+ 18941
+ 14
+ 24
+
+ -
+ 9182.5
+ 18953
+
+
+
+
+
+
+
+ - Result of expression
+ - cb5163d9-e511-4ae5-9806-6a961797bc7b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 18941
+ 9
+ 24
+
+ -
+ 9361
+ 18953
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - af9d671f-3736-4822-8551-abf4f79f917b
+ - Relay
+
+ - false
+ - cb5163d9-e511-4ae5-9806-6a961797bc7b
+ - 1
+
+
+
+
+ -
+ 9249
+ 18864
+ 40
+ 16
+
+ -
+ 9269
+ 18872
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - 4850df6e-1289-45cc-bc62-0c065424321f
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 9228
+ 18801
+ 82
+ 44
+
+ -
+ 9259
+ 18823
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - b00b210f-f410-4a05-993b-a6d4e517404d
+ - A
+ - A
+ - true
+ - 3b2adea6-57f3-403d-b72b-1544d3bf2abf
+ - 1
+
+
+
+
+ -
+ 9230
+ 18803
+ 14
+ 20
+
+ -
+ 9238.5
+ 18813
+
+
+
+
+
+
+
+ - Second item for addition
+ - 0757895c-3f22-4a92-a3f9-4a6d06c66e34
+ - B
+ - B
+ - true
+ - 3f2c26a5-5bd0-4ea3-a2f3-bd6cde2079ab
+ - 1
+
+
+
+
+ -
+ 9230
+ 18823
+ 14
+ 20
+
+ -
+ 9238.5
+ 18833
+
+
+
+
+
+
+
+ - Result of addition
+ - 102bb354-2996-4152-9553-bc085627892a
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9274
+ 18803
+ 34
+ 40
+
+ -
+ 9292.5
+ 18823
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 7cc36c08-4a10-44c0-9661-d1009f358693
+ - Division
+ - Division
+
+
+
+
+ -
+ 9228
+ 18651
+ 82
+ 44
+
+ -
+ 9259
+ 18673
+
+
+
+
+
+ - Item to divide (dividend)
+ - 1a3a5920-77a0-44dd-8d3b-398e078fbe80
+ - A
+ - A
+ - false
+ - 4a4f4785-005f-4c36-abe9-497bfc357b48
+ - 1
+
+
+
+
+ -
+ 9230
+ 18653
+ 14
+ 20
+
+ -
+ 9238.5
+ 18663
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 9eba7a2b-2583-42f2-9cf1-ec493fba577c
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 9230
+ 18673
+ 14
+ 20
+
+ -
+ 9238.5
+ 18683
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - edbd19a0-f034-45e2-aeca-fdfb724c0f48
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9274
+ 18653
+ 34
+ 40
+
+ -
+ 9292.5
+ 18673
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 0dae7229-a981-46e0-bb9d-860d9430cf7b
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 18603
+ 194
+ 28
+
+ -
+ 9272
+ 18617
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 086e3bcd-75c1-49e2-9ad0-5f267e7302c2
+ - Variable O
+ - O
+ - true
+ - edbd19a0-f034-45e2-aeca-fdfb724c0f48
+ - 1
+
+
+
+
+ -
+ 9174
+ 18605
+ 14
+ 24
+
+ -
+ 9182.5
+ 18617
+
+
+
+
+
+
+
+ - Result of expression
+ - ddd8762d-5223-4073-a498-edecf4c04a7c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 18605
+ 9
+ 24
+
+ -
+ 9361
+ 18617
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3f846370-657a-4b9d-ad02-96c4d9f2915e
+ - Panel
+
+ - false
+ - 0
+ - ddd8762d-5223-4073-a498-edecf4c04a7c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 18583
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.455
+ 18583.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4a4f4785-005f-4c36-abe9-497bfc357b48
+ - Panel
+
+ - false
+ - 0
+ - 800ceadc-9e33-4948-bd24-1eba79149738
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 18735
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.455
+ 18735.33
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 55787898-278b-4394-8fb9-e372fd6c279e
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 18754
+ 194
+ 28
+
+ -
+ 9272
+ 18768
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 8bccb91b-f108-453e-9cc0-f4aad976b9d4
+ - Variable O
+ - O
+ - true
+ - 102bb354-2996-4152-9553-bc085627892a
+ - 1
+
+
+
+
+ -
+ 9174
+ 18756
+ 14
+ 24
+
+ -
+ 9182.5
+ 18768
+
+
+
+
+
+
+
+ - Result of expression
+ - 800ceadc-9e33-4948-bd24-1eba79149738
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 18756
+ 9
+ 24
+
+ -
+ 9361
+ 18768
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 16241c5b-95ba-488a-8cb8-302f94aab8b1
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9192
+ 18480
+ 154
+ 64
+
+ -
+ 9276
+ 18512
+
+
+
+
+
+ - Base geometry
+ - 4e318cd1-249b-41b6-8f00-368583d06bd2
+ - Geometry
+ - Geometry
+ - true
+ - cc428a05-f2a3-4bc8-aa4c-1ac905951fa9
+ - 1
+
+
+
+
+ -
+ 9194
+ 18482
+ 67
+ 20
+
+ -
+ 9237
+ 18492
+
+
+
+
+
+
+
+ - Center of scaling
+ - 60b407ac-f449-48eb-a3cf-7523cdd42d28
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9194
+ 18502
+ 67
+ 20
+
+ -
+ 9237
+ 18512
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - c5d241da-3273-4b8d-a096-7de3a340fd9e
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 3f846370-657a-4b9d-ad02-96c4d9f2915e
+ - 1
+
+
+
+
+ -
+ 9194
+ 18522
+ 67
+ 20
+
+ -
+ 9237
+ 18532
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - bd9f8aef-4554-460c-a7b9-7520ac9f3277
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9291
+ 18482
+ 53
+ 30
+
+ -
+ 9319
+ 18497
+
+
+
+
+
+
+
+ - Transformation data
+ - 1d4d383c-9b94-4180-988f-af16be28aa92
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9291
+ 18512
+ 53
+ 30
+
+ -
+ 9319
+ 18527
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - Curve
+ - Curve
+ - false
+ - bd9f8aef-4554-460c-a7b9-7520ac9f3277
+ - 1
+
+
+
+
+ -
+ 9250
+ 17888
+ 50
+ 24
+
+ -
+ 9275.434
+ 17900.92
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8b2e8ccc-1d3f-4467-8a7d-76db9d271482
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 19261
+ 194
+ 28
+
+ -
+ 9272
+ 19275
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d1f6ae33-3f9d-4684-ae67-4f451855d065
+ - Variable O
+ - O
+ - true
+ - 8c1d0499-da22-4d25-9bcd-93852c241588
+ - 1
+
+
+
+
+ -
+ 9174
+ 19263
+ 14
+ 24
+
+ -
+ 9182.5
+ 19275
+
+
+
+
+
+
+
+ - Result of expression
+ - 6fea29eb-a368-47ad-b32d-bdf64de6ea8a
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 19263
+ 9
+ 24
+
+ -
+ 9361
+ 19275
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f57c4b4a-115b-43b2-994f-2217561c619c
+ - Panel
+
+ - false
+ - 0
+ - 6fea29eb-a368-47ad-b32d-bdf64de6ea8a
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9197
+ 19241
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9197.324
+ 19241.27
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 48c1450b-113e-4f0e-883e-18eca0eec5a3
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9197
+ 18270
+ 144
+ 64
+
+ -
+ 9271
+ 18302
+
+
+
+
+
+ - Curve to evaluate
+ - 103b28d3-6b40-4d07-b989-0043b6ca4c72
+ - Curve
+ - Curve
+ - false
+ - bd9f8aef-4554-460c-a7b9-7520ac9f3277
+ - 1
+
+
+
+
+ -
+ 9199
+ 18272
+ 57
+ 20
+
+ -
+ 9229
+ 18282
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 3e24fd91-7cb3-48b2-aa98-242400098f44
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 18292
+ 57
+ 20
+
+ -
+ 9229
+ 18302
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 0d237493-8278-4465-834a-516113255495
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 18312
+ 57
+ 20
+
+ -
+ 9229
+ 18322
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 64c719d4-4369-4432-910b-044205d72ce5
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 18272
+ 53
+ 20
+
+ -
+ 9314
+ 18282
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 77052456-3532-47cd-8ee0-5abcf060635e
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 18292
+ 53
+ 20
+
+ -
+ 9314
+ 18302
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - fd91882d-4d21-4d5c-be6f-7c62add03ea5
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 18312
+ 53
+ 20
+
+ -
+ 9314
+ 18322
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 02fbeae1-9aa8-46e0-9d9c-664e1e333613
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 18053
+ 194
+ 28
+
+ -
+ 9272
+ 18067
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - f76e3278-a09f-408b-ab49-589027e1da27
+ - Variable O
+ - O
+ - true
+ - ac39f15b-f959-4cbf-9ea1-14221568cb97
+ - 1
+
+
+
+
+ -
+ 9174
+ 18055
+ 14
+ 24
+
+ -
+ 9182.5
+ 18067
+
+
+
+
+
+
+
+ - Result of expression
+ - 5d470041-28a0-4540-898d-ded8365caa46
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 18055
+ 9
+ 24
+
+ -
+ 9361
+ 18067
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 1853c135-e40d-42f1-b137-d067d992777d
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9203
+ 18187
+ 132
+ 64
+
+ -
+ 9250
+ 18219
+
+
+
+
+
+ - Input point
+ - 9fd297f4-5ec3-414b-bce9-51436bef8b67
+ - Point
+ - Point
+ - false
+ - 64c719d4-4369-4432-910b-044205d72ce5
+ - 1
+
+
+
+
+ -
+ 9205
+ 18189
+ 30
+ 60
+
+ -
+ 9221.5
+ 18219
+
+
+
+
+
+
+
+ - Point {x} component
+ - ac39f15b-f959-4cbf-9ea1-14221568cb97
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 18189
+ 68
+ 20
+
+ -
+ 9300.5
+ 18199
+
+
+
+
+
+
+
+ - Point {y} component
+ - afde3a2f-ac28-4b69-8c07-18b71327f490
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 18209
+ 68
+ 20
+
+ -
+ 9300.5
+ 18219
+
+
+
+
+
+
+
+ - Point {z} component
+ - 6bf03d96-1c42-439d-a09d-3679172ab7f2
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9265
+ 18229
+ 68
+ 20
+
+ -
+ 9300.5
+ 18239
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ea44be3b-6a32-40ae-8c3e-f3a93a5747b7
+ - Panel
+
+ - false
+ - 0
+ - 5d470041-28a0-4540-898d-ded8365caa46
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 18028
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.705
+ 18028.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e2c05755-5629-4a6c-b861-546e7afab9ab
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 17967
+ 194
+ 28
+
+ -
+ 9272
+ 17981
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 231f91a0-962e-4ea2-b027-d0e83a654eb3
+ - Variable O
+ - O
+ - true
+ - afde3a2f-ac28-4b69-8c07-18b71327f490
+ - 1
+
+
+
+
+ -
+ 9174
+ 17969
+ 14
+ 24
+
+ -
+ 9182.5
+ 17981
+
+
+
+
+
+
+
+ - Result of expression
+ - f9c8896e-4546-4e2a-a63e-3f95d6ba4a52
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 17969
+ 9
+ 24
+
+ -
+ 9361
+ 17981
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 48de1dbe-2eec-4842-ac37-4b7870464e31
+ - Panel
+
+ - false
+ - 0
+ - f9c8896e-4546-4e2a-a63e-3f95d6ba4a52
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 17943
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.715
+ 17943.21
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d49af78f-71dd-4c54-8395-8dbfc64b7443
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 18139
+ 194
+ 28
+
+ -
+ 9272
+ 18153
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 472ab227-dde5-4121-92d8-b3c61375871b
+ - Variable O
+ - O
+ - true
+ - 6bf03d96-1c42-439d-a09d-3679172ab7f2
+ - 1
+
+
+
+
+ -
+ 9174
+ 18141
+ 14
+ 24
+
+ -
+ 9182.5
+ 18153
+
+
+
+
+
+
+
+ - Result of expression
+ - 7f3d43cd-e967-463b-8378-8bba7ab78079
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 18141
+ 9
+ 24
+
+ -
+ 9361
+ 18153
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b32cfad3-c586-46bc-b8b7-c18cda99cc37
+ - Panel
+
+ - false
+ - 0
+ - 7f3d43cd-e967-463b-8378-8bba7ab78079
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9196
+ 18115
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9196.455
+ 18115.06
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3fe78e12-dc17-4eef-876e-a7218b28ee25
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 9088
+ 22469
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 9088.113
+ 22469.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - cae291b5-909f-42aa-82b4-b311788dad66
+ - Panel
+
+ - false
+ - 0
+ - fa4f3b8c-b571-4a59-87b3-13b92c1fffe4
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9108
+ 20478
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 9108.645
+ 20478.84
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - d6a65cf3-3c57-4aab-8be1-8f4ffb307b50
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 20761
+ 194
+ 28
+
+ -
+ 9272
+ 20775
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 04481ca9-57fe-4cc4-a0d0-c4cbbf6e80d8
+ - Variable O
+ - O
+ - true
+ - 981930d9-4b2a-4b10-8210-cbef51e1dcc0
+ - 1
+
+
+
+
+ -
+ 9174
+ 20763
+ 14
+ 24
+
+ -
+ 9182.5
+ 20775
+
+
+
+
+
+
+
+ - Result of expression
+ - fa4f3b8c-b571-4a59-87b3-13b92c1fffe4
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 20763
+ 9
+ 24
+
+ -
+ 9361
+ 20775
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 9260
+ 22879
+ 50
+ 24
+
+ -
+ 9285.414
+ 22891.16
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 57ca2b82-e6ca-4f33-9af0-b056547d4b2c
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 9100
+ 21043
+ 160
+ 224
+
+ -
+ 9168
+ 21155
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - 2e9ac8ff-0e8f-4b3e-bdd1-938f3af97dca
+ - true
+ - Curves
+ - Curves
+ - false
+ - 54e0f04e-597a-4145-af9f-0a3289f1e95b
+ - 1
+
+
+
+
+ -
+ 9102
+ 21045
+ 51
+ 27
+
+ -
+ 9129
+ 21058.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - c27d9d11-87f5-44a9-b7d4-63754ec9140a
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 6b649df7-8f2d-4dba-8246-390ecc22d5e8
+ - 1
+
+
+
+
+ -
+ 9102
+ 21072
+ 51
+ 28
+
+ -
+ 9129
+ 21086.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - dbd9ccc3-6bf5-42d6-bd11-4f359734b7c3
+ - true
+ - Values
+ - Values
+ - false
+ - 5cd2669e-4aec-471a-b8a7-2754c45d0366
+ - 1
+
+
+
+
+ -
+ 9102
+ 21100
+ 51
+ 27
+
+ -
+ 9129
+ 21113.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - 97b5db9b-b313-4da6-b095-21a69f27e3ba
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9102
+ 21127
+ 51
+ 28
+
+ -
+ 9129
+ 21141.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 6d246813-09ff-437b-b0a2-a2a4ea12f08d
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 9102
+ 21155
+ 51
+ 27
+
+ -
+ 9129
+ 21168.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - a5c9ce89-fec3-4a85-a31b-475aab401a9e
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 9102
+ 21182
+ 51
+ 28
+
+ -
+ 9129
+ 21196.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - d3cfbb68-a437-4930-8eca-f3eae2ef2bc2
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 9102
+ 21210
+ 51
+ 27
+
+ -
+ 9129
+ 21223.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - e52494be-f286-4fdd-b148-bc4a346ad3a0
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 9102
+ 21237
+ 51
+ 28
+
+ -
+ 9129
+ 21251.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - 194fa741-c363-404c-b4b4-5f4b86c20aed
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21045
+ 75
+ 20
+
+ -
+ 9222
+ 21055
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - 567d46c4-62a7-491d-b937-f15c9bfd2e5a
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21065
+ 75
+ 20
+
+ -
+ 9222
+ 21075
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 789e481e-0b6c-4233-9f02-b5ae22ea5973
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21085
+ 75
+ 20
+
+ -
+ 9222
+ 21095
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - fbf49b93-e6df-4cf7-a025-3f0e7dd19f57
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21105
+ 75
+ 20
+
+ -
+ 9222
+ 21115
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 4c688169-6149-4e43-8a49-e8f7e747a312
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21125
+ 75
+ 20
+
+ -
+ 9222
+ 21135
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 8f94437c-df45-4de3-8c60-33f3e5e3a226
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21145
+ 75
+ 20
+
+ -
+ 9222
+ 21155
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - e90896ff-ee3c-4b4f-bf72-562a33ed0d77
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21165
+ 75
+ 20
+
+ -
+ 9222
+ 21175
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 2cae3db5-9ddd-4f06-a369-21d3746fd984
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21185
+ 75
+ 20
+
+ -
+ 9222
+ 21195
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - f51cd5be-ee13-4dc5-b124-6c65342f0f14
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21205
+ 75
+ 20
+
+ -
+ 9222
+ 21215
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 5c9c1a8b-93c4-40f3-bd11-eda4919bb862
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21225
+ 75
+ 20
+
+ -
+ 9222
+ 21235
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 92a4b1c8-a464-493a-a212-c23bf7f8acb0
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 9183
+ 21245
+ 75
+ 20
+
+ -
+ 9222
+ 21255
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 5449d956-2675-4285-951d-b70810171010
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 9221
+ 21468
+ 96
+ 44
+
+ -
+ 9271
+ 21490
+
+
+
+
+
+ - Curve to evaluate
+ - a07a2a99-3653-488f-8be3-4418b9940352
+ - Curve
+ - Curve
+ - false
+ - 54e0f04e-597a-4145-af9f-0a3289f1e95b
+ - 1
+
+
+
+
+ -
+ 9223
+ 21470
+ 33
+ 40
+
+ -
+ 9241
+ 21490
+
+
+
+
+
+
+
+ - Curve start point
+ - 09b02ffb-1ff4-4435-9385-58acaec45fa8
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 21470
+ 29
+ 20
+
+ -
+ 9302
+ 21480
+
+
+
+
+
+
+
+ - Curve end point
+ - 0ec6d2ef-6861-403f-846c-5a4935a67831
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9286
+ 21490
+ 29
+ 20
+
+ -
+ 9302
+ 21500
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - 67fedd6d-2205-4e18-9171-cbde1d5c2e46
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 9211
+ 21340
+ 126
+ 84
+
+ -
+ 9269
+ 21382
+
+
+
+
+
+ - Rectangle base plane
+ - bd13ffaf-1719-4749-8f9a-591d3b4c8b6c
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9213
+ 21342
+ 41
+ 20
+
+ -
+ 9235
+ 21352
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 8853abc6-b124-4355-ab2c-8b213565937c
+ - Point A
+ - Point A
+ - false
+ - 09b02ffb-1ff4-4435-9385-58acaec45fa8
+ - 1
+
+
+
+
+ -
+ 9213
+ 21362
+ 41
+ 20
+
+ -
+ 9235
+ 21372
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 33249685-4698-4381-bf8a-cf6bdba67c85
+ - Point B
+ - Point B
+ - false
+ - 0ec6d2ef-6861-403f-846c-5a4935a67831
+ - 1
+
+
+
+
+ -
+ 9213
+ 21382
+ 41
+ 20
+
+ -
+ 9235
+ 21392
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 903db31b-0233-4cc1-9eed-1996ef6328eb
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 9213
+ 21402
+ 41
+ 20
+
+ -
+ 9235
+ 21412
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 6b649df7-8f2d-4dba-8246-390ecc22d5e8
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 9284
+ 21342
+ 51
+ 40
+
+ -
+ 9311
+ 21362
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 4fdb0f86-644f-46ab-9691-3c31dbd64e14
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9284
+ 21382
+ 51
+ 40
+
+ -
+ 9311
+ 21402
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 340f190e-6016-465d-ac0f-373367888e16
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 9260
+ 21163
+ 126
+ 104
+
+ -
+ 9327
+ 21215
+
+
+
+
+
+ - External curve as a graph
+ - cc95c75d-9fd7-4590-9d24-4b932521675c
+ - Curve
+ - Curve
+ - false
+ - 54e0f04e-597a-4145-af9f-0a3289f1e95b
+ - 1
+
+
+
+
+ -
+ 9262
+ 21165
+ 50
+ 20
+
+ -
+ 9288.5
+ 21175
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - 9d1237cc-a40b-46c0-a394-1f6261eded7a
+ - Boundary
+ - Boundary
+ - true
+ - 6b649df7-8f2d-4dba-8246-390ecc22d5e8
+ - 1
+
+
+
+
+ -
+ 9262
+ 21185
+ 50
+ 20
+
+ -
+ 9288.5
+ 21195
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - d95a76b8-5507-4409-8e63-b798f18deb58
+ - Numbers
+ - Numbers
+ - false
+ - 5cd2669e-4aec-471a-b8a7-2754c45d0366
+ - 1
+
+
+
+
+ -
+ 9262
+ 21205
+ 50
+ 20
+
+ -
+ 9288.5
+ 21215
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 84777dc8-665f-45bf-b2a2-3f27181bfcdf
+ - Input
+ - Input
+ - true
+ - fec395cf-00f8-4e2f-a499-53f29b784cc0
+ - 1
+
+
+
+
+ -
+ 9262
+ 21225
+ 50
+ 20
+
+ -
+ 9288.5
+ 21235
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - fa9e33f8-d941-4cf9-901b-3aa6c9f09363
+ - Output
+ - Output
+ - true
+ - fec395cf-00f8-4e2f-a499-53f29b784cc0
+ - 1
+
+
+
+
+ -
+ 9262
+ 21245
+ 50
+ 20
+
+ -
+ 9288.5
+ 21255
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 27b02828-1bb6-4399-b066-bb1d5018e44a
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 9342
+ 21165
+ 42
+ 100
+
+ -
+ 9364.5
+ 21215
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - a08ec1bc-7d44-4b5f-86b0-78148107593e
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 9235
+ 20960
+ 89
+ 64
+
+ -
+ 9280
+ 20992
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 9456b298-8f79-494f-a8fc-986a4a9dc156
+ - Gate
+ - Gate
+ - false
+ - 354dfcc3-0b67-4297-a62c-b55f2f567519
+ - 1
+
+
+
+
+ -
+ 9237
+ 20962
+ 28
+ 20
+
+ -
+ 9252.5
+ 20972
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 6af91969-cc6c-4ec5-a821-1d2c016642d7
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 194fa741-c363-404c-b4b4-5f4b86c20aed
+ - 1
+
+
+
+
+ -
+ 9237
+ 20982
+ 28
+ 20
+
+ -
+ 9252.5
+ 20992
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 889ec784-0271-4f86-905a-8d35d3c5c6d8
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 27b02828-1bb6-4399-b066-bb1d5018e44a
+ - 1
+
+
+
+
+ -
+ 9237
+ 21002
+ 28
+ 20
+
+ -
+ 9252.5
+ 21012
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 42c35aa7-cdbc-4be6-97e3-313e6cf9e229
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 9295
+ 20962
+ 27
+ 60
+
+ -
+ 9310
+ 20992
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 348dcc14-62a3-4d82-9951-97beb79884ee
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9213
+ 20883
+ 150
+ 20
+
+ -
+ 9213.074
+ 20883.44
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 175ce8c8-265b-4672-b747-2e617bce8bae
+ - Panel
+
+ - false
+ - 1
+ - f6ec9b0e-1959-4307-b8be-1846cbb24f9f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9187
+ 21665
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 9187.145
+ 21665.71
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - 27ce5316-f16d-488a-a1b9-8aa96103f1a7
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 9210
+ 21607
+ 122
+ 28
+
+ -
+ 9274
+ 21621
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 41bf4d99-9629-467a-a4c5-47f3a406be80
+ - Numbers
+ - Numbers
+ - false
+ - 5cd2669e-4aec-471a-b8a7-2754c45d0366
+ - 1
+
+
+
+
+ -
+ 9212
+ 21609
+ 47
+ 24
+
+ -
+ 9237
+ 21621
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - fec395cf-00f8-4e2f-a499-53f29b784cc0
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9289
+ 21609
+ 41
+ 24
+
+ -
+ 9311
+ 21621
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 4cffdb4a-a1ed-49d7-ac90-5f7a82c4f4d0
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9172
+ 22021
+ 194
+ 28
+
+ -
+ 9272
+ 22035
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 1fd7c6b3-7d0f-4813-9338-313a746d02ee
+ - true
+ - Variable O
+ - O
+ - true
+ - 5cd2669e-4aec-471a-b8a7-2754c45d0366
+ - 1
+
+
+
+
+ -
+ 9174
+ 22023
+ 14
+ 24
+
+ -
+ 9182.5
+ 22035
+
+
+
+
+
+
+
+ - Result of expression
+ - f6ec9b0e-1959-4307-b8be-1846cbb24f9f
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 22023
+ 9
+ 24
+
+ -
+ 9361
+ 22035
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - 7f7a3dbe-41bb-4147-86f8-d889f01d5876
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9086
+ 22253
+ 367
+ 28
+
+ -
+ 9272
+ 22267
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 9158bda3-7386-4205-ae80-9071f7ee2493
+ - Variable O
+ - O
+ - true
+ - 0c73dfab-a73a-4c0b-8a5f-cfa5642dea2e
+ - 1
+
+
+
+
+ -
+ 9088
+ 22255
+ 14
+ 24
+
+ -
+ 9096.5
+ 22267
+
+
+
+
+
+
+
+ - Result of expression
+ - 5994ba27-9f08-4c92-b80a-2f52996fba15
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 22255
+ 9
+ 24
+
+ -
+ 9448
+ 22267
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f6a9ded4-3b5b-4b16-90c6-185afd448198
+ - Panel
+
+ - false
+ - 0
+ - 5994ba27-9f08-4c92-b80a-2f52996fba15
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9187
+ 22202
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9187.283
+ 22202.58
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 1
+ - 43753d2c-fbd3-4f99-8b7e-646c3b4a63f0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - beb8b866-28da-4aab-b549-e1451e63528b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9192
+ 18395
+ 154
+ 64
+
+ -
+ 9276
+ 18427
+
+
+
+
+
+ - Base geometry
+ - db7dc39c-5412-417b-836d-4839c574db6f
+ - Geometry
+ - Geometry
+ - true
+ - d2c8396a-8532-419d-8481-bdd10c5ce58a
+ - 1
+
+
+
+
+ -
+ 9194
+ 18397
+ 67
+ 20
+
+ -
+ 9237
+ 18407
+
+
+
+
+
+
+
+ - Center of scaling
+ - 6838292b-e2ee-44d9-af19-86f2996c448d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9194
+ 18417
+ 67
+ 20
+
+ -
+ 9237
+ 18427
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - bb469a39-2105-40f8-8814-257017096b66
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 3f846370-657a-4b9d-ad02-96c4d9f2915e
+ - 1
+
+
+
+
+ -
+ 9194
+ 18437
+ 67
+ 20
+
+ -
+ 9237
+ 18447
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - ebb40015-b064-4c46-836b-5e8e3ecbcc4d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9291
+ 18397
+ 53
+ 30
+
+ -
+ 9319
+ 18412
+
+
+
+
+
+
+
+ - Transformation data
+ - a4167d31-bdec-452f-8d2d-c61605eee113
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9291
+ 18427
+ 53
+ 30
+
+ -
+ 9319
+ 18442
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 09967293-5e47-4acc-bdd9-021303a75163
+ - Point
+ - Point
+ - false
+ - ebb40015-b064-4c46-836b-5e8e3ecbcc4d
+ - 1
+
+
+
+
+ -
+ 9251
+ 18367
+ 50
+ 24
+
+ -
+ 9276.434
+ 18379.1
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 2fc80a44-8804-4877-b49b-3501b0d8d6f4
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9197
+ 17595
+ 138
+ 44
+
+ -
+ 9265
+ 17617
+
+
+
+
+
+ - Base geometry
+ - 3a7472ba-c5e8-4523-9df5-76bac2d08d0d
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 1
+
+
+
+
+ -
+ 9199
+ 17597
+ 51
+ 20
+
+ -
+ 9226
+ 17607
+
+
+
+
+
+
+
+ - Mirror plane
+ - fe5a353c-3c3e-46c3-a3c5-354f2ebae868
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9199
+ 17617
+ 51
+ 20
+
+ -
+ 9226
+ 17627
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - bb3ddc06-ecf9-4ad1-8171-c168e0bbabf9
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9280
+ 17597
+ 53
+ 20
+
+ -
+ 9308
+ 17607
+
+
+
+
+
+
+
+ - Transformation data
+ - f4bdb86e-f989-492d-a8b9-68a0269b48e2
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9280
+ 17617
+ 53
+ 20
+
+ -
+ 9308
+ 17627
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9fc3eda7-d22b-4858-9e35-874868e02c53
+ - Curve
+ - Curve
+ - false
+ - 2e2f5849-d603-4f48-a080-0edf6662328e
+ - 1
+
+
+
+
+ -
+ 9250
+ 17498
+ 50
+ 24
+
+ -
+ 9275.684
+ 17510.1
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 54e0f04e-597a-4145-af9f-0a3289f1e95b
+ - Relay
+
+ - false
+ - 9f075226-9de4-41cb-acf3-b0d1dbb4f6ec
+ - 1
+
+
+
+
+ -
+ 9249
+ 21539
+ 40
+ 16
+
+ -
+ 9269
+ 21547
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 5b7c3df7-2185-4f89-8c08-caf78e94db64
+ - Curve
+ - Curve
+ - false
+ - fa03931f-f4f8-4f14-8042-b8b91912613e
+ - 1
+
+
+
+
+ -
+ 8799
+ 21925
+ 50
+ 24
+
+ -
+ 8824.479
+ 21937.04
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9f075226-9de4-41cb-acf3-b0d1dbb4f6ec
+ - Curve
+ - Curve
+ - false
+ - c01a4474-a643-4cdf-a161-a250c3d98283
+ - 1
+
+
+
+
+ -
+ 8799
+ 21643
+ 50
+ 24
+
+ -
+ 8824.58
+ 21655.38
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 57a3cade-967c-4227-bf83-8c72131bbb5c
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 8740
+ 21672
+ 154
+ 64
+
+ -
+ 8824
+ 21704
+
+
+
+
+
+ - Base geometry
+ - 7ea43ff8-36e5-4ccf-9eeb-4964d5025193
+ - Geometry
+ - Geometry
+ - true
+ - 5b7c3df7-2185-4f89-8c08-caf78e94db64
+ - 1
+
+
+
+
+ -
+ 8742
+ 21674
+ 67
+ 20
+
+ -
+ 8785
+ 21684
+
+
+
+
+
+
+
+ - Center of scaling
+ - f7575d08-9876-4111-aa86-92cb25eae5c9
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 8742
+ 21694
+ 67
+ 20
+
+ -
+ 8785
+ 21704
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 3beb0053-ed39-4cd7-98de-b9c76c2ecb31
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 8742
+ 21714
+ 67
+ 20
+
+ -
+ 8785
+ 21724
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - c01a4474-a643-4cdf-a161-a250c3d98283
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8839
+ 21674
+ 53
+ 30
+
+ -
+ 8867
+ 21689
+
+
+
+
+
+
+
+ - Transformation data
+ - b75d941a-c129-49f6-abd6-73965cc2afda
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8839
+ 21704
+ 53
+ 30
+
+ -
+ 8867
+ 21719
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5b7c3df7-2185-4f89-8c08-caf78e94db64
+ - 9f075226-9de4-41cb-acf3-b0d1dbb4f6ec
+ - 57a3cade-967c-4227-bf83-8c72131bbb5c
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - 21306a40-33c6-4391-a43a-ca231577eb1b
+ - 76eb1ee2-321f-4766-850a-f1cb357c12f3
+ - 90afcf43-cc85-4018-bdda-b1f34b70dfed
+ - 6166ffc3-f563-4c74-888d-123659087092
+ - 49899599-a7b9-4ec5-9218-093b9cde73ce
+ - 44248de2-665a-4000-b154-d2ec4869b7a3
+ - 10
+ - da525afb-fa9f-4e21-ac12-acbf97366f74
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - add20bae-e52c-49ee-bb21-e5508403ec1c
+ - Move
+ - Move
+
+
+
+
+ -
+ 9197
+ 17531
+ 138
+ 44
+
+ -
+ 9265
+ 17553
+
+
+
+
+
+ - Base geometry
+ - 37cb37cc-4078-4c52-a89f-29b2c3224acf
+ - Geometry
+ - Geometry
+ - true
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 1
+
+
+
+
+ -
+ 9199
+ 17533
+ 51
+ 20
+
+ -
+ 9226
+ 17543
+
+
+
+
+
+
+
+ - Translation vector
+ - 9aeeb9dd-dea6-436c-90b3-0ff40e093543
+ - Motion
+ - Motion
+ - false
+ - c3fcf4bf-859e-443f-bfe8-47d5e2042873
+ - 1
+
+
+
+
+ -
+ 9199
+ 17553
+ 51
+ 20
+
+ -
+ 9226
+ 17563
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 2e2f5849-d603-4f48-a080-0edf6662328e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9280
+ 17533
+ 53
+ 20
+
+ -
+ 9308
+ 17543
+
+
+
+
+
+
+
+ - Transformation data
+ - 0987860a-899c-452a-9f45-4fe630f20764
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9280
+ 17553
+ 53
+ 20
+
+ -
+ 9308
+ 17563
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 21306a40-33c6-4391-a43a-ca231577eb1b
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 8699
+ 21868
+ 250
+ 20
+
+ -
+ 8699.879
+ 21868.46
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 76eb1ee2-321f-4766-850a-f1cb357c12f3
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 8757
+ 21768
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 8757.039
+ 21768.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 90afcf43-cc85-4018-bdda-b1f34b70dfed
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8799
+ 21600
+ 50
+ 24
+
+ -
+ 8824.58
+ 21612.38
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 6166ffc3-f563-4c74-888d-123659087092
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8801
+ 22057
+ 50
+ 24
+
+ -
+ 8826.529
+ 22069.21
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e5651227-c26d-44b7-9deb-a849b476e495
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 9057
+ 22450
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9057.664
+ 22450.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6c60cce1-63ea-4385-aabe-af9ce8af0091
+ - Panel
+
+ - false
+ - 0
+ - f7d18941-85b1-4239-8098-7b14404aed2c
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 9057
+ 22573
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 9057.975
+ 22573.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f7bbd50f-abd0-41c3-bf47-aeeb74527a4d
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 9150
+ 22715
+ 251
+ 20
+
+ -
+ 9150.574
+ 22715.41
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 83155b01-ba3a-437f-a348-00c3806bfdf9
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 9058
+ 22695
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 9058.414
+ 22695.56
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 4d684f21-0b75-4a95-80eb-e6ed0eb1ba49
+ - Expression
+
+
+
+
+
+ -
+ 9237
+ 22817
+ 79
+ 28
+
+ -
+ 9279
+ 22831
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 7aa160a4-303c-47a1-837c-296940f1bc6d
+ - Variable X
+ - X
+ - true
+ - 29b40471-71d6-4c88-b1ed-616dd8d46c9b
+ - 1
+
+
+
+
+ -
+ 9239
+ 22819
+ 14
+ 24
+
+ -
+ 9247.5
+ 22831
+
+
+
+
+
+
+
+ - Result of expression
+ - 3441c199-dcc1-4b33-934b-cfbae9c4275e
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 9305
+ 22819
+ 9
+ 24
+
+ -
+ 9311
+ 22831
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 7755e3e6-ee6a-4ca5-b0ae-de3494cb158d
+ - Point
+ - Point
+ - false
+ - 1f429ea5-caf2-4335-839e-c4a1fc6e4f3b
+ - 1
+
+
+
+
+ -
+ 9273
+ 20349
+ 50
+ 24
+
+ -
+ 9298.395
+ 20361.13
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 1f429ea5-caf2-4335-839e-c4a1fc6e4f3b
+ - Relay
+
+ - false
+ - 981930d9-4b2a-4b10-8210-cbef51e1dcc0
+ - 1
+
+
+
+
+ -
+ 9273
+ 20391
+ 40
+ 16
+
+ -
+ 9293
+ 20399
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - d2c8396a-8532-419d-8481-bdd10c5ce58a
+ - Relay
+
+ - false
+ - 3593eb76-1aa0-4606-83ba-47769dd07fb1
+ - 1
+
+
+
+
+ -
+ 9273
+ 20168
+ 40
+ 16
+
+ -
+ 9293
+ 20176
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - db1b8d5e-412a-4412-9349-bb9ad1eae269
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9216
+ 20204
+ 154
+ 64
+
+ -
+ 9300
+ 20236
+
+
+
+
+
+ - Base geometry
+ - 9763e9d0-6808-4451-b267-fe0754231503
+ - Geometry
+ - Geometry
+ - true
+ - 7755e3e6-ee6a-4ca5-b0ae-de3494cb158d
+ - 1
+
+
+
+
+ -
+ 9218
+ 20206
+ 67
+ 20
+
+ -
+ 9261
+ 20216
+
+
+
+
+
+
+
+ - Center of scaling
+ - c3ce551a-4728-4229-ba5b-75612147a87f
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9218
+ 20226
+ 67
+ 20
+
+ -
+ 9261
+ 20236
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - b48f27dc-e7da-453a-b901-607a9dd5f2e6
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 57ec1eb2-bdf2-4ae4-9b47-059230205343
+ - 1
+
+
+
+
+ -
+ 9218
+ 20246
+ 67
+ 20
+
+ -
+ 9261
+ 20256
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 3593eb76-1aa0-4606-83ba-47769dd07fb1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9315
+ 20206
+ 53
+ 30
+
+ -
+ 9343
+ 20221
+
+
+
+
+
+
+
+ - Transformation data
+ - 0fd4e94b-674b-4e12-8222-5e633896455e
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9315
+ 20236
+ 53
+ 30
+
+ -
+ 9343
+ 20251
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 57ec1eb2-bdf2-4ae4-9b47-059230205343
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 9178
+ 20293
+ 250
+ 20
+
+ -
+ 9178.174
+ 20293.48
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 7755e3e6-ee6a-4ca5-b0ae-de3494cb158d
+ - 1
+ - 5c9b2941-e7bb-44a7-8d6a-1ff9d33be17e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - f7d18941-85b1-4239-8098-7b14404aed2c
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.02196259374
+
+
+
+
+ -
+ 9150
+ 22615
+ 251
+ 20
+
+ -
+ 9150.074
+ 22615.71
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 44248de2-665a-4000-b154-d2ec4869b7a3
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 8700
+ 21823
+ 250
+ 20
+
+ -
+ 8700.027
+ 21823.67
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - 11f7fad5-5c45-4475-b82b-a3f9574c63cf
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 9196
+ 17668
+ 139
+ 64
+
+ -
+ 9281
+ 17700
+
+
+
+
+
+ - Vector {x} component
+ - b9697c30-ac00-45bd-b69c-e8c250226712
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 9198
+ 17670
+ 68
+ 20
+
+ -
+ 9233.5
+ 17680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - 3cc8e6e4-8ff0-431d-898f-8900012e8ae8
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 9198
+ 17690
+ 68
+ 20
+
+ -
+ 9233.5
+ 17700
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - eff5a4ae-77ec-4b01-8431-25c35fe96e41
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9198
+ 17710
+ 68
+ 20
+
+ -
+ 9233.5
+ 17720
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - c3fcf4bf-859e-443f-bfe8-47d5e2042873
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 9296
+ 17670
+ 37
+ 30
+
+ -
+ 9316
+ 17685
+
+
+
+
+
+
+
+ - Vector length
+ - e30a28ea-d7b0-4e70-8428-aba91372d73b
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9296
+ 17700
+ 37
+ 30
+
+ -
+ 9316
+ 17715
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 49899599-a7b9-4ec5-9218-093b9cde73ce
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 8779
+ 21965
+ 89
+ 64
+
+ -
+ 8824
+ 21997
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 45beebc5-a6a8-48d2-8c54-a118427a1614
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 8781
+ 21967
+ 28
+ 20
+
+ -
+ 8796.5
+ 21977
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 263beaac-46fa-4c21-9f3c-11632989d692
+ - false
+ - Stream 0
+ - 0
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 8781
+ 21987
+ 28
+ 20
+
+ -
+ 8796.5
+ 21997
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 895f000e-c8bc-4b8f-98ca-18595c632e2a
+ - false
+ - Stream 1
+ - 1
+ - true
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - 1
+
+
+
+
+ -
+ 8781
+ 22007
+ 28
+ 20
+
+ -
+ 8796.5
+ 22017
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - fa03931f-f4f8-4f14-8042-b8b91912613e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 8839
+ 21967
+ 27
+ 60
+
+ -
+ 8854
+ 21997
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 354dfcc3-0b67-4297-a62c-b55f2f567519
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 9249
+ 20937
+ 40
+ 16
+
+ -
+ 9269
+ 20945
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5ec1468c-7072-409a-b450-23cc52f50492
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4793
+ 4780
+ 144
+ 64
+
+ -
+ 4867
+ 4812
+
+
+
+
+
+ - Curve to evaluate
+ - 3d6f9a87-6a01-4358-8238-62a09288677a
+ - true
+ - Curve
+ - Curve
+ - false
+ - d83ebbab-2a2c-4827-8f4a-d8944e735e7f
+ - 1
+
+
+
+
+ -
+ 4795
+ 4782
+ 57
+ 20
+
+ -
+ 4825
+ 4792
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 51090ef9-606a-4392-b7d2-2ad0e9908f6a
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 4802
+ 57
+ 20
+
+ -
+ 4825
+ 4812
+
+
+
+
+
+ - 1
+
+
+
+
+ - 2
+ - {0}
+
+
+
+
+ - 0.25
+
+
+
+
+ - 0.75
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 56782bd2-c22a-434b-8f3b-77c6da96c73a
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 4822
+ 57
+ 20
+
+ -
+ 4825
+ 4832
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 518b32c4-4ad4-45c1-85f3-f5f61ef28642
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 4782
+ 53
+ 20
+
+ -
+ 4910
+ 4792
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 7cf7eabd-9540-49c2-8c45-789f83434d04
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 4802
+ 53
+ 20
+
+ -
+ 4910
+ 4812
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 0ee1400d-b18d-4a9b-8d92-abaebe8cc7ba
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 4822
+ 53
+ 20
+
+ -
+ 4910
+ 4832
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - cbdc5900-c640-4e50-b572-e0f6d83bda24
+ - true
+ - Curve
+ - Curve
+ - false
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - 1
+
+
+
+
+ -
+ 4840
+ 4737
+ 50
+ 24
+
+ -
+ 4865.946
+ 4749.307
+
+
+
+
+
+
+
+
+
+ - 50b204ef-d3de-41bb-a006-02fba2d3f709
+ - Circle TanTan
+
+
+
+
+ - Create a circle tangent to two curves.
+ - true
+ - 27b179cc-34ee-440e-a769-dff3af94186f
+ - true
+ - Circle TanTan
+ - Circle TanTan
+
+
+
+
+ -
+ 4810
+ 4651
+ 110
+ 64
+
+ -
+ 4871
+ 4683
+
+
+
+
+
+ - First curve for tangency constraint
+ - 4bdf725d-151e-4674-8093-c74ef3d23400
+ - true
+ - Curve A
+ - Curve A
+ - false
+ - d83ebbab-2a2c-4827-8f4a-d8944e735e7f
+ - 1
+
+
+
+
+ -
+ 4812
+ 4653
+ 44
+ 20
+
+ -
+ 4835.5
+ 4663
+
+
+
+
+
+
+
+ - Second curve for tangency constraint
+ - 0adf72b3-9d2a-4588-9635-980470d94134
+ - true
+ - Curve B
+ - Curve B
+ - false
+ - cbdc5900-c640-4e50-b572-e0f6d83bda24
+ - 1
+
+
+
+
+ -
+ 4812
+ 4673
+ 44
+ 20
+
+ -
+ 4835.5
+ 4683
+
+
+
+
+
+
+
+ - Circle center point guide
+ - fb57fc4b-316b-404b-9a6a-607a33d5a3a5
+ - true
+ - Point
+ - Point
+ - false
+ - 518b32c4-4ad4-45c1-85f3-f5f61ef28642
+ - 1
+
+
+
+
+ -
+ 4812
+ 4693
+ 44
+ 20
+
+ -
+ 4835.5
+ 4703
+
+
+
+
+
+
+
+ - Resulting circle
+ - f7d75c41-0766-45d4-987d-471d28807fd5
+ - true
+ - Circle
+ - Circle
+ - false
+ - 0
+
+
+
+
+ -
+ 4886
+ 4653
+ 32
+ 60
+
+ -
+ 4903.5
+ 4683
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - d83ebbab-2a2c-4827-8f4a-d8944e735e7f
+ - true
+ - Curve
+ - Curve
+ - false
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - 1
+
+
+
+
+ -
+ 4841
+ 4869
+ 50
+ 24
+
+ -
+ 4866.178
+ 4881.61
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 5ec1468c-7072-409a-b450-23cc52f50492
+ - cbdc5900-c640-4e50-b572-e0f6d83bda24
+ - 27b179cc-34ee-440e-a769-dff3af94186f
+ - d83ebbab-2a2c-4827-8f4a-d8944e735e7f
+ - 4
+ - 0c2cef2d-afcf-49fc-87e3-cb06fd125232
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 050ff4c6-5e3a-42b4-884c-6668bfb2028c
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4793
+ 1834
+ 144
+ 64
+
+ -
+ 4867
+ 1866
+
+
+
+
+
+ - Curve to evaluate
+ - ea76c455-f784-49bb-916c-996662f20c6e
+ - true
+ - Curve
+ - Curve
+ - false
+ - 6c5be315-72f9-4f83-bd95-31f05355bdd6
+ - 1
+
+
+
+
+ -
+ 4795
+ 1836
+ 57
+ 20
+
+ -
+ 4825
+ 1846
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - e3cbf1c3-ad24-42fc-837a-7b6b6e2fef7f
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 1856
+ 57
+ 20
+
+ -
+ 4825
+ 1866
+
+
+
+
+
+ - 1
+
+
+
+
+ - 4
+ - {0}
+
+
+
+
+ - 0.125
+
+
+
+
+ - 0.375
+
+
+
+
+ - 0.625
+
+
+
+
+ - 0.875
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 8be0fa3f-ef5f-4ea1-a62e-fce4ab46c9e8
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 1876
+ 57
+ 20
+
+ -
+ 4825
+ 1886
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - f0eacf5c-7f2b-490a-88f7-5d7d054e781d
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 1836
+ 53
+ 20
+
+ -
+ 4910
+ 1846
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - cf10899e-4fa4-431a-a765-54fcebee7d0e
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 1856
+ 53
+ 20
+
+ -
+ 4910
+ 1866
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - b4128996-872c-4a0d-a19f-b5d9d4327dd7
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 1876
+ 53
+ 20
+
+ -
+ 4910
+ 1886
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - eba2a948-272f-4b81-806e-38f2dab7bb0b
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - 1
+
+
+
+
+ -
+ 4840
+ 1793
+ 50
+ 24
+
+ -
+ 4865.942
+ 1805.2
+
+
+
+
+
+
+
+
+
+ - 50b204ef-d3de-41bb-a006-02fba2d3f709
+ - Circle TanTan
+
+
+
+
+ - Create a circle tangent to two curves.
+ - true
+ - 90282883-c970-4b3c-bc6c-f80056eece86
+ - true
+ - Circle TanTan
+ - Circle TanTan
+
+
+
+
+ -
+ 4810
+ 1705
+ 110
+ 64
+
+ -
+ 4871
+ 1737
+
+
+
+
+
+ - First curve for tangency constraint
+ - b4d35273-9196-482a-9312-c6b6cbb8ad78
+ - true
+ - Curve A
+ - Curve A
+ - false
+ - 6c5be315-72f9-4f83-bd95-31f05355bdd6
+ - 1
+
+
+
+
+ -
+ 4812
+ 1707
+ 44
+ 20
+
+ -
+ 4835.5
+ 1717
+
+
+
+
+
+
+
+ - Second curve for tangency constraint
+ - 94142f16-5bfc-42c7-8289-f5a7b4ffced1
+ - true
+ - Curve B
+ - Curve B
+ - false
+ - eba2a948-272f-4b81-806e-38f2dab7bb0b
+ - 1
+
+
+
+
+ -
+ 4812
+ 1727
+ 44
+ 20
+
+ -
+ 4835.5
+ 1737
+
+
+
+
+
+
+
+ - Circle center point guide
+ - bd644067-b4b1-4145-9ba1-52b1fbae7946
+ - true
+ - Point
+ - Point
+ - false
+ - f0eacf5c-7f2b-490a-88f7-5d7d054e781d
+ - 1
+
+
+
+
+ -
+ 4812
+ 1747
+ 44
+ 20
+
+ -
+ 4835.5
+ 1757
+
+
+
+
+
+
+
+ - Resulting circle
+ - ae02f50d-8b08-4d00-aa74-bc7568e10c35
+ - true
+ - Circle
+ - Circle
+ - false
+ - 0
+
+
+
+
+ -
+ 4886
+ 1707
+ 32
+ 60
+
+ -
+ 4903.5
+ 1737
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 6c5be315-72f9-4f83-bd95-31f05355bdd6
+ - true
+ - Curve
+ - Curve
+ - false
+ - c1394789-448d-4011-a7a5-a9c725907596
+ - 1
+
+
+
+
+ -
+ 4841
+ 1925
+ 50
+ 24
+
+ -
+ 4866.174
+ 1937.502
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 050ff4c6-5e3a-42b4-884c-6668bfb2028c
+ - eba2a948-272f-4b81-806e-38f2dab7bb0b
+ - 90282883-c970-4b3c-bc6c-f80056eece86
+ - 6c5be315-72f9-4f83-bd95-31f05355bdd6
+ - 4
+ - 0cb9ef0c-db4c-4371-af99-71ba7b815715
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6f5ccfd4-8dcc-4da6-8c58-ec4cfa131a83
+ - 76219d2c-a796-4d1d-8236-63f5e832f6ef
+ - 068d9ddb-da71-48db-aefb-aef7beb59557
+ - b24c9513-1e7d-4d2e-a986-354e8f5a9ae3
+ - 71708354-403b-4e3a-bbe5-2dc4643bbe9c
+ - 52cef7aa-5821-4b1f-9b5a-7c19c5aee6f3
+ - fde6343a-f9d7-4c21-80dc-47b9338936e3
+ - 2984718d-063a-4632-92c4-4aeee62839b7
+ - 8bec9f0b-acb3-4318-b690-7f524d24faa3
+ - f2ae82af-893f-4877-be23-51a1c9ac4592
+ - c0c5cf9e-a76c-48c0-8409-578eb6c6bd0b
+ - 52abf5f7-6725-4187-9689-0f84a0e7c3ce
+ - 5c3f9e81-3d49-45aa-b872-ea80a910db14
+ - 173d3877-9b54-4d39-bc8a-a9d714d53b98
+ - e3ad63ac-cab3-425e-bc6e-77ef52eae732
+ - c36c35db-46d3-471e-bf13-99083fb06848
+ - b7826491-b185-412e-9d32-92b7cbe0cbaf
+ - 9c8e42ec-afbe-4493-a857-2910b3a3d5d1
+ - dda26e08-664b-4b02-8304-34bddc8ec9d8
+ - cd4aaa78-bb6c-43bd-ae4e-037d66f67954
+ - 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - 304e5ccb-5a35-4e0c-8b92-206985fc9cf3
+ - 25493dac-1f0f-4b75-8b92-6eec422efc11
+ - 6dd5f4ed-a71f-43b5-9556-d3ab2e83be7a
+ - ed78892a-320b-476c-8c93-6a7fa7e08ddd
+ - 67028c15-5934-458f-ab2a-9f38d9cd0ed5
+ - e6d66e97-4999-47ab-aafa-1244fd466ec2
+ - 9ac4b811-e818-4cae-b5a8-1125c38df8ce
+ - 26626c04-163a-4a20-980f-a24b2f442126
+ - e7098bff-3c56-4289-ab1d-5e2df2dc2cfb
+ - 8429a1af-d262-4516-8ba6-4819d9bce080
+ - 23015bee-c083-4af1-a5dc-e173dadaafa5
+ - 1107e188-eef7-4c19-ae98-e31de26131c5
+ - 0d5480fd-b809-4f0b-985d-ac75960fc64f
+ - 85d75ab8-1a3b-48c1-a00b-452e5ebf23fb
+ - 35
+ - 69501a35-c065-4628-8fa4-7d215f9ed096
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 6f5ccfd4-8dcc-4da6-8c58-ec4cfa131a83
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 7900
+ 26319
+ 141
+ 64
+
+ -
+ 7966
+ 26351
+
+
+
+
+
+ - Curve to divide
+ - 5775d2e6-8867-428a-a33f-300c521ca40f
+ - Curve
+ - Curve
+ - false
+ - da8d0ba5-6c5a-492f-8951-4179f7e097d6
+ - 1
+
+
+
+
+ -
+ 7902
+ 26321
+ 49
+ 20
+
+ -
+ 7936
+ 26331
+
+
+
+
+
+
+
+ - Number of segments
+ - bfa8e3d6-972e-4656-9c98-194bea652b12
+ - X
+ - Count
+ - Count
+ - false
+ - f2ae82af-893f-4877-be23-51a1c9ac4592
+ - 1
+
+
+
+
+ -
+ 7902
+ 26341
+ 49
+ 20
+
+ -
+ 7936
+ 26351
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - ee1008f5-110c-4c81-98f0-9c71fce61994
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 7902
+ 26361
+ 49
+ 20
+
+ -
+ 7936
+ 26371
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - ec22aaa1-91f3-436f-992d-9793dbd0829c
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7981
+ 26321
+ 58
+ 20
+
+ -
+ 8011.5
+ 26331
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 55445ab0-c508-414a-b3fd-8da992ff2e0e
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 7981
+ 26341
+ 58
+ 20
+
+ -
+ 8011.5
+ 26351
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - e92db23c-2238-481a-ac95-536e04e8244f
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 7981
+ 26361
+ 58
+ 20
+
+ -
+ 8011.5
+ 26371
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 76219d2c-a796-4d1d-8236-63f5e832f6ef
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7910
+ 26401
+ 122
+ 64
+
+ -
+ 7990
+ 26433
+
+
+
+
+
+ - Line start point
+ - 6d24916a-023d-4e52-9f50-43ba060e99d6
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7912
+ 26403
+ 63
+ 20
+
+ -
+ 7953
+ 26413
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - f764c62e-c930-4ec3-a9a1-553e298b108e
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 7912
+ 26423
+ 63
+ 20
+
+ -
+ 7953
+ 26433
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - de4da49f-25f1-487c-925c-51e6fd73e37c
+ - X
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7912
+ 26443
+ 63
+ 20
+
+ -
+ 7953
+ 26453
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - da8d0ba5-6c5a-492f-8951-4179f7e097d6
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 8005
+ 26403
+ 25
+ 60
+
+ -
+ 8019
+ 26433
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 068d9ddb-da71-48db-aefb-aef7beb59557
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7918
+ 26237
+ 106
+ 64
+
+ -
+ 7982
+ 26269
+
+
+
+
+
+ - Line start point
+ - 1f32f464-b573-4d7c-9a66-9a4dfda50cde
+ - Start
+ - Start
+ - false
+ - ec22aaa1-91f3-436f-992d-9793dbd0829c
+ - 1
+
+
+
+
+ -
+ 7920
+ 26239
+ 47
+ 20
+
+ -
+ 7945
+ 26249
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 53130629-d335-4c98-9cc8-e3b74022cedd
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 7920
+ 26259
+ 47
+ 20
+
+ -
+ 7945
+ 26269
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - 0e2288b3-b722-40ed-a616-d3d5c375a9b4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7920
+ 26279
+ 47
+ 20
+
+ -
+ 7945
+ 26289
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 43239747-5011-4f84-82c8-9838b5a52246
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 7997
+ 26239
+ 25
+ 60
+
+ -
+ 8011
+ 26269
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - b24c9513-1e7d-4d2e-a986-354e8f5a9ae3
+ - Panel
+
+ - false
+ - 0.93386971950531006
+ - c36c35db-46d3-471e-bf13-99083fb06848
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 8047
+ 24573
+ 194
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 8047.257
+ 24573.99
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 71708354-403b-4e3a-bbe5-2dc4643bbe9c
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7897
+ 25017
+ 148
+ 64
+
+ -
+ 7944
+ 25049
+
+
+
+
+
+ - Input point
+ - 4efd78a2-7e6d-47c1-8ca4-9dfd643f7355
+ - Point
+ - Point
+ - false
+ - b54f308e-40d5-49cf-9603-04608ca6bb66
+ - 1
+
+
+
+
+ -
+ 7899
+ 25019
+ 30
+ 60
+
+ -
+ 7915.5
+ 25049
+
+
+
+
+
+
+
+ - Point {x} component
+ - 37df28d9-8586-4c7b-a27d-45da18678ae7
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7959
+ 25019
+ 84
+ 20
+
+ -
+ 7994.5
+ 25029
+
+
+
+
+
+
+
+ - Point {y} component
+ - 94347c95-768a-47fd-8559-3a3d676c08c0
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7959
+ 25039
+ 84
+ 20
+
+ -
+ 7994.5
+ 25049
+
+
+
+
+
+
+
+ - Point {z} component
+ - d2ab3e3e-5cf1-4338-a2de-92f08ea76a61
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7959
+ 25059
+ 84
+ 20
+
+ -
+ 7994.5
+ 25069
+
+
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 52cef7aa-5821-4b1f-9b5a-7c19c5aee6f3
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 7913
+ 24440
+ 115
+ 104
+
+ -
+ 7989
+ 24492
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - eeff5738-3482-4de7-955e-a389e7914aa9
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - fde6343a-f9d7-4c21-80dc-47b9338936e3
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 7915
+ 24442
+ 59
+ 20
+
+ -
+ 7954
+ 24452
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - 5b402d51-384d-4a10-8428-deda114a56e6
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - b24c9513-1e7d-4d2e-a986-354e8f5a9ae3
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 7915
+ 24462
+ 59
+ 20
+
+ -
+ 7954
+ 24472
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - a26a48dc-fe87-4578-8c8b-d56a771284b0
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 7915
+ 24482
+ 59
+ 20
+
+ -
+ 7954
+ 24492
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - 03d28d7d-51cb-4315-91d6-47dc9518eb86
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - 2984718d-063a-4632-92c4-4aeee62839b7
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 7915
+ 24502
+ 59
+ 20
+
+ -
+ 7954
+ 24512
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - eae95419-3b18-41fd-a9b7-5f80a49eb70e
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 7915
+ 24522
+ 59
+ 20
+
+ -
+ 7954
+ 24532
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - ec4aaa9f-29c7-47d0-a52f-d320db00eb29
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 8004
+ 24442
+ 22
+ 50
+
+ -
+ 8016.5
+ 24467
+
+
+
+
+
+
+
+ - Output parameter A
+ - 5bcc2175-7d09-4612-8d8d-639ff06b7b04
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 8004
+ 24492
+ 22
+ 50
+
+ -
+ 8016.5
+ 24517
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - fde6343a-f9d7-4c21-80dc-47b9338936e3
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 7948
+ 24573
+ 50
+ 24
+
+ -
+ 7973.636
+ 24585.27
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\IICSA.O__4201_EDIWID_1_TNEMERCNI__3_TNEIDARG_PUKOOL_ROLOC_HTOMS_3_DIOMGIS_ERUTAWRUC_RAENIL_DEPAM_4_NOITISNART_EGDE_LUF_EKUN__O__NUKE_FUL_EDGE_TRANSITION_4_MAPED_LINEAR_CURWATURE_SIGMOID_3_SMOTH_COLOR_LOOKUP_GRADIENT_3__INCREMENT_1_DIWIDE_1024__O.ASCII
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - 2984718d-063a-4632-92c4-4aeee62839b7
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 7938
+ 24399
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 521ed613-25c1-489c-b2c8-a04049f666a7
+ - true
+ - Curve
+ - Curve
+ - false
+ - e67debd2-544c-4a62-830a-f5782ec6d95b
+ - 1
+
+
+
+
+ -
+ 9395
+ 26710
+ 50
+ 24
+
+ -
+ 9420.133
+ 26722.31
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 5852cf2b-5c75-4d2e-88bf-7551693f5b70
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 9336
+ 26612
+ 160
+ 64
+
+ -
+ 9426
+ 26644
+
+
+
+
+
+ - Curve to evaluate
+ - 350118a9-96e7-4469-a619-1f7ed75378b1
+ - true
+ - Curve
+ - Curve
+ - false
+ - 521ed613-25c1-489c-b2c8-a04049f666a7
+ - 1
+
+
+
+
+ -
+ 9338
+ 26614
+ 73
+ 20
+
+ -
+ 9384
+ 26624
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 9e0429d4-965b-4f03-b9b0-6d23587b2259
+ - true
+ - 1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 26634
+ 73
+ 20
+
+ -
+ 9384
+ 26644
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 29ab7d26-4edd-4e96-a08c-064d6ceb2feb
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 9338
+ 26654
+ 73
+ 20
+
+ -
+ 9384
+ 26664
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 3d372719-a185-4a67-981a-e138021e5cf5
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 26614
+ 53
+ 20
+
+ -
+ 9469
+ 26624
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 6c06032c-d4b6-4dbb-98b9-42c861c606be
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 26634
+ 53
+ 20
+
+ -
+ 9469
+ 26644
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 62fba0cd-3499-4c4f-92e9-989df1d888d8
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 9441
+ 26654
+ 53
+ 20
+
+ -
+ 9469
+ 26664
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 64c31320-fe0c-4d9d-9435-c30addf1e792
+ - true
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 9367
+ 26565
+ 98
+ 28
+
+ -
+ 9417
+ 26579
+
+
+
+
+
+ - Origin of plane
+ - ee99e0ab-f6fd-4e5b-91a2-a98ef8f58eea
+ - true
+ - Origin
+ - Origin
+ - false
+ - 3d372719-a185-4a67-981a-e138021e5cf5
+ - 1
+
+
+
+
+ -
+ 9369
+ 26567
+ 33
+ 24
+
+ -
+ 9387
+ 26579
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - 5a9ab425-4a63-488e-857d-137a5c535e43
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 9432
+ 26567
+ 31
+ 24
+
+ -
+ 9449
+ 26579
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 2615fdb0-3475-497f-baf7-10291ca370d9
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 9347
+ 26503
+ 138
+ 44
+
+ -
+ 9415
+ 26525
+
+
+
+
+
+ - Base geometry
+ - 5d5fd96f-000c-4dc2-96d2-b4d9a36dea43
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - 521ed613-25c1-489c-b2c8-a04049f666a7
+ - 1
+
+
+
+
+ -
+ 9349
+ 26505
+ 51
+ 20
+
+ -
+ 9376
+ 26515
+
+
+
+
+
+
+
+ - Mirror plane
+ - 445ffcbd-d5eb-4719-b746-bc9a7202ab94
+ - true
+ - Plane
+ - Plane
+ - false
+ - 5a9ab425-4a63-488e-857d-137a5c535e43
+ - 1
+
+
+
+
+ -
+ 9349
+ 26525
+ 51
+ 20
+
+ -
+ 9376
+ 26535
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 78ee7afd-dcc5-4181-b1f8-8efb0eae7d14
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 26505
+ 53
+ 20
+
+ -
+ 9458
+ 26515
+
+
+
+
+
+
+
+ - Transformation data
+ - 96433806-a59c-43aa-a65d-fb5a1b7c075c
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 26525
+ 53
+ 20
+
+ -
+ 9458
+ 26535
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 76834849-4407-4202-8ec6-cfcf435a188d
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9357
+ 26441
+ 118
+ 44
+
+ -
+ 9420
+ 26463
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 7d4ab061-6904-44af-9180-2992d2ce469b
+ - true
+ - Curves
+ - Curves
+ - false
+ - 521ed613-25c1-489c-b2c8-a04049f666a7
+ - 78ee7afd-dcc5-4181-b1f8-8efb0eae7d14
+ - 2
+
+
+
+
+ -
+ 9359
+ 26443
+ 46
+ 20
+
+ -
+ 9383.5
+ 26453
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 486ce916-8479-44a5-a0ad-2250fd954007
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9359
+ 26463
+ 46
+ 20
+
+ -
+ 9383.5
+ 26473
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - de3c585c-be6c-469f-a4f3-50738ad24f54
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 26443
+ 38
+ 40
+
+ -
+ 9455.5
+ 26463
+
+
+
+
+
+
+
+
+
+
+
+ - e87db220-a0a0-4d67-a405-f97fd14b2d7a
+ - Linear Array
+
+
+
+
+ - Create a linear array of geometry.
+ - true
+ - 82cf0086-86e1-4c25-8cff-5c29a7f3a40d
+ - true
+ - Linear Array
+ - Linear Array
+
+
+
+
+ -
+ 9347
+ 26359
+ 138
+ 64
+
+ -
+ 9415
+ 26391
+
+
+
+
+
+ - Base geometry
+ - 83c5d037-8530-433b-a896-246d46866d4d
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - de3c585c-be6c-469f-a4f3-50738ad24f54
+ - 1
+
+
+
+
+ -
+ 9349
+ 26361
+ 51
+ 20
+
+ -
+ 9376
+ 26371
+
+
+
+
+
+
+
+ - Linear array direction and interval
+ - fa00b316-4c23-4a0e-a3f7-f74891c91860
+ - true
+ - Direction
+ - Direction
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 26381
+ 51
+ 20
+
+ -
+ 9376
+ 26391
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 2
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Number of elements in array.
+ - 602b0e39-126d-422b-9a7a-6149fb9d6ba5
+ - true
+ - Count
+ - Count
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 26401
+ 51
+ 20
+
+ -
+ 9376
+ 26411
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Arrayed geometry
+ - 74758d7c-8ee9-4e91-9164-cadd36352223
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 26361
+ 53
+ 30
+
+ -
+ 9458
+ 26376
+
+
+
+
+
+
+
+ - 1
+ - Transformation data
+ - 9869dd3a-93fc-4b30-a9a3-2fe3fdf59dc7
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 26391
+ 53
+ 30
+
+ -
+ 9458
+ 26406
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - ffc2651e-9382-4020-842b-5002f1e0045a
+ - true
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 9357
+ 26297
+ 118
+ 44
+
+ -
+ 9420
+ 26319
+
+
+
+
+
+ - 1
+ - Curves to join
+ - c1896f1b-da7c-4c94-8db8-ae893b2c1982
+ - true
+ - Curves
+ - Curves
+ - false
+ - 74758d7c-8ee9-4e91-9164-cadd36352223
+ - 1
+
+
+
+
+ -
+ 9359
+ 26299
+ 46
+ 20
+
+ -
+ 9383.5
+ 26309
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - e7d24873-a86e-4061-a8e4-734daaafc0c8
+ - true
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 9359
+ 26319
+ 46
+ 20
+
+ -
+ 9383.5
+ 26329
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 76b2a5e6-be01-4e1b-a790-d5e42bb7344e
+ - true
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 9435
+ 26299
+ 38
+ 40
+
+ -
+ 9455.5
+ 26319
+
+
+
+
+
+
+
+
+
+
+
+ - ccfd6ba8-ecb1-44df-a47e-08126a653c51
+ - Curve Domain
+
+
+
+
+ - Measure and set the curve domain
+ - true
+ - 0bd835d5-26e4-428e-be22-9ef0ffc2e4ca
+ - true
+ - Curve Domain
+ - Curve Domain
+
+
+
+
+ -
+ 9358
+ 26052
+ 116
+ 44
+
+ -
+ 9416
+ 26074
+
+
+
+
+
+ - Curve to measure/modify
+ - 52d7dad0-bac5-4a9d-aef0-316e1c287209
+ - true
+ - Curve
+ - Curve
+ - false
+ - 6909d3f9-3b76-40d3-9d12-d3bb72e99f02
+ - 1
+
+
+
+
+ -
+ 9360
+ 26054
+ 41
+ 20
+
+ -
+ 9382
+ 26064
+
+
+
+
+
+
+
+ - Optional domain, if omitted the curve will not be modified.
+ - 320dea18-932b-493f-9fe3-7a50c967a357
+ - true
+ - Domain
+ - Domain
+ - true
+ - 0
+
+
+
+
+ -
+ 9360
+ 26074
+ 41
+ 20
+
+ -
+ 9382
+ 26084
+
+
+
+
+
+
+
+ - Curve with new domain.
+ - 88f64854-a384-40af-b29a-4f3364f4910d
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9431
+ 26054
+ 41
+ 20
+
+ -
+ 9453
+ 26064
+
+
+
+
+
+
+
+ - Domain of original curve.
+ - 756db84f-bd10-43b7-8193-dee8cdb550de
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9431
+ 26074
+ 41
+ 20
+
+ -
+ 9453
+ 26084
+
+
+
+
+
+
+
+
+
+
+
+ - 429cbba9-55ee-4e84-98ea-876c44db879a
+ - Sub Curve
+
+
+
+
+ - Construct a curve from the sub-domain of a base curve.
+ - true
+ - 1f736d75-0acd-466e-8c54-66d20f4ffd67
+ - true
+ - Sub Curve
+ - Sub Curve
+
+
+
+
+ -
+ 9354
+ 25866
+ 124
+ 44
+
+ -
+ 9428
+ 25888
+
+
+
+
+
+ - Base curve
+ - 68723e9f-bfbc-4799-8ced-a8e2a68133fd
+ - true
+ - Base curve
+ - Base curve
+ - false
+ - 88f64854-a384-40af-b29a-4f3364f4910d
+ - 1
+
+
+
+
+ -
+ 9356
+ 25868
+ 57
+ 20
+
+ -
+ 9386
+ 25878
+
+
+
+
+
+
+
+ - Sub-domain to extract
+ - 7939a992-4cc8-4bd6-8873-b334b2fb0d8a
+ - true
+ - Domain
+ - Domain
+ - false
+ - 908b894d-2aa3-4855-a382-c35e6fa8d476
+ - 1
+
+
+
+
+ -
+ 9356
+ 25888
+ 57
+ 20
+
+ -
+ 9386
+ 25898
+
+
+
+
+
+
+
+ - Resulting sub curve
+ - c9c103d7-fb88-449d-93cf-d1899c09bec0
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9443
+ 25868
+ 33
+ 40
+
+ -
+ 9461
+ 25888
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - 0dc1bfc1-94ff-4758-85c5-25571a1b551b
+ - true
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 9364
+ 25990
+ 104
+ 44
+
+ -
+ 9422
+ 26012
+
+
+
+
+
+ - Base domain
+ - f951cd1c-c3f0-46e8-9f98-a7c5eee1c2c2
+ - true
+ - Domain
+ - Domain
+ - false
+ - 756db84f-bd10-43b7-8193-dee8cdb550de
+ - 1
+
+
+
+
+ -
+ 9366
+ 25992
+ 41
+ 40
+
+ -
+ 9388
+ 26012
+
+
+
+
+
+
+
+ - Start of domain
+ - 9ce20640-5ead-4c66-93bc-555bde8f78c3
+ - true
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 9437
+ 25992
+ 29
+ 20
+
+ -
+ 9453
+ 26002
+
+
+
+
+
+
+
+ - End of domain
+ - 09315b7b-102d-424d-8c9a-5fc7ab44daa0
+ - true
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 9437
+ 26012
+ 29
+ 20
+
+ -
+ 9453
+ 26022
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 4fae7aa9-72e4-4f8b-a302-b56a28c8b49d
+ - true
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 9338
+ 25928
+ 156
+ 44
+
+ -
+ 9436
+ 25950
+
+
+
+
+
+ - Start value of numeric domain
+ - b16a2af5-768e-47ad-bd21-7b54a2dbc500
+ - X/8
+ - true
+ - Domain start
+ - Domain start
+ - false
+ - 09315b7b-102d-424d-8c9a-5fc7ab44daa0
+ - 1
+
+
+
+
+ -
+ 9340
+ 25930
+ 81
+ 20
+
+ -
+ 9390
+ 25940
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - fbfc9604-7ad5-4110-af41-85a7ea9d90f4
+ - X*5/8
+ - true
+ - Domain end
+ - Domain end
+ - false
+ - 09315b7b-102d-424d-8c9a-5fc7ab44daa0
+ - 1
+
+
+
+
+ -
+ 9340
+ 25950
+ 81
+ 20
+
+ -
+ 9390
+ 25960
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 908b894d-2aa3-4855-a382-c35e6fa8d476
+ - true
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 9451
+ 25930
+ 41
+ 40
+
+ -
+ 9473
+ 25950
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 44ef6f9a-caa0-4214-b3a9-6f37c25b0823
+ - true
+ - Move
+ - Move
+
+
+
+
+ -
+ 9347
+ 25804
+ 138
+ 44
+
+ -
+ 9415
+ 25826
+
+
+
+
+
+ - Base geometry
+ - 9b38c8ee-3d30-46b0-ac04-ac9e0c742685
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - c9c103d7-fb88-449d-93cf-d1899c09bec0
+ - 1
+
+
+
+
+ -
+ 9349
+ 25806
+ 51
+ 20
+
+ -
+ 9376
+ 25816
+
+
+
+
+
+
+
+ - Translation vector
+ - c5e81cc2-eea8-40db-9d4b-4da9d7797bb7
+ - true
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 25826
+ 51
+ 20
+
+ -
+ 9376
+ 25836
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -0.5
+ -0.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - d634efec-eaa1-4552-8955-f0d045284f56
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 25806
+ 53
+ 20
+
+ -
+ 9458
+ 25816
+
+
+
+
+
+
+
+ - Transformation data
+ - 98a49866-211f-40c8-bf40-105850266ef3
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 25826
+ 53
+ 20
+
+ -
+ 9458
+ 25836
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 982f2772-3928-4af2-ae57-35526ea29850
+ - true
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 9347
+ 25722
+ 138
+ 64
+
+ -
+ 9415
+ 25754
+
+
+
+
+
+ - Base geometry
+ - 303c1e54-74d2-4af8-95df-a5361440bcd8
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - d634efec-eaa1-4552-8955-f0d045284f56
+ - 1
+
+
+
+
+ -
+ 9349
+ 25724
+ 51
+ 20
+
+ -
+ 9376
+ 25734
+
+
+
+
+
+
+
+ - Center of scaling
+ - a5bd51ed-0621-4c8d-a682-e49c19e5ccbf
+ - true
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 25744
+ 51
+ 20
+
+ -
+ 9376
+ 25754
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 5db464c3-f05f-4067-812f-415571d5b5ef
+ - true
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 25764
+ 51
+ 20
+
+ -
+ 9376
+ 25774
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 183bf7f6-6caa-4074-a0c1-0c307d940f3a
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 25724
+ 53
+ 30
+
+ -
+ 9458
+ 25739
+
+
+
+
+
+
+
+ - Transformation data
+ - 29d0b158-ad16-44f9-8681-6c40c32a5d43
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 9430
+ 25754
+ 53
+ 30
+
+ -
+ 9458
+ 25769
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 73634064-05a9-4fc8-ba5f-22e55d8d56d1
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 9332
+ 25558
+ 168
+ 64
+
+ -
+ 9379
+ 25590
+
+
+
+
+
+ - Input point
+ - 3bec8505-11f2-4a56-9e14-3c8c5d1c2bf1
+ - true
+ - Point
+ - Point
+ - false
+ - 5d4eaaaa-2379-427e-9e98-d2854ab8a9c3
+ - 1
+
+
+
+
+ -
+ 9334
+ 25560
+ 30
+ 60
+
+ -
+ 9350.5
+ 25590
+
+
+
+
+
+
+
+ - Point {x} component
+ - 0427502f-e4fb-4055-b28a-7e8fe719f15f
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 9394
+ 25560
+ 104
+ 20
+
+ -
+ 9429.5
+ 25570
+
+
+
+
+
+
+
+ - Point {y} component
+ - 992764c3-f6b3-45d3-9c45-26e7db379886
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 9394
+ 25580
+ 104
+ 20
+
+ -
+ 9429.5
+ 25590
+
+
+
+
+
+
+
+ - Point {z} component
+ - b65d734b-c031-4d11-976e-4f397b7a47db
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 9394
+ 25600
+ 104
+ 20
+
+ -
+ 9429.5
+ 25610
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 8d17de15-607e-4072-bd70-5cc9a8efe9b5
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 9353
+ 25640
+ 125
+ 64
+
+ -
+ 9403
+ 25672
+
+
+
+
+
+ - Curve to divide
+ - 2002b3d7-e1f5-4df8-88c4-81e0e4d777e7
+ - true
+ - Curve
+ - Curve
+ - false
+ - 183bf7f6-6caa-4074-a0c1-0c307d940f3a
+ - 1
+
+
+
+
+ -
+ 9355
+ 25642
+ 33
+ 20
+
+ -
+ 9373
+ 25652
+
+
+
+
+
+
+
+ - Number of segments
+ - 8f47a2c1-a405-40c8-a043-8a0e8d26dd59
+ - true
+ - Count
+ - Count
+ - false
+ - c4219dab-2b45-451a-9f35-b150c1719680
+ - 1
+
+
+
+
+ -
+ 9355
+ 25662
+ 33
+ 20
+
+ -
+ 9373
+ 25672
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 94411214-c6d1-4b3f-8727-a44534e50c6b
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 9355
+ 25682
+ 33
+ 20
+
+ -
+ 9373
+ 25692
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - 5d4eaaaa-2379-427e-9e98-d2854ab8a9c3
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 9418
+ 25642
+ 58
+ 20
+
+ -
+ 9448.5
+ 25652
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - b2ace906-f709-4456-9c75-f4ad21c35094
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 9418
+ 25662
+ 58
+ 20
+
+ -
+ 9448.5
+ 25672
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - af193919-20c9-43d8-a541-1fe341359435
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 9418
+ 25682
+ 58
+ 20
+
+ -
+ 9448.5
+ 25692
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c6b21630-e8a3-484d-af01-6b1a3aafce9a
+ - true
+ - Panel
+
+ - false
+ - 0
+ - db245e23-4539-4216-8d09-ee1aab1bd46d
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9511
+ 25040
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 9511.132
+ 25040.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d31db527-8d05-4ca4-b457-0c32d0442454
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 738da52b-fc5b-4876-ac30-3f6113c3fbcc
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9148
+ 25040
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 9148.33
+ 25040.11
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 2013e425-8713-42e2-a661-b57e78840337
+ - Concatenate
+
+
+
+
+ - Concatenate some fragments of text
+ - true
+ - a6b71e17-e3eb-46c7-86d2-56cb9c1333dc
+ - true
+ - Concatenate
+ - Concatenate
+
+
+
+
+ -
+ 9369
+ 24945
+ 93
+ 64
+
+ -
+ 9395
+ 24977
+
+
+
+
+
+ - 3
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 1
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+
+
+
+
+ - First text fragment
+ - ff2d7c96-a5a8-41f1-8f54-d1d8845114ae
+ - true
+ - Fragment A
+
+ - true
+ - d31db527-8d05-4ca4-b457-0c32d0442454
+ - 1
+
+
+
+
+ -
+ 9371
+ 24947
+ 9
+ 20
+
+ -
+ 9377
+ 24957
+
+
+
+
+
+
+
+ - Second text fragment
+ - 0a362411-1989-46a9-a3d2-4507f9986a1c
+ - true
+ - Fragment B
+
+ - true
+ - ed5abe26-f015-40f1-92fd-ac2f1564cada
+ - 1
+
+
+
+
+ -
+ 9371
+ 24967
+ 9
+ 20
+
+ -
+ 9377
+ 24977
+
+
+
+
+
+
+
+ - Third text fragment
+ - 3613c947-9cf9-410f-af3b-74f7c2f6a29f
+ - true
+ - Fragment A
+
+ - true
+ - c6b21630-e8a3-484d-af01-6b1a3aafce9a
+ - 1
+
+
+
+
+ -
+ 9371
+ 24987
+ 9
+ 20
+
+ -
+ 9377
+ 24997
+
+
+
+
+
+
+
+ - Resulting text consisting of all the fragments
+ - d0a7a802-a1a4-44f8-a73b-eb852d249de6
+ - true
+ - 1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9410
+ 24947
+ 50
+ 60
+
+ -
+ 9428.5
+ 24977
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e17c6f8e-a5ea-4bd3-aaea-da70d3cd87dd
+ - true
+ - Panel
+
+ - false
+ - 0
+ - d0a7a802-a1a4-44f8-a73b-eb852d249de6
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9244
+ 24618
+ 350
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 9244.32
+ 24618.44
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - 0d4f8053-3e7b-4f88-88d6-7142b1117d85
+ - true
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 9369
+ 25467
+ 93
+ 28
+
+ -
+ 9408
+ 25481
+
+
+
+
+
+ - 1
+ - Base list
+ - 087f872a-468e-480e-8086-eb98510478b3
+ - true
+ - List
+ - List
+ - false
+ - 5d4eaaaa-2379-427e-9e98-d2854ab8a9c3
+ - 1
+
+
+
+
+ -
+ 9371
+ 25469
+ 22
+ 24
+
+ -
+ 9383.5
+ 25481
+
+
+
+
+
+
+
+ - Number of items in L
+ - 4a91602b-182e-41ea-8bff-57bf58381ba3
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 9423
+ 25469
+ 37
+ 24
+
+ -
+ 9443
+ 25481
+
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - c5733280-28ac-45ba-9b0b-986f2cb9d166
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 9346
+ 25384
+ 140
+ 64
+
+ -
+ 9405
+ 25416
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 93bbcc9c-1452-41a2-9792-6280d50325e6
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 9348
+ 25386
+ 42
+ 20
+
+ -
+ 9370.5
+ 25396
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_String
+ - false
+ - ;
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 22d090b6-8a92-4e42-a3a8-3352903392a9
+ - true
+ - Number
+ - Number
+ - false
+ - 4a91602b-182e-41ea-8bff-57bf58381ba3
+ - 1
+
+
+
+
+ -
+ 9348
+ 25406
+ 42
+ 20
+
+ -
+ 9370.5
+ 25416
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - f3dbe681-3a37-4539-ab8f-aa8e442721ca
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 9348
+ 25426
+ 42
+ 20
+
+ -
+ 9370.5
+ 25436
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 540a8309-6668-4cbd-a644-b3fd3216f063
+ - true
+ - 2
+ - Data
+ - Data
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 9420
+ 25386
+ 64
+ 60
+
+ -
+ 9435.5
+ 25416
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - d16e27a4-b51d-40be-89ac-16f5ff38ce04
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9306
+ 25513
+ 219
+ 28
+
+ -
+ 9406
+ 25527
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - e7bc85b5-c2d1-4b36-8350-bba76b9a0b51
+ - true
+ - Variable X
+ - X
+ - true
+ - 0427502f-e4fb-4055-b28a-7e8fe719f15f
+ - 1
+
+
+
+
+ -
+ 9308
+ 25515
+ 14
+ 24
+
+ -
+ 9316.5
+ 25527
+
+
+
+
+
+
+
+ - Result of expression
+ - 738da52b-fc5b-4876-ac30-3f6113c3fbcc
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9489
+ 25515
+ 34
+ 24
+
+ -
+ 9507.5
+ 25527
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",Y)
+ - true
+ - 4a1ec727-d361-4e33-84b4-50690e5b2491
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 9307
+ 25338
+ 218
+ 28
+
+ -
+ 9406
+ 25352
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 4b6ad4c2-ad41-4801-ab26-6bd8da6840dd
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 992764c3-f6b3-45d3-9c45-26e7db379886
+ - 1
+
+
+
+
+ -
+ 9309
+ 25340
+ 13
+ 24
+
+ -
+ 9317
+ 25352
+
+
+
+
+
+
+
+ - Result of expression
+ - db245e23-4539-4216-8d09-ee1aab1bd46d
+ - true
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 9489
+ 25340
+ 34
+ 24
+
+ -
+ 9507.5
+ 25352
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - ed5abe26-f015-40f1-92fd-ac2f1564cada
+ - true
+ - Panel
+
+ - false
+ - 0
+ - 540a8309-6668-4cbd-a644-b3fd3216f063
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 9329
+ 25041
+ 181
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 9329.236
+ 25041.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 521ed613-25c1-489c-b2c8-a04049f666a7
+ - 5852cf2b-5c75-4d2e-88bf-7551693f5b70
+ - 64c31320-fe0c-4d9d-9435-c30addf1e792
+ - 2615fdb0-3475-497f-baf7-10291ca370d9
+ - 76834849-4407-4202-8ec6-cfcf435a188d
+ - 82cf0086-86e1-4c25-8cff-5c29a7f3a40d
+ - ffc2651e-9382-4020-842b-5002f1e0045a
+ - 0bd835d5-26e4-428e-be22-9ef0ffc2e4ca
+ - 1f736d75-0acd-466e-8c54-66d20f4ffd67
+ - 0dc1bfc1-94ff-4758-85c5-25571a1b551b
+ - 4fae7aa9-72e4-4f8b-a302-b56a28c8b49d
+ - 44ef6f9a-caa0-4214-b3a9-6f37c25b0823
+ - 982f2772-3928-4af2-ae57-35526ea29850
+ - 73634064-05a9-4fc8-ba5f-22e55d8d56d1
+ - 8d17de15-607e-4072-bd70-5cc9a8efe9b5
+ - c6b21630-e8a3-484d-af01-6b1a3aafce9a
+ - d31db527-8d05-4ca4-b457-0c32d0442454
+ - a6b71e17-e3eb-46c7-86d2-56cb9c1333dc
+ - e17c6f8e-a5ea-4bd3-aaea-da70d3cd87dd
+ - 0d4f8053-3e7b-4f88-88d6-7142b1117d85
+ - c5733280-28ac-45ba-9b0b-986f2cb9d166
+ - d16e27a4-b51d-40be-89ac-16f5ff38ce04
+ - 4a1ec727-d361-4e33-84b4-50690e5b2491
+ - ed5abe26-f015-40f1-92fd-ac2f1564cada
+ - cab813f7-791c-4922-be06-8c67e55c94ca
+ - 2b25da2e-7e50-4fef-8021-89e37730bacf
+ - 0d3a8ff7-6367-4449-b2bb-7d0133a495f9
+ - c4219dab-2b45-451a-9f35-b150c1719680
+ - cf3fd21c-3ff1-405f-8188-7c3e36e89091
+ - f9dc0f84-f005-4def-9a32-1595c75a315b
+ - 68fed558-dddc-4bde-84cf-30a1dc52175b
+ - 31
+ - 8d787dc5-3841-4088-886c-91d86d1846ea
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - e35db844-8c35-45e3-a4ba-d7a4a402c621
+ - true
+ - Curve
+ - Curve
+ - false
+ - e67debd2-544c-4a62-830a-f5782ec6d95b
+ - 1
+
+
+
+
+ -
+ 8681
+ 25816
+ 50
+ 24
+
+ -
+ 8706.031
+ 25828.74
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 68563a7d-e7c8-4869-bd73-a9480e1c1d00
+ - true
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 8629
+ 25640
+ 148
+ 64
+
+ -
+ 8676
+ 25672
+
+
+
+
+
+ - Input point
+ - 2d7a5ddf-c6d4-453e-8cb5-69af6f993b0a
+ - true
+ - Point
+ - Point
+ - false
+ - e827364b-59cf-4b41-9df6-15a17e582142
+ - 1
+
+
+
+
+ -
+ 8631
+ 25642
+ 30
+ 60
+
+ -
+ 8647.5
+ 25672
+
+
+
+
+
+
+
+ - Point {x} component
+ - 29a9aaab-a1e8-4621-8fa9-ab9577de3e21
+ - true
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 8691
+ 25642
+ 84
+ 20
+
+ -
+ 8726.5
+ 25652
+
+
+
+
+
+
+
+ - Point {y} component
+ - 66983311-dc16-4275-bf06-bf946c994bad
+ - true
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 8691
+ 25662
+ 84
+ 20
+
+ -
+ 8726.5
+ 25672
+
+
+
+
+
+
+
+ - Point {z} component
+ - 46f78897-2d93-4004-af97-57b4f74d60aa
+ - true
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 8691
+ 25682
+ 84
+ 20
+
+ -
+ 8726.5
+ 25692
+
+
+
+
+
+
+
+
+
+
+
+ - 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
+ - Divide Curve
+
+
+
+
+ - Divide a curve into equal length segments
+ - true
+ - 6750f4a4-517f-4231-93d7-803c432fd1f5
+ - true
+ - Divide Curve
+ - Divide Curve
+
+
+
+
+ -
+ 8640
+ 25723
+ 125
+ 64
+
+ -
+ 8690
+ 25755
+
+
+
+
+
+ - Curve to divide
+ - 461ef49d-af9c-493d-96cf-0496ad7274a2
+ - true
+ - Curve
+ - Curve
+ - false
+ - e35db844-8c35-45e3-a4ba-d7a4a402c621
+ - 1
+
+
+
+
+ -
+ 8642
+ 25725
+ 33
+ 20
+
+ -
+ 8660
+ 25735
+
+
+
+
+
+
+
+ - Number of segments
+ - e3f0218e-9316-4163-b9d7-6e5eafbaebd4
+ - true
+ - Count
+ - Count
+ - false
+ - 949b3dc2-93e7-4b6b-94f6-42008f1ca88b
+ - 1
+
+
+
+
+ -
+ 8642
+ 25745
+ 33
+ 20
+
+ -
+ 8660
+ 25755
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Split segments at kinks
+ - 42de9b05-e61c-49e3-9388-02a0aa4d4b63
+ - true
+ - Kinks
+ - Kinks
+ - false
+ - 0
+
+
+
+
+ -
+ 8642
+ 25765
+ 33
+ 20
+
+ -
+ 8660
+ 25775
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Division points
+ - e827364b-59cf-4b41-9df6-15a17e582142
+ - true
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 8705
+ 25725
+ 58
+ 20
+
+ -
+ 8735.5
+ 25735
+
+
+
+
+
+
+
+ - 1
+ - Tangent vectors at division points
+ - 6ab080ba-5cb5-440f-bf02-f8d982dd5c9b
+ - true
+ - Tangents
+ - Tangents
+ - false
+ - 0
+
+
+
+
+ -
+ 8705
+ 25745
+ 58
+ 20
+
+ -
+ 8735.5
+ 25755
+
+
+
+
+
+
+
+ - 1
+ - Parameter values at division points
+ - 45c5e056-b796-4c62-aa6b-a64baad9575d
+ - true
+ - Parameters
+ - Parameters
+ - false
+ - 0
+
+
+
+
+ -
+ 8705
+ 25765
+ 58
+ 20
+
+ -
+ 8735.5
+ 25775
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 3d076723-8242-4d06-9c81-6683dadc72ed
+ - true
+ - Panel
+
+ - false
+ - 1
+ - b540ade3-ed4e-42b1-8d73-2846148de82f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 8791
+ 24997
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 8791.278
+ 24997.47
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - f2a19e5a-e845-4b70-95ad-388661779f63
+ - true
+ - Panel
+
+ - false
+ - 1
+ - 6a7bfbe9-c1aa-461f-873f-dd4d928a0d47
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 8446
+ 24997
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 8446.79
+ 24997.83
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 2013e425-8713-42e2-a661-b57e78840337
+ - Concatenate
+
+
+
+
+ - Concatenate some fragments of text
+ - true
+ - 979aa3c1-0767-4752-981f-ebf6fa1c0d3e
+ - true
+ - Concatenate
+ - Concatenate
+
+
+
+
+ -
+ 8656
+ 24915
+ 93
+ 64
+
+ -
+ 8682
+ 24947
+
+
+
+
+
+ - 3
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 1
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+
+
+
+
+ - First text fragment
+ - 577f08d9-3728-4a92-906a-0d5f4903f2e1
+ - true
+ - Fragment A
+
+ - true
+ - f2a19e5a-e845-4b70-95ad-388661779f63
+ - 1
+
+
+
+
+ -
+ 8658
+ 24917
+ 9
+ 20
+
+ -
+ 8664
+ 24927
+
+
+
+
+
+
+
+ - Second text fragment
+ - ff9f3e5a-fd4a-49e2-b449-7aa9646236ca
+ - true
+ - Fragment B
+
+ - true
+ - 66e7c159-71a5-4f2c-adbb-dd82d3beb2d6
+ - 1
+
+
+
+
+ -
+ 8658
+ 24937
+ 9
+ 20
+
+ -
+ 8664
+ 24947
+
+
+
+
+
+
+
+ - Third text fragment
+ - 642eff7e-cce8-4ce2-a46c-c2c127a34d74
+ - true
+ - Fragment A
+
+ - true
+ - 3d076723-8242-4d06-9c81-6683dadc72ed
+ - 1
+
+
+
+
+ -
+ 8658
+ 24957
+ 9
+ 20
+
+ -
+ 8664
+ 24967
+
+
+
+
+
+
+
+ - Resulting text consisting of all the fragments
+ - 210a47f3-23f3-4646-81b7-00603ef6a14c
+ - true
+ - 1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 8697
+ 24917
+ 50
+ 60
+
+ -
+ 8715.5
+ 24947
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6f400b56-fbec-4804-8341-38f4dc23db47
+ - true
+ - Panel
+
+ - false
+ - 0.53023098409175873
+ - 210a47f3-23f3-4646-81b7-00603ef6a14c
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 8530
+ 24607
+ 350
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 8530.262
+ 24607.64
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - e578b74b-6b00-4b8d-9c5f-8b7d1c941f80
+ - true
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 8656
+ 25501
+ 93
+ 28
+
+ -
+ 8695
+ 25515
+
+
+
+
+
+ - 1
+ - Base list
+ - 2b921f88-7d49-42da-8e15-0ce85692c30d
+ - true
+ - List
+ - List
+ - false
+ - e827364b-59cf-4b41-9df6-15a17e582142
+ - 1
+
+
+
+
+ -
+ 8658
+ 25503
+ 22
+ 24
+
+ -
+ 8670.5
+ 25515
+
+
+
+
+
+
+
+ - Number of items in L
+ - c0870b76-eb87-437c-a261-fdb68d270d18
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 8710
+ 25503
+ 37
+ 24
+
+ -
+ 8730
+ 25515
+
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 7ada70a1-45d5-4461-9dce-7a9de5f1418e
+ - true
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 8633
+ 25418
+ 140
+ 64
+
+ -
+ 8692
+ 25450
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - 58ea242d-e525-4589-8038-b0db9066ad77
+ - true
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 8635
+ 25420
+ 42
+ 20
+
+ -
+ 8657.5
+ 25430
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_String
+ - false
+ - ,
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - a81285de-3f33-4584-a9ae-f2c2685b83be
+ - true
+ - Number
+ - Number
+ - false
+ - c0870b76-eb87-437c-a261-fdb68d270d18
+ - 1
+
+
+
+
+ -
+ 8635
+ 25440
+ 42
+ 20
+
+ -
+ 8657.5
+ 25450
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - 4b9305b5-e4e6-4cdd-89a9-e5ee150152dc
+ - true
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 8635
+ 25460
+ 42
+ 20
+
+ -
+ 8657.5
+ 25470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - e7fb7d7c-744a-4366-bb2b-53a622a4a578
+ - true
+ - 2
+ - Data
+ - Data
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 8707
+ 25420
+ 64
+ 60
+
+ -
+ 8722.5
+ 25450
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - 4acbad9d-cf40-4ac0-92e9-0914ed2635af
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 8585
+ 25594
+ 235
+ 28
+
+ -
+ 8685
+ 25608
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 178950b6-0d18-4b18-a8da-3c225a385d14
+ - true
+ - Variable X
+ - X
+ - true
+ - 29a9aaab-a1e8-4621-8fa9-ab9577de3e21
+ - 1
+
+
+
+
+ -
+ 8587
+ 25596
+ 14
+ 24
+
+ -
+ 8595.5
+ 25608
+
+
+
+
+
+
+
+ - Result of expression
+ - 6a7bfbe9-c1aa-461f-873f-dd4d928a0d47
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 8768
+ 25596
+ 50
+ 24
+
+ -
+ 8786.5
+ 25608
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",Y)
+ - true
+ - 99e82a43-4f64-4b1d-817d-e7e88986f446
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 8586
+ 25371
+ 234
+ 28
+
+ -
+ 8685
+ 25385
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 20c89eb5-328d-407c-acef-6c8aed5c11a3
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 66983311-dc16-4275-bf06-bf946c994bad
+ - 1
+
+
+
+
+ -
+ 8588
+ 25373
+ 13
+ 24
+
+ -
+ 8596
+ 25385
+
+
+
+
+
+
+
+ - Result of expression
+ - b540ade3-ed4e-42b1-8d73-2846148de82f
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 8768
+ 25373
+ 50
+ 24
+
+ -
+ 8786.5
+ 25385
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 66e7c159-71a5-4f2c-adbb-dd82d3beb2d6
+ - true
+ - Panel
+
+ - false
+ - 1
+ - e7fb7d7c-744a-4366-bb2b-53a622a4a578
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 8619
+ 24997
+ 172
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 8619.309
+ 24997.62
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - e35db844-8c35-45e3-a4ba-d7a4a402c621
+ - d8eea3ec-5157-4ac0-92dd-492058fad237
+ - 59c8374e-36a2-40df-af0f-1946fb9c4c2e
+ - 6a58cb78-3aa0-4c67-9585-8364f6f684f5
+ - 2aafa1cf-f50a-4433-9467-6e2ba9b0a462
+ - 2ac06252-6a62-48fb-9825-5298bdbe9536
+ - 30aa3e57-dd88-4f54-ad69-4b2473594537
+ - 3662d19c-7316-4361-b4a3-db2bbd218382
+ - b60eeacc-25e7-4f56-826d-40476555687d
+ - 71a4b562-3bee-43d5-9fb6-1c99bc3cd4cb
+ - ee5295ed-8446-4093-9cff-155530db048a
+ - 10338e33-43fc-4848-9f86-5e4608e349ae
+ - 5c73a0f5-f091-4315-897f-65bd97a0d6aa
+ - 68563a7d-e7c8-4869-bd73-a9480e1c1d00
+ - 6750f4a4-517f-4231-93d7-803c432fd1f5
+ - 3d076723-8242-4d06-9c81-6683dadc72ed
+ - f2a19e5a-e845-4b70-95ad-388661779f63
+ - 979aa3c1-0767-4752-981f-ebf6fa1c0d3e
+ - 6f400b56-fbec-4804-8341-38f4dc23db47
+ - e578b74b-6b00-4b8d-9c5f-8b7d1c941f80
+ - 7ada70a1-45d5-4461-9dce-7a9de5f1418e
+ - 4acbad9d-cf40-4ac0-92e9-0914ed2635af
+ - 99e82a43-4f64-4b1d-817d-e7e88986f446
+ - 66e7c159-71a5-4f2c-adbb-dd82d3beb2d6
+ - 777f6c59-7a80-4cfa-be6f-1d8eb59552ff
+ - 8ae4527b-5550-4a76-bb40-bf8a243cd842
+ - ebbd6d2f-c490-4677-b77d-c25c6942e622
+ - 949b3dc2-93e7-4b6b-94f6-42008f1ca88b
+ - ec56aa9b-bf0e-43f9-a278-6ef141612b48
+ - 372c9713-8b48-4080-bca3-e19d37da43ba
+ - 30
+ - 55ab6d29-aa48-49ef-baaf-d6e0a08ab86a
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 777f6c59-7a80-4cfa-be6f-1d8eb59552ff
+ - true
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 8645
+ 24430
+ 115
+ 104
+
+ -
+ 8721
+ 24482
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - 660e4bc9-1658-4394-9667-13d80711e8e6
+ - true
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - 8ae4527b-5550-4a76-bb40-bf8a243cd842
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 8647
+ 24432
+ 59
+ 20
+
+ -
+ 8686
+ 24442
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - 4cf1b389-ac52-4ddd-8d38-1dcd3e60fab2
+ - true
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - 6f400b56-fbec-4804-8341-38f4dc23db47
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 8647
+ 24452
+ 59
+ 20
+
+ -
+ 8686
+ 24462
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - de1499dc-b59e-4511-9293-0b42f78675fe
+ - true
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 8647
+ 24472
+ 59
+ 20
+
+ -
+ 8686
+ 24482
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - 830a96d0-ff09-4403-a6ef-301e589981e9
+ - true
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - ebbd6d2f-c490-4677-b77d-c25c6942e622
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 8647
+ 24492
+ 59
+ 20
+
+ -
+ 8686
+ 24502
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - 0c00b769-5f96-4ed3-a5f4-5ce8b921e823
+ - true
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 8647
+ 24512
+ 59
+ 20
+
+ -
+ 8686
+ 24522
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - b791209b-077d-4078-b7a9-43b252cb06f4
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 8736
+ 24432
+ 22
+ 50
+
+ -
+ 8748.5
+ 24457
+
+
+
+
+
+
+
+ - Output parameter A
+ - d0f9ad89-d013-4548-a46f-57d6b65f61fe
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 8736
+ 24482
+ 22
+ 50
+
+ -
+ 8748.5
+ 24507
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - 8ae4527b-5550-4a76-bb40-bf8a243cd842
+ - true
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 8680
+ 24564
+ 50
+ 24
+
+ -
+ 8705.723
+ 24576.47
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\VSC.O____STNEMGES_4201____HTOMS_LEVEL_3_DIOMGIS_ERUTAWRUC_RAENIL_DEPAM_SEMIT_4_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_4_TIMES_MAPED_LINEAR_CURWATURE_SIGMOID_3_LEVEL_SMOTH____1024_SEGMENTS____O.CSV
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - ebbd6d2f-c490-4677-b77d-c25c6942e622
+ - true
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 8670
+ 24408
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - 079bd9bd-54a0-41d4-98af-db999015f63d
+ - VB Script
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - cab813f7-791c-4922-be06-8c67e55c94ca
+ - true
+ - VB Script
+ - TxtWriter
+ - true
+ - 0
+ - If activate Then
+
+ Dim i As Integer
+ Dim aryText(4) As String
+
+ aryText(0) = "Mary WriteLine"
+ aryText(1) = "Had"
+ aryText(2) = "Another"
+ aryText(3) = "Little"
+ aryText(4) = "One"
+
+ ' the data is appended to the file. If file doesnt exist, a new file is created
+ Dim objWriter As New System.IO.StreamWriter(filePath, append)
+
+ For i = 0 To data.Count - 1
+ objWriter.WriteLine(data(i))
+ Next
+
+ objWriter.Close()
+
+ End If
+
+ If clearFile Then
+ Dim objWriter As New System.IO.StreamWriter(filePath, False)
+ objWriter.Close()
+ End If
+
+
+
+
+
+ -
+ 9358
+ 24442
+ 115
+ 104
+
+ -
+ 9434
+ 24494
+
+
+
+
+
+ - 5
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 2
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - true
+ - Script Variable filePath
+ - 8743b31d-c40d-4368-bb85-e0ec58c656f4
+ - true
+ - filePath
+ - filePath
+ - true
+ - 0
+ - true
+ - 2b25da2e-7e50-4fef-8021-89e37730bacf
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 9360
+ 24444
+ 59
+ 20
+
+ -
+ 9399
+ 24454
+
+
+
+
+
+
+
+ - 1
+ - true
+ - Script Variable data
+ - d630bc3c-1a92-4f1c-a88f-70c989ce4475
+ - true
+ - 1
+ - data
+ - data
+ - true
+ - 1
+ - true
+ - e17c6f8e-a5ea-4bd3-aaea-da70d3cd87dd
+ - 1
+ - abf1fd1b-dbe5-4be6-9832-d8dc105e207f
+
+
+
+
+ -
+ 9360
+ 24464
+ 59
+ 20
+
+ -
+ 9399
+ 24474
+
+
+
+
+
+
+
+ - true
+ - Script Variable append
+ - b1c93177-8b35-447e-8f30-47d58103f603
+ - true
+ - append
+ - append
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 9360
+ 24484
+ 59
+ 20
+
+ -
+ 9399
+ 24494
+
+
+
+
+
+
+
+ - true
+ - Script Variable activate
+ - 4da56cd5-bed4-40c4-840a-4d1d216ad88b
+ - true
+ - activate
+ - activate
+ - true
+ - 0
+ - true
+ - 0d3a8ff7-6367-4449-b2bb-7d0133a495f9
+ - 1
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 9360
+ 24504
+ 59
+ 20
+
+ -
+ 9399
+ 24514
+
+
+
+
+
+
+
+ - true
+ - Script Variable clearFile
+ - 1068cd7c-aac2-4352-a3ac-146a1de3b166
+ - true
+ - clearFile
+ - clearFile
+ - true
+ - 0
+ - true
+ - 0
+ - 3cda2745-22ac-4244-9b04-97a5255fa60f
+
+
+
+
+ -
+ 9360
+ 24524
+ 59
+ 20
+
+ -
+ 9399
+ 24534
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - c74f25fe-befe-495f-862b-42d5739f5edc
+ - true
+ - out
+ - out
+ - false
+ - 0
+
+
+
+
+ -
+ 9449
+ 24444
+ 22
+ 50
+
+ -
+ 9461.5
+ 24469
+
+
+
+
+
+
+
+ - Output parameter A
+ - 1fd63a93-e4fb-4d8a-b24b-a0051b8402c4
+ - true
+ - A
+ - A
+ - false
+ - 0
+
+
+
+
+ -
+ 9449
+ 24494
+ 22
+ 50
+
+ -
+ 9461.5
+ 24519
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 06953bda-1d37-4d58-9b38-4b3c74e54c8f
+ - File Path
+
+
+
+
+ - Contains a collection of file paths
+ - false
+ - All files|*.*
+ - 2b25da2e-7e50-4fef-8021-89e37730bacf
+ - true
+ - File Path
+ - File Path
+ - false
+ - 0
+
+
+
+
+ -
+ 9394
+ 24576
+ 50
+ 24
+
+ -
+ 9419.906
+ 24588.22
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+ - C:\VSC.O____EPAHS_LANGIS____STNEMGES_4201____HTOMS_LEVEL_3_DIOMGIS_ERUTAWRUC_RAENIL_DEPAM_SEMIT_4_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_4_TIMES_MAPED_LINEAR_CURWATURE_SIGMOID_3_LEVEL_SMOTH____1024_SEGMENTS____SIGNAL_SHAPE____O.CSV
+
+
+
+
+
+
+
+
+
+
+
+
+ - a8b97322-2d53-47cd-905e-b932c3ccd74e
+ - Button
+
+
+
+
+ - Button object with two values
+ - False
+ - True
+ - 0d3a8ff7-6367-4449-b2bb-7d0133a495f9
+ - true
+ - Button
+
+ - false
+ - 0
+
+
+
+
+ -
+ 9383
+ 24402
+ 66
+ 22
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8bec9f0b-acb3-4318-b690-7f524d24faa3
+ - Panel
+
+ - false
+ - 0
+ - b7826491-b185-412e-9d32-92b7cbe0cbaf
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7705
+ 24573
+ 194
+ 292
+
+ - 0
+ - 0
+ - 0
+ -
+ 7705.751
+ 24573.27
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
+ - true
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - f2ae82af-893f-4877-be23-51a1c9ac4592
+ - X*4
+ - Number
+ - Number
+ - false
+ - 314ba323-fca5-451e-b5c9-1e0cee8c9c84
+ - 1
+
+
+
+
+ -
+ 7946
+ 26537
+ 53
+ 24
+
+ -
+ 7982.941
+ 26549.61
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 949b3dc2-93e7-4b6b-94f6-42008f1ca88b
+ - X*4
+ - true
+ - Number
+ - Number
+ - false
+ - 314ba323-fca5-451e-b5c9-1e0cee8c9c84
+ - 1
+
+
+
+
+ -
+ 8679
+ 25858
+ 53
+ 24
+
+ -
+ 8715.031
+ 25870.21
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - c4219dab-2b45-451a-9f35-b150c1719680
+ - X*4
+ - true
+ - Number
+ - Number
+ - false
+ - 314ba323-fca5-451e-b5c9-1e0cee8c9c84
+ - 1
+
+
+
+
+ -
+ 9393
+ 26752
+ 53
+ 24
+
+ -
+ 9429.133
+ 26764.93
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - c0c5cf9e-a76c-48c0-8409-578eb6c6bd0b
+ - Curve
+ - Curve
+ - false
+ - e67debd2-544c-4a62-830a-f5782ec6d95b
+ - 1
+
+
+
+
+ -
+ 7948
+ 26495
+ 50
+ 24
+
+ -
+ 7973.112
+ 26507.4
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 52abf5f7-6725-4187-9689-0f84a0e7c3ce
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7703
+ 24971
+ 194
+ 28
+
+ -
+ 7803
+ 24985
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 782220e2-f954-44c4-b826-078c251b8367
+ - Variable O
+ - O
+ - true
+ - 37df28d9-8586-4c7b-a27d-45da18678ae7
+ - 1
+
+
+
+
+ -
+ 7705
+ 24973
+ 14
+ 24
+
+ -
+ 7713.5
+ 24985
+
+
+
+
+
+
+
+ - Result of expression
+ - 72f0e32d-be37-4f0a-bbc7-be9b276d4b10
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7886
+ 24973
+ 9
+ 24
+
+ -
+ 7892
+ 24985
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 5c3f9e81-3d49-45aa-b872-ea80a910db14
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 8045
+ 24971
+ 194
+ 28
+
+ -
+ 8145
+ 24985
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 85ddd55b-42bb-456d-bac6-f734b7e309ad
+ - Variable O
+ - O
+ - true
+ - 662c3174-f77d-4ffa-bec9-f9cd4fd2e6c0
+ - 1
+
+
+
+
+ -
+ 8047
+ 24973
+ 14
+ 24
+
+ -
+ 8055.5
+ 24985
+
+
+
+
+
+
+
+ - Result of expression
+ - efcca8ec-2d30-438f-91cd-ec16d996422c
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 8228
+ 24973
+ 9
+ 24
+
+ -
+ 8234
+ 24985
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.0000000000}",O)
+ - true
+ - 173d3877-9b54-4d39-bc8a-a9d714d53b98
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7657
+ 24925
+ 285
+ 28
+
+ -
+ 7802
+ 24939
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 03653019-0e81-4e2c-b044-69aec5002780
+ - Variable O
+ - O
+ - true
+ - 37df28d9-8586-4c7b-a27d-45da18678ae7
+ - 1
+
+
+
+
+ -
+ 7659
+ 24927
+ 14
+ 24
+
+ -
+ 7667.5
+ 24939
+
+
+
+
+
+
+
+ - Result of expression
+ - afcf22ba-d1d3-46ed-99ae-25ef2b8c08b2
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7931
+ 24927
+ 9
+ 24
+
+ -
+ 7937
+ 24939
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000}",O)
+ - true
+ - e3ad63ac-cab3-425e-bc6e-77ef52eae732
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7983
+ 24925
+ 318
+ 28
+
+ -
+ 8145
+ 24939
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fafbc7da-03fa-4b0a-be17-928136a8e8a0
+ - Variable O
+ - O
+ - true
+ - 94347c95-768a-47fd-8559-3a3d676c08c0
+ - 1
+
+
+
+
+ -
+ 7985
+ 24927
+ 14
+ 24
+
+ -
+ 7993.5
+ 24939
+
+
+
+
+
+
+
+ - Result of expression
+ - 9a626f9b-35e2-4fb5-b530-6aa0f18281b3
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 8290
+ 24927
+ 9
+ 24
+
+ -
+ 8296
+ 24939
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - Data
+
+
+
+
+ - Contains a collection of generic data
+ - true
+ - c36c35db-46d3-471e-bf13-99083fb06848
+ - Data
+ - Data
+ - false
+ - efcca8ec-2d30-438f-91cd-ec16d996422c
+ - 1
+
+
+
+
+ -
+ 8119
+ 24884
+ 50
+ 24
+
+ -
+ 8144.112
+ 24896.22
+
+
+
+
+
+
+
+
+
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - Data
+
+
+
+
+ - Contains a collection of generic data
+ - true
+ - b7826491-b185-412e-9d32-92b7cbe0cbaf
+ - Data
+ - Data
+ - false
+ - afcf22ba-d1d3-46ed-99ae-25ef2b8c08b2
+ - 1
+
+
+
+
+ -
+ 7777
+ 24884
+ 50
+ 24
+
+ -
+ 7802.112
+ 24896.7
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 9c8e42ec-afbe-4493-a857-2910b3a3d5d1
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7886
+ 26058
+ 154
+ 64
+
+ -
+ 7970
+ 26090
+
+
+
+
+
+ - Base geometry
+ - 3847a3dc-7c92-40d1-8b7b-bb3e547e5944
+ - Geometry
+ - Geometry
+ - true
+ - c0c5cf9e-a76c-48c0-8409-578eb6c6bd0b
+ - 1
+
+
+
+
+ -
+ 7888
+ 26060
+ 67
+ 20
+
+ -
+ 7931
+ 26070
+
+
+
+
+
+
+
+ - Center of scaling
+ - fcaacee8-0396-4fda-a648-d9371b71b857
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7888
+ 26080
+ 67
+ 20
+
+ -
+ 7931
+ 26090
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 69f241da-74c1-4332-85a4-86fd1ff85dde
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - 1
+
+
+
+
+ -
+ 7888
+ 26100
+ 67
+ 20
+
+ -
+ 7931
+ 26110
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 9eb06eeb-44df-4f76-a253-e3e979a8c409
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7985
+ 26060
+ 53
+ 30
+
+ -
+ 8013
+ 26075
+
+
+
+
+
+
+
+ - Transformation data
+ - 50c4c37f-0547-4e81-9732-d9fff228a884
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7985
+ 26090
+ 53
+ 30
+
+ -
+ 8013
+ 26105
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - dda26e08-664b-4b02-8304-34bddc8ec9d8
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7886
+ 25975
+ 154
+ 64
+
+ -
+ 7970
+ 26007
+
+
+
+
+
+ - Base geometry
+ - 5fcbe13d-12ef-471c-9321-38c909d62e55
+ - Geometry
+ - Geometry
+ - true
+ - 43239747-5011-4f84-82c8-9838b5a52246
+ - 1
+
+
+
+
+ -
+ 7888
+ 25977
+ 67
+ 20
+
+ -
+ 7931
+ 25987
+
+
+
+
+
+
+
+ - Center of scaling
+ - a4e572d9-5a64-4914-8660-0374d389941d
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7888
+ 25997
+ 67
+ 20
+
+ -
+ 7931
+ 26007
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - a4edf956-f052-482c-8046-5c76b702b153
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - 1
+
+
+
+
+ -
+ 7888
+ 26017
+ 67
+ 20
+
+ -
+ 7931
+ 26027
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1000
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - b925096e-42ca-48e1-864c-148562f35cc8
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7985
+ 25977
+ 53
+ 30
+
+ -
+ 8013
+ 25992
+
+
+
+
+
+
+
+ - Transformation data
+ - 6ef435be-c9eb-4f96-9131-2dbdb6eb27c8
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7985
+ 26007
+ 53
+ 30
+
+ -
+ 8013
+ 26022
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - cd4aaa78-bb6c-43bd-ae4e-037d66f67954
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7894
+ 25829
+ 154
+ 64
+
+ -
+ 7978
+ 25861
+
+
+
+
+
+ - Base geometry
+ - 7dcc7c56-2990-4356-a903-1d9b61b4b816
+ - Geometry
+ - Geometry
+ - true
+ - 4540e1d9-0aa8-45ba-b2e6-c402a16ccd98
+ - 1
+
+
+
+
+ -
+ 7896
+ 25831
+ 67
+ 20
+
+ -
+ 7939
+ 25841
+
+
+
+
+
+
+
+ - Center of scaling
+ - 8a44dcdb-3d64-4b11-b401-0db1b5ee2dbd
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7896
+ 25851
+ 67
+ 20
+
+ -
+ 7939
+ 25861
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 1d036fb0-b50c-4552-af8f-5163ae45e385
+ - 1/2^X
+ - Factor
+ - Factor
+ - false
+ - 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - 1
+
+
+
+
+ -
+ 7896
+ 25871
+ 67
+ 20
+
+ -
+ 7939
+ 25881
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1000
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - decde381-1034-4ed6-b96f-3a09ec3ed8a9
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7993
+ 25831
+ 53
+ 30
+
+ -
+ 8021
+ 25846
+
+
+
+
+
+
+
+ - Transformation data
+ - 04ffc2cf-8e67-45f0-b395-a675c7b0e610
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7993
+ 25861
+ 53
+ 30
+
+ -
+ 8021
+ 25876
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - Relay
+
+ - false
+ - 0d5480fd-b809-4f0b-985d-ac75960fc64f
+ - 1
+
+
+
+
+ -
+ 7951
+ 26122
+ 40
+ 16
+
+ -
+ 7971
+ 26130
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 304e5ccb-5a35-4e0c-8b92-206985fc9cf3
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 11
+
+ - 16.4
+
+
+
+
+ -
+ 7848
+ 26210
+ 250
+ 20
+
+ -
+ 7848.336
+ 26210.9
+
+
+
+
+
+
+
+
+
+ - 84627490-0fb2-4498-8138-ad134ee4cb36
+ - Curve | Curve
+
+
+
+
+ - Solve intersection events for two curves.
+ - true
+ - 25493dac-1f0f-4b75-8b92-6eec422efc11
+ - Curve | Curve
+ - Curve | Curve
+
+
+
+
+ -
+ 7898
+ 25911
+ 146
+ 64
+
+ -
+ 7959
+ 25943
+
+
+
+
+
+ - First curve
+ - c154949d-13a1-4de2-85ea-38b734e9424f
+ - Curve A
+ - Curve A
+ - false
+ - 9eb06eeb-44df-4f76-a253-e3e979a8c409
+ - 1
+
+
+
+
+ -
+ 7900
+ 25913
+ 44
+ 30
+
+ -
+ 7923.5
+ 25928
+
+
+
+
+
+
+
+ - Second curve
+ - 039a2f18-cf5c-461b-be77-ab9798fd34f2
+ - Curve B
+ - Curve B
+ - false
+ - b925096e-42ca-48e1-864c-148562f35cc8
+ - 1
+
+
+
+
+ -
+ 7900
+ 25943
+ 44
+ 30
+
+ -
+ 7923.5
+ 25958
+
+
+
+
+
+
+
+ - 1
+ - Intersection events
+ - 4540e1d9-0aa8-45ba-b2e6-c402a16ccd98
+ - 1
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 25913
+ 68
+ 20
+
+ -
+ 8001.5
+ 25923
+
+
+
+
+
+
+
+ - 1
+ - Parameters on first curve
+ - a146daca-813a-45b0-a027-20dcb746cf60
+ - Params A
+ - Params A
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 25933
+ 68
+ 20
+
+ -
+ 8001.5
+ 25943
+
+
+
+
+
+
+
+ - 1
+ - Parameters on second curve
+ - 1fce959b-2d31-4cda-8868-0ad2b2b42d7e
+ - Params B
+ - Params B
+ - false
+ - 0
+
+
+
+
+ -
+ 7974
+ 25953
+ 68
+ 20
+
+ -
+ 8001.5
+ 25963
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 6dd5f4ed-a71f-43b5-9556-d3ab2e83be7a
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7887
+ 25661
+ 168
+ 64
+
+ -
+ 7934
+ 25693
+
+
+
+
+
+ - Input point
+ - d4306bac-3039-4cdb-98c4-e48499c1fd57
+ - Point
+ - Point
+ - false
+ - decde381-1034-4ed6-b96f-3a09ec3ed8a9
+ - 1
+
+
+
+
+ -
+ 7889
+ 25663
+ 30
+ 60
+
+ -
+ 7905.5
+ 25693
+
+
+
+
+
+
+
+ - Point {x} component
+ - 08fe9886-fede-4488-90f0-870c2ef5d207
+ - ABS(X)
+ - 2
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7949
+ 25663
+ 104
+ 20
+
+ -
+ 7984.5
+ 25673
+
+
+
+
+
+
+
+ - Point {y} component
+ - 662c3174-f77d-4ffa-bec9-f9cd4fd2e6c0
+ - ABS(X)
+ - 2
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7949
+ 25683
+ 104
+ 20
+
+ -
+ 7984.5
+ 25693
+
+
+
+
+
+
+
+ - Point {z} component
+ - 22ab65a9-fdf7-4462-96d1-da310167ac92
+ - ABS(X)
+ - 2
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7949
+ 25703
+ 104
+ 20
+
+ -
+ 7984.5
+ 25713
+
+
+
+
+
+
+
+
+
+
+
+ - 1817fd29-20ae-4503-b542-f0fb651e67d7
+ - List Length
+
+
+
+
+ - Measure the length of a list.
+ - true
+ - ed78892a-320b-476c-8c93-6a7fa7e08ddd
+ - List Length
+ - List Length
+
+
+
+
+ -
+ 7924
+ 25782
+ 93
+ 28
+
+ -
+ 7963
+ 25796
+
+
+
+
+
+ - 1
+ - Base list
+ - 61d82b8f-c27e-42c0-9bff-242aca4a8ba5
+ - List
+ - List
+ - false
+ - decde381-1034-4ed6-b96f-3a09ec3ed8a9
+ - 1
+
+
+
+
+ -
+ 7926
+ 25784
+ 22
+ 24
+
+ -
+ 7938.5
+ 25796
+
+
+
+
+
+
+
+ - Number of items in L
+ - 9f0a55bc-be29-46c8-92f5-19cf8f55bb4f
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7978
+ 25784
+ 37
+ 24
+
+ -
+ 7998
+ 25796
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 67028c15-5934-458f-ab2a-9f38d9cd0ed5
+ - Panel
+
+ - false
+ - 1
+ - 9f0a55bc-be29-46c8-92f5-19cf8f55bb4f
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7949
+ 25746
+ 50
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7949.137
+ 25746.54
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9445ca40-cc73-4861-a455-146308676855
+ - Range
+
+
+
+
+ - Create a range of numbers.
+ - true
+ - e6d66e97-4999-47ab-aafa-1244fd466ec2
+ - Range
+ - Range
+
+
+
+
+ -
+ 7908
+ 25453
+ 126
+ 44
+
+ -
+ 7982
+ 25475
+
+
+
+
+
+ - Domain of numeric range
+ - 9017495a-bad7-47d0-9a30-80301583303f
+ - Domain
+ - Domain
+ - false
+ - f5633d88-5c8d-4738-9ca4-78f1f3b10604
+ - 1
+
+
+
+
+ -
+ 7910
+ 25455
+ 57
+ 20
+
+ -
+ 7948
+ 25465
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Number of steps
+ - 98ded187-e65c-4902-9208-3f83d4358b44
+ - X-2
+ - Steps
+ - Steps
+ - false
+ - 67028c15-5934-458f-ab2a-9f38d9cd0ed5
+ - 1
+
+
+
+
+ -
+ 7910
+ 25475
+ 57
+ 20
+
+ -
+ 7948
+ 25485
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Range of numbers
+ - 47f14d51-300b-482b-8dce-d227d4d36a41
+ - Range
+ - Range
+ - false
+ - 0
+
+
+
+
+ -
+ 7997
+ 25455
+ 35
+ 40
+
+ -
+ 8016
+ 25475
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 9ac4b811-e818-4cae-b5a8-1125c38df8ce
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 7893
+ 25515
+ 156
+ 44
+
+ -
+ 7991
+ 25537
+
+
+
+
+
+ - Start value of numeric domain
+ - 5de9b5e3-05b5-4d96-a127-d797480cf6e4
+ - Domain start
+ - Domain start
+ - false
+ - 0
+
+
+
+
+ -
+ 7895
+ 25517
+ 81
+ 20
+
+ -
+ 7945
+ 25527
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - cd414644-3cdd-49c2-a949-93d34363cefc
+ - X-2
+ - Domain end
+ - Domain end
+ - false
+ - 67028c15-5934-458f-ab2a-9f38d9cd0ed5
+ - 1
+
+
+
+
+ -
+ 7895
+ 25537
+ 81
+ 20
+
+ -
+ 7945
+ 25547
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - f5633d88-5c8d-4738-9ca4-78f1f3b10604
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 8006
+ 25517
+ 41
+ 40
+
+ -
+ 8028
+ 25537
+
+
+
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 26626c04-163a-4a20-980f-a24b2f442126
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 7918
+ 25369
+ 106
+ 64
+
+ -
+ 7982
+ 25401
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - f6f764a0-a6d4-4a7b-b3db-bf3cc6ffe82a
+ - 1
+ - List
+ - List
+ - false
+ - 834ee95c-4eac-4530-8a3c-29c57058ad84
+ - 1
+
+
+
+
+ -
+ 7920
+ 25371
+ 47
+ 20
+
+ -
+ 7953
+ 25381
+
+
+
+
+
+
+
+ - Item index
+ - e9ce2f59-3303-4a53-ba0d-15261a26e9ff
+ - Index
+ - Index
+ - false
+ - 47f14d51-300b-482b-8dce-d227d4d36a41
+ - 1
+
+
+
+
+ -
+ 7920
+ 25391
+ 47
+ 20
+
+ -
+ 7953
+ 25401
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 478b03d0-58e3-42d1-a713-e7fca9401b60
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 7920
+ 25411
+ 47
+ 20
+
+ -
+ 7953
+ 25421
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 8518e1e8-f491-41ba-8c28-753b8dee029c
+ - 1
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 7997
+ 25371
+ 25
+ 60
+
+ -
+ 8003
+ 25401
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Construct Point
+
+
+
+
+ - Construct a point from {xyz} coordinates.
+ - true
+ - e7098bff-3c56-4289-ab1d-5e2df2dc2cfb
+ - Construct Point
+ - Construct Point
+
+
+
+
+ -
+ 7898
+ 25286
+ 145
+ 64
+
+ -
+ 7980
+ 25318
+
+
+
+
+
+ - {x} coordinate
+ - a56a7dcb-f55d-49c6-9d98-72ac0015e769
+ - X coordinate
+ - X coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 7900
+ 25288
+ 65
+ 20
+
+ -
+ 7934
+ 25298
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - {y} coordinate
+ - 90bab88d-fe52-467e-8783-893ea04b7c4b
+ - Y coordinate
+ - Y coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 7900
+ 25308
+ 65
+ 20
+
+ -
+ 7934
+ 25318
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - {z} coordinate
+ - cc7e0a61-59ef-46a6-9518-54fffcbceb17
+ - Z coordinate
+ - Z coordinate
+ - false
+ - 0
+
+
+
+
+ -
+ 7900
+ 25328
+ 65
+ 20
+
+ -
+ 7934
+ 25338
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - ccfc0a63-d660-4276-b4c9-ac309204b3cd
+ - 1
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7995
+ 25288
+ 46
+ 60
+
+ -
+ 8011.5
+ 25318
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - 8429a1af-d262-4516-8ba6-4819d9bce080
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 7884
+ 25203
+ 174
+ 64
+
+ -
+ 7952
+ 25235
+
+
+
+
+
+ - Base geometry
+ - 2354448f-84ae-4964-ae1e-4c8be9e4cc1d
+ - Geometry
+ - Geometry
+ - true
+ - 8518e1e8-f491-41ba-8c28-753b8dee029c
+ - 1
+
+
+
+
+ -
+ 7886
+ 25205
+ 51
+ 20
+
+ -
+ 7913
+ 25215
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - fb8b0864-fea6-4081-b308-2eb08c6eca8d
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 7886
+ 25225
+ 51
+ 20
+
+ -
+ 7913
+ 25235
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - 22341cb1-b6d4-4f32-a6b9-aa0a2002592a
+ - Plane
+ - Plane
+ - false
+ - ccfc0a63-d660-4276-b4c9-ac309204b3cd
+ - 1
+
+
+
+
+ -
+ 7886
+ 25245
+ 51
+ 20
+
+ -
+ 7913
+ 25255
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 418b0f69-82c4-44ab-9c99-33ec6ccaf813
+ - 1
+ - Geometry
+ - Geometry
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 7967
+ 25205
+ 89
+ 30
+
+ -
+ 7995
+ 25220
+
+
+
+
+
+
+
+ - Transformation data
+ - f1e959a8-313a-4c1d-967f-a14d1ad0a983
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7967
+ 25235
+ 89
+ 30
+
+ -
+ 7995
+ 25250
+
+
+
+
+
+
+
+
+
+
+
+ - 3581f42a-9592-4549-bd6b-1c0fc39d067b
+ - Construct Point
+
+
+
+
+ - Construct a point from {xyz} coordinates.
+ - true
+ - 23015bee-c083-4af1-a5dc-e173dadaafa5
+ - Construct Point
+ - Construct Point
+
+
+
+
+ -
+ 7906
+ 25579
+ 129
+ 64
+
+ -
+ 7988
+ 25611
+
+
+
+
+
+ - {x} coordinate
+ - 0214d13f-f5e0-4573-b5ff-7754e7ab348d
+ - X coordinate
+ - X coordinate
+ - false
+ - 08fe9886-fede-4488-90f0-870c2ef5d207
+ - 1
+
+
+
+
+ -
+ 7908
+ 25581
+ 65
+ 20
+
+ -
+ 7942
+ 25591
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {y} coordinate
+ - 0b90d6cf-3608-4931-a60e-11be5a299728
+ - Y coordinate
+ - Y coordinate
+ - false
+ - 662c3174-f77d-4ffa-bec9-f9cd4fd2e6c0
+ - 1
+
+
+
+
+ -
+ 7908
+ 25601
+ 65
+ 20
+
+ -
+ 7942
+ 25611
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - {z} coordinate
+ - 39310936-b23e-42ac-bd00-360d4ededdfe
+ - Z coordinate
+ - Z coordinate
+ - false
+ - 22ab65a9-fdf7-4462-96d1-da310167ac92
+ - 1
+
+
+
+
+ -
+ 7908
+ 25621
+ 65
+ 20
+
+ -
+ 7942
+ 25631
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Point coordinate
+ - 834ee95c-4eac-4530-8a3c-29c57058ad84
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 8003
+ 25581
+ 30
+ 60
+
+ -
+ 8019.5
+ 25611
+
+
+
+
+
+
+
+
+
+
+
+ - 3cadddef-1e2b-4c09-9390-0e8f78f7609f
+ - Merge
+
+
+
+
+ - Merge a bunch of data streams
+ - true
+ - 1107e188-eef7-4c19-ae98-e31de26131c5
+ - Merge
+ - Merge
+
+
+
+
+ -
+ 7927
+ 25100
+ 87
+ 84
+
+ -
+ 7963
+ 25142
+
+
+
+
+
+ - 4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 2
+ - Data stream 1
+ - c83d69f4-9208-4076-96bf-b57d34d098a1
+ - false
+ - Data 1
+ - D1
+ - true
+ - 8518e1e8-f491-41ba-8c28-753b8dee029c
+ - 1
+
+
+
+
+ -
+ 7929
+ 25102
+ 19
+ 20
+
+ -
+ 7940
+ 25112
+
+
+
+
+
+
+
+ - 2
+ - Data stream 2
+ - f9ab74c4-5174-4db4-8d00-6d5d809f3da7
+ - false
+ - Data 2
+ - D2
+ - true
+ - ccfc0a63-d660-4276-b4c9-ac309204b3cd
+ - 1
+
+
+
+
+ -
+ 7929
+ 25122
+ 19
+ 20
+
+ -
+ 7940
+ 25132
+
+
+
+
+
+
+
+ - 2
+ - Data stream 3
+ - 0aae4231-b0eb-4301-9c22-cb3314c1e15e
+ - false
+ - Data 3
+ - D3
+ - true
+ - 418b0f69-82c4-44ab-9c99-33ec6ccaf813
+ - 1
+
+
+
+
+ -
+ 7929
+ 25142
+ 19
+ 20
+
+ -
+ 7940
+ 25152
+
+
+
+
+
+
+
+ - 2
+ - Data stream 4
+ - bb807ba9-d448-44dd-85ab-b311f681290e
+ - false
+ - Data 4
+ - D4
+ - true
+ - 0
+
+
+
+
+ -
+ 7929
+ 25162
+ 19
+ 20
+
+ -
+ 7940
+ 25172
+
+
+
+
+
+
+
+ - 2
+ - Result of merge
+ - b54f308e-40d5-49cf-9603-04608ca6bb66
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7978
+ 25102
+ 34
+ 80
+
+ -
+ 7996.5
+ 25142
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 0d5480fd-b809-4f0b-985d-ac75960fc64f
+ - Number
+ - Number
+ - false
+ - 304e5ccb-5a35-4e0c-8b92-206985fc9cf3
+ - 1
+
+
+
+
+ -
+ 7948
+ 26167
+ 50
+ 24
+
+ -
+ 7973.441
+ 26179.03
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 65536
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 23015bee-c083-4af1-a5dc-e173dadaafa5
+ - 1
+ - 85d75ab8-1a3b-48c1-a00b-452e5ebf23fb
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e67debd2-544c-4a62-830a-f5782ec6d95b
+ - Relay
+
+ - false
+ - 03d40c0a-b2a0-43a7-9c6a-cec5f5dac676
+ - 1
+
+
+
+
+ -
+ 8783
+ 27339
+ 40
+ 16
+
+ -
+ 8803
+ 27347
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",ROUND(X, 15))
+ - true
+ - ec56aa9b-bf0e-43f9-a278-6ef141612b48
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 8540
+ 25547
+ 326
+ 28
+
+ -
+ 8685
+ 25561
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - a9b4973d-6e2e-4c25-90a7-e65f57c6ce56
+ - true
+ - Variable X
+ - X
+ - true
+ - 29a9aaab-a1e8-4621-8fa9-ab9577de3e21
+ - 1
+
+
+
+
+ -
+ 8542
+ 25549
+ 14
+ 24
+
+ -
+ 8550.5
+ 25561
+
+
+
+
+
+
+
+ - Result of expression
+ - d2ecb03c-5a84-47f8-afac-17ae45bc6a9a
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 8814
+ 25549
+ 50
+ 24
+
+ -
+ 8832.5
+ 25561
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",ROUND(Y, 15))
+ - true
+ - 372c9713-8b48-4080-bca3-e19d37da43ba
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 8532
+ 25319
+ 325
+ 28
+
+ -
+ 8676
+ 25333
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - d9894b40-483e-47a3-beb8-5c0e8978e30d
+ - true
+ - Variable Y
+ - Y
+ - true
+ - 66983311-dc16-4275-bf06-bf946c994bad
+ - 1
+
+
+
+
+ -
+ 8534
+ 25321
+ 13
+ 24
+
+ -
+ 8542
+ 25333
+
+
+
+
+
+
+
+ - Result of expression
+ - ad59754d-108e-4cfa-9319-1b92867cb4a7
+ - true
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 8805
+ 25321
+ 50
+ 24
+
+ -
+ 8823.5
+ 25333
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 22990b1f-9be6-477c-ad89-f775cd347105
+ - Flip Curve
+
+
+
+
+ - Flip a curve using an optional guide curve.
+ - true
+ - cf3fd21c-3ff1-405f-8188-7c3e36e89091
+ - true
+ - Flip Curve
+ - Flip Curve
+
+
+
+
+ -
+ 9366
+ 26234
+ 100
+ 44
+
+ -
+ 9416
+ 26256
+
+
+
+
+
+ - Curve to flip
+ - b593cb0c-3850-43cb-ab64-fb084a2ca7e3
+ - true
+ - Curve
+ - Curve
+ - false
+ - 76b2a5e6-be01-4e1b-a790-d5e42bb7344e
+ - 1
+
+
+
+
+ -
+ 9368
+ 26236
+ 33
+ 20
+
+ -
+ 9386
+ 26246
+
+
+
+
+
+
+
+ - Optional guide curve
+ - a253bdd5-f900-4077-99d2-697a4d89362c
+ - true
+ - Guide
+ - Guide
+ - true
+ - 0
+
+
+
+
+ -
+ 9368
+ 26256
+ 33
+ 20
+
+ -
+ 9386
+ 26266
+
+
+
+
+
+
+
+ - Flipped curve
+ - e8f53765-0f87-4d4c-8084-d0da5bf9ce22
+ - true
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 9431
+ 26236
+ 33
+ 20
+
+ -
+ 9449
+ 26246
+
+
+
+
+
+
+
+ - Flip action
+ - c43c0669-746a-411a-938a-c9ae8295f8b2
+ - true
+ - Flag
+ - Flag
+ - false
+ - 0
+
+
+
+
+ -
+ 9431
+ 26256
+ 33
+ 20
+
+ -
+ 9449
+ 26266
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - f9dc0f84-f005-4def-9a32-1595c75a315b
+ - true
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 9382
+ 26114
+ 89
+ 64
+
+ -
+ 9427
+ 26146
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 882b4266-a91e-46f7-86d2-b4f193520620
+ - true
+ - Gate
+ - Gate
+ - false
+ - 68fed558-dddc-4bde-84cf-30a1dc52175b
+ - 1
+
+
+
+
+ -
+ 9384
+ 26116
+ 28
+ 20
+
+ -
+ 9399.5
+ 26126
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - b6e0d67c-e5f8-423f-a932-7b958de629c9
+ - true
+ - false
+ - Stream 0
+ - 0
+ - true
+ - 76b2a5e6-be01-4e1b-a790-d5e42bb7344e
+ - 1
+
+
+
+
+ -
+ 9384
+ 26136
+ 28
+ 20
+
+ -
+ 9399.5
+ 26146
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - 85e8f5a0-9c99-4451-a993-addcc86813fb
+ - true
+ - false
+ - Stream 1
+ - 1
+ - true
+ - e8f53765-0f87-4d4c-8084-d0da5bf9ce22
+ - 1
+
+
+
+
+ -
+ 9384
+ 26156
+ 28
+ 20
+
+ -
+ 9399.5
+ 26166
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 6909d3f9-3b76-40d3-9d12-d3bb72e99f02
+ - true
+ - false
+ - Stream
+ - S(0)
+ - false
+ - 0
+
+
+
+
+ -
+ 9442
+ 26116
+ 27
+ 60
+
+ -
+ 9457
+ 26146
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 68fed558-dddc-4bde-84cf-30a1dc52175b
+ - true
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 9349
+ 26209
+ 150
+ 20
+
+ -
+ 9349.287
+ 26209.1
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 0
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 9f05096a-c595-4115-8939-54713cb925f1
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 256 0.001373312102167
+
+
+
+
+ -
+ 12340
+ 24986
+ 174
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12340.28
+ 24986.8
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6c2d9e2d-29b0-4b0d-8c17-8fe4bfcaa494
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.001373312102167
+
+
+
+
+ -
+ 12352
+ 24928
+ 149
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 12352.67
+ 24928.02
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 442e6075-dae1-49d8-bd6c-8df4b2e5e279
+ - Curve
+ - Curve
+ - false
+ - adf83129-215a-4938-be3d-47d1a82da650
+ - 1
+
+
+
+
+ -
+ 8859
+ 17795
+ 50
+ 24
+
+ -
+ 8884.311
+ 17807.66
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - 314ba323-fca5-451e-b5c9-1e0cee8c9c84
+ - Number
+ - Number
+ - false
+ - fce57c1e-7c8c-442e-8c34-f03322b193c3
+ - 1
+
+
+
+
+ -
+ 8689
+ 27122
+ 50
+ 24
+
+ -
+ 8714.371
+ 27134.94
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8dcb8ac5-af0b-497e-9f9f-5a59c21d7739
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4793
+ 517
+ 144
+ 64
+
+ -
+ 4867
+ 549
+
+
+
+
+
+ - Curve to evaluate
+ - 860d2d67-c77d-41f0-b314-755a6c77da1f
+ - true
+ - Curve
+ - Curve
+ - false
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 1
+
+
+
+
+ -
+ 4795
+ 519
+ 57
+ 20
+
+ -
+ 4825
+ 529
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c6ae725e-4c9d-4aac-b254-3740de47ffb9
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 539
+ 57
+ 20
+
+ -
+ 4825
+ 549
+
+
+
+
+
+ - 1
+
+
+
+
+ - 8
+ - {0}
+
+
+
+
+ - 0.0625
+
+
+
+
+ - 0.1875
+
+
+
+
+ - 0.3125
+
+
+
+
+ - 0.4375
+
+
+
+
+ - 0.5625
+
+
+
+
+ - 0.6875
+
+
+
+
+ - 0.8125
+
+
+
+
+ - 0.9375
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 47a809dc-657a-4cba-a5fd-7f8ace0ab7a3
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 559
+ 57
+ 20
+
+ -
+ 4825
+ 569
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e0c83f5e-8e11-4367-8a1c-374721201adf
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 519
+ 53
+ 20
+
+ -
+ 4910
+ 529
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 3d4b1ebe-c143-4653-92e5-c0752a0ab481
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 539
+ 53
+ 20
+
+ -
+ 4910
+ 549
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 090c1148-8402-4d9b-90cb-d43e3d382ea6
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 559
+ 53
+ 20
+
+ -
+ 4910
+ 569
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - true
+ - Curve
+ - Curve
+ - false
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - 1
+
+
+
+
+ -
+ 4840
+ 478
+ 50
+ 24
+
+ -
+ 4865.667
+ 490.4783
+
+
+
+
+
+
+
+
+
+ - 50b204ef-d3de-41bb-a006-02fba2d3f709
+ - Circle TanTan
+
+
+
+
+ - Create a circle tangent to two curves.
+ - true
+ - 3db8404e-2571-4eff-9bdf-8e6e83dd76c6
+ - true
+ - Circle TanTan
+ - Circle TanTan
+
+
+
+
+ -
+ 4810
+ 388
+ 110
+ 64
+
+ -
+ 4871
+ 420
+
+
+
+
+
+ - First curve for tangency constraint
+ - f18dc38d-eb33-49b6-b9a4-37e4953b3a73
+ - true
+ - Curve A
+ - Curve A
+ - false
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 1
+
+
+
+
+ -
+ 4812
+ 390
+ 44
+ 20
+
+ -
+ 4835.5
+ 400
+
+
+
+
+
+
+
+ - Second curve for tangency constraint
+ - e3e79cc0-4f7f-40e8-a81c-9aa9fd6bb224
+ - true
+ - Curve B
+ - Curve B
+ - false
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - 1
+
+
+
+
+ -
+ 4812
+ 410
+ 44
+ 20
+
+ -
+ 4835.5
+ 420
+
+
+
+
+
+
+
+ - Circle center point guide
+ - d2756187-a685-4afc-946d-2850c8a167d4
+ - true
+ - Point
+ - Point
+ - false
+ - e0c83f5e-8e11-4367-8a1c-374721201adf
+ - 1
+
+
+
+
+ -
+ 4812
+ 430
+ 44
+ 20
+
+ -
+ 4835.5
+ 440
+
+
+
+
+
+
+
+ - Resulting circle
+ - 4fef126c-5d5b-41b7-bbef-ae38bb6da4ff
+ - true
+ - Circle
+ - Circle
+ - false
+ - 0
+
+
+
+
+ -
+ 4886
+ 390
+ 32
+ 60
+
+ -
+ 4903.5
+ 420
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - 1
+
+
+
+
+ -
+ 4840
+ 610
+ 50
+ 24
+
+ -
+ 4865.899
+ 622.7803
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8dcb8ac5-af0b-497e-9f9f-5a59c21d7739
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - 3db8404e-2571-4eff-9bdf-8e6e83dd76c6
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 4
+ - 67e87bed-97bd-4fe6-a495-b4bf8cba66a7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 10a885e1-c62c-4884-aac2-5a603349ad8c
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4557
+ 5076
+ 166
+ 44
+
+ -
+ 4622
+ 5098
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - c5e45e48-13ff-409f-b940-20d2c289996b
+ - Keys
+ - Keys
+ - false
+ - 97db0094-b0e0-490b-aee3-b5ad1a35b7ce
+ - 1
+
+
+
+
+ -
+ 4559
+ 5078
+ 48
+ 20
+
+ -
+ 4584.5
+ 5088
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - d25ba8d2-c317-4ee0-9a38-3456853c33e3
+ - Values A
+ - Values A
+ - true
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 1
+
+
+
+
+ -
+ 4559
+ 5098
+ 48
+ 20
+
+ -
+ 4584.5
+ 5108
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 991955a3-8008-4e57-8dbb-7ba03cd9f567
+ - 1
+ - Keys
+ - Keys
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4637
+ 5078
+ 84
+ 20
+
+ -
+ 4662.5
+ 5088
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in A
+ - 069a4f8e-92dd-4b26-85d9-3bf73f839545
+ - 1
+ - Values A
+ - Values A
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4637
+ 5098
+ 84
+ 20
+
+ -
+ 4662.5
+ 5108
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 5d5e6fe9-12d4-4847-aedd-a0138f3348ac
+ - Length
+ - Length
+
+
+
+
+ -
+ 4588
+ 5138
+ 104
+ 28
+
+ -
+ 4638
+ 5152
+
+
+
+
+
+ - Curve to measure
+ - a9b71273-d374-4bb6-9799-ec2437c44412
+ - Curve
+ - Curve
+ - false
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 1
+
+
+
+
+ -
+ 4590
+ 5140
+ 33
+ 24
+
+ -
+ 4608
+ 5152
+
+
+
+
+
+
+
+ - Curve length
+ - 97db0094-b0e0-490b-aee3-b5ad1a35b7ce
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4653
+ 5140
+ 37
+ 24
+
+ -
+ 4673
+ 5152
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1a9fea67-24bb-4a73-b097-d1198a77d87c
+ - Panel
+
+ - false
+ - 0
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4578
+ 4953
+ 124
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4578.951
+ 4953.517
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 336373ee-9098-4a65-a9fc-245b1728e183
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4594
+ 4993
+ 92
+ 64
+
+ -
+ 4642
+ 5025
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - ace7a9cf-0d93-4dd2-92e7-78d2e22247b1
+ - List
+ - List
+ - false
+ - 991955a3-8008-4e57-8dbb-7ba03cd9f567
+ - 1
+
+
+
+
+ -
+ 4596
+ 4995
+ 31
+ 20
+
+ -
+ 4613
+ 5005
+
+
+
+
+
+
+
+ - Item index
+ - 1600e066-8870-495b-97d9-3c995d4970a7
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4596
+ 5015
+ 31
+ 20
+
+ -
+ 4613
+ 5025
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 62143c9f-d88e-4125-b9a3-15097957e834
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4596
+ 5035
+ 31
+ 20
+
+ -
+ 4613
+ 5045
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - false
+ - Item
+ - Item
+ - false
+ - 0
+
+
+
+
+ -
+ 4657
+ 4995
+ 27
+ 60
+
+ -
+ 4672
+ 5025
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10a885e1-c62c-4884-aac2-5a603349ad8c
+ - 5d5e6fe9-12d4-4847-aedd-a0138f3348ac
+ - 1a9fea67-24bb-4a73-b097-d1198a77d87c
+ - 336373ee-9098-4a65-a9fc-245b1728e183
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 5
+ - d471759a-2aac-4cde-99fb-c4eeef356581
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4618
+ 5184
+ 40
+ 16
+
+ -
+ 4638
+ 5192
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 68082c19-68a1-4f98-8cf1-6a223a630ca2
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4808
+ 1046
+ 166
+ 44
+
+ -
+ 4873
+ 1068
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 77df0001-99a0-4e30-b846-5ad09fec4152
+ - Keys
+ - Keys
+ - false
+ - e17faae2-0363-4357-93c9-bd2d227f6f95
+ - 1
+
+
+
+
+ -
+ 4810
+ 1048
+ 48
+ 20
+
+ -
+ 4835.5
+ 1058
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - 77b4169b-7957-4219-a516-fd1c01fc17a8
+ - Values Values A
+ - Values A
+ - true
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 1
+
+
+
+
+ -
+ 4810
+ 1068
+ 48
+ 20
+
+ -
+ 4835.5
+ 1078
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 141ac252-7681-4aae-ad37-2fdcb02e31d6
+ - 1
+ - Keys
+ - Keys
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4888
+ 1048
+ 84
+ 20
+
+ -
+ 4913.5
+ 1058
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - 95f460fb-fea2-4898-9b96-c6614fd6a480
+ - 1
+ - Values Values A
+ - Values A
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4888
+ 1068
+ 84
+ 20
+
+ -
+ 4913.5
+ 1078
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 586b67fb-8013-4a19-afbe-58c6fb976d98
+ - Length
+ - Length
+
+
+
+
+ -
+ 4839
+ 1108
+ 104
+ 28
+
+ -
+ 4889
+ 1122
+
+
+
+
+
+ - Curve to measure
+ - 221f67e4-8fca-45c2-a2a5-6ea91c10ab7e
+ - Curve
+ - Curve
+ - false
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 1
+
+
+
+
+ -
+ 4841
+ 1110
+ 33
+ 24
+
+ -
+ 4859
+ 1122
+
+
+
+
+
+
+
+ - Curve length
+ - e17faae2-0363-4357-93c9-bd2d227f6f95
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4904
+ 1110
+ 37
+ 24
+
+ -
+ 4924
+ 1122
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4cdc7d62-de0e-4133-8e9f-dcf36557e740
+ - Panel
+
+ - false
+ - 0
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4831
+ 884
+ 124
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4831.305
+ 884.7397
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 2dae60c8-92c8-445a-8e3a-e4e4ecca8654
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4854
+ 963
+ 74
+ 64
+
+ -
+ 4902
+ 995
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 304addc7-7081-4df9-9b59-ec9e5daf6fb1
+ - List
+ - List
+ - false
+ - 141ac252-7681-4aae-ad37-2fdcb02e31d6
+ - 1
+
+
+
+
+ -
+ 4856
+ 965
+ 31
+ 20
+
+ -
+ 4873
+ 975
+
+
+
+
+
+
+
+ - Item index
+ - 026c004f-2d7f-41db-9d3b-f75ede8f2ecb
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4856
+ 985
+ 31
+ 20
+
+ -
+ 4873
+ 995
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 33de4a30-e606-4c37-baab-a5e45944b6bd
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4856
+ 1005
+ 31
+ 20
+
+ -
+ 4873
+ 1015
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4917
+ 965
+ 9
+ 60
+
+ -
+ 4923
+ 995
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 68082c19-68a1-4f98-8cf1-6a223a630ca2
+ - 586b67fb-8013-4a19-afbe-58c6fb976d98
+ - 4cdc7d62-de0e-4133-8e9f-dcf36557e740
+ - 2dae60c8-92c8-445a-8e3a-e4e4ecca8654
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 93132e8b-ab93-41d0-b5e4-ef3b610ae451
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - d18c37a3-8870-4d84-837d-a09e2feff9b4
+ - a7a02c85-5134-4dc0-892c-7aca3ec86465
+ - 9
+ - 7d18f7f1-21bd-43ec-9f05-0ac476eaa41b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - Relay
+
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4871
+ 1154
+ 40
+ 16
+
+ -
+ 4891
+ 1162
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 93132e8b-ab93-41d0-b5e4-ef3b610ae451
+ - Division
+ - Division
+
+
+
+
+ -
+ 4850
+ 810
+ 82
+ 44
+
+ -
+ 4881
+ 832
+
+
+
+
+
+ - Item to divide (dividend)
+ - a1b9f6dc-a89a-4131-b7cd-1eb7dea7c26a
+ - A
+ - A
+ - false
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - 1
+
+
+
+
+ -
+ 4852
+ 812
+ 14
+ 20
+
+ -
+ 4860.5
+ 822
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 95dcf4c4-435e-4079-b9c9-002dc7e6b904
+ - B
+ - B
+ - false
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - 1
+
+
+
+
+ -
+ 4852
+ 832
+ 14
+ 20
+
+ -
+ 4860.5
+ 842
+
+
+
+
+
+
+
+ - The result of the Division
+ - 8e2db5fd-f520-4350-b05e-147b54bdc6e1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4896
+ 812
+ 34
+ 40
+
+ -
+ 4914.5
+ 832
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - Relay
+
+ - false
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - 1
+
+
+
+
+ -
+ 4871
+ 926
+ 40
+ 16
+
+ -
+ 4891
+ 934
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d18c37a3-8870-4d84-837d-a09e2feff9b4
+ - Panel
+
+ - false
+ - 0
+ - 0f7b6154-1db3-4b52-938e-66ae1f49d020
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4824
+ 718
+ 138
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4824.362
+ 718.1323
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - a7a02c85-5134-4dc0-892c-7aca3ec86465
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4774
+ 756
+ 235
+ 28
+
+ -
+ 4874
+ 770
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 692bab05-e1ee-4fd8-a3e1-268c6f6e54c5
+ - Variable X
+ - X
+ - true
+ - 8e2db5fd-f520-4350-b05e-147b54bdc6e1
+ - 1
+
+
+
+
+ -
+ 4776
+ 758
+ 14
+ 24
+
+ -
+ 4784.5
+ 770
+
+
+
+
+
+
+
+ - Result of expression
+ - 0f7b6154-1db3-4b52-938e-66ae1f49d020
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4957
+ 758
+ 50
+ 24
+
+ -
+ 4975.5
+ 770
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.09375000000
+
+
+
+
+ -
+ 4185
+ 5295
+ 250
+ 20
+
+ -
+ 4185.428
+ 5295.365
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6b23f605-1533-4de6-9a99-7e5d71630123
+ - Relay
+
+ - false
+ - 442e6075-dae1-49d8-bd6c-8df4b2e5e279
+ - 1
+
+
+
+
+ -
+ 8193
+ 27355
+ 40
+ 16
+
+ -
+ 8213
+ 27363
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - Curve
+ - Curve
+ - false
+ - 6b23f605-1533-4de6-9a99-7e5d71630123
+ - 1
+
+
+
+
+ -
+ 8472
+ 27896
+ 50
+ 24
+
+ -
+ 8497.052
+ 27908.87
+
+
+
+
+
+
+
+
+
+ - ccfd6ba8-ecb1-44df-a47e-08126a653c51
+ - Curve Domain
+
+
+
+
+ - Measure and set the curve domain
+ - true
+ - 27269ca2-746d-493e-bd7f-1659cea6783b
+ - Curve Domain
+ - Curve Domain
+
+
+
+
+ -
+ 8438
+ 27834
+ 116
+ 44
+
+ -
+ 8496
+ 27856
+
+
+
+
+
+ - Curve to measure/modify
+ - c14647d7-1e8a-44b0-9699-0889411af5aa
+ - Curve
+ - Curve
+ - false
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - 1
+
+
+
+
+ -
+ 8440
+ 27836
+ 41
+ 20
+
+ -
+ 8462
+ 27846
+
+
+
+
+
+
+
+ - Optional domain, if omitted the curve will not be modified.
+ - ecea4d9b-9629-44bd-adc3-eb6ca5e8c856
+ - Domain
+ - Domain
+ - true
+ - 0
+
+
+
+
+ -
+ 8440
+ 27856
+ 41
+ 20
+
+ -
+ 8462
+ 27866
+
+
+
+
+
+
+
+ - Curve with new domain.
+ - cbbcf946-4aec-4d46-b72b-a606f7a104bf
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8511
+ 27836
+ 41
+ 20
+
+ -
+ 8533
+ 27846
+
+
+
+
+
+
+
+ - Domain of original curve.
+ - 1c3d95c6-f7c9-4c5d-8b42-e0ca74be1f81
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 8511
+ 27856
+ 41
+ 20
+
+ -
+ 8533
+ 27866
+
+
+
+
+
+
+
+
+
+
+
+ - 429cbba9-55ee-4e84-98ea-876c44db879a
+ - Sub Curve
+
+
+
+
+ - Construct a curve from the sub-domain of a base curve.
+ - true
+ - f4b20cd0-ad6e-4694-a5db-9f4fb1e8a455
+ - Sub Curve
+ - Sub Curve
+
+
+
+
+ -
+ 8434
+ 27647
+ 124
+ 44
+
+ -
+ 8508
+ 27669
+
+
+
+
+
+ - Base curve
+ - b2054661-b9be-4a99-80b8-0940f81794fc
+ - Base curve
+ - Base curve
+ - false
+ - cbbcf946-4aec-4d46-b72b-a606f7a104bf
+ - 1
+
+
+
+
+ -
+ 8436
+ 27649
+ 57
+ 20
+
+ -
+ 8466
+ 27659
+
+
+
+
+
+
+
+ - Sub-domain to extract
+ - a00cd4a1-6e37-4826-88fd-51d54410a69a
+ - Domain
+ - Domain
+ - false
+ - 9334ae67-07c7-4834-8b06-7a33f4821639
+ - 1
+
+
+
+
+ -
+ 8436
+ 27669
+ 57
+ 20
+
+ -
+ 8466
+ 27679
+
+
+
+
+
+
+
+ - Resulting sub curve
+ - 28ffb627-e1d3-4ada-af3e-d72a32b969c3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8523
+ 27649
+ 33
+ 40
+
+ -
+ 8541
+ 27669
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - b1869d86-deda-4a0d-9417-d722ff5a6f76
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 8444
+ 27772
+ 104
+ 44
+
+ -
+ 8502
+ 27794
+
+
+
+
+
+ - Base domain
+ - a2c803c9-f57f-499b-9b73-ba3c6b2d2ab7
+ - Domain
+ - Domain
+ - false
+ - 1c3d95c6-f7c9-4c5d-8b42-e0ca74be1f81
+ - 1
+
+
+
+
+ -
+ 8446
+ 27774
+ 41
+ 40
+
+ -
+ 8468
+ 27794
+
+
+
+
+
+
+
+ - Start of domain
+ - 31ee45b7-0163-43d0-be13-20bb206e237a
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 8517
+ 27774
+ 29
+ 20
+
+ -
+ 8533
+ 27784
+
+
+
+
+
+
+
+ - End of domain
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 8517
+ 27794
+ 29
+ 20
+
+ -
+ 8533
+ 27804
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 055cc576-c38c-4518-a0b7-02351a6ac391
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 8418
+ 27709
+ 156
+ 44
+
+ -
+ 8516
+ 27731
+
+
+
+
+
+ - Start value of numeric domain
+ - b7629d1e-f2a9-4510-81c4-bb8df98eeaea
+ - X/2
+ - Domain start
+ - Domain start
+ - false
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - 1
+
+
+
+
+ -
+ 8420
+ 27711
+ 81
+ 20
+
+ -
+ 8470
+ 27721
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - fa41cdac-411c-4290-8d64-738b3324437b
+ - Domain end
+ - Domain end
+ - false
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - 1
+
+
+
+
+ -
+ 8420
+ 27731
+ 81
+ 20
+
+ -
+ 8470
+ 27741
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 9334ae67-07c7-4834-8b06-7a33f4821639
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 8531
+ 27711
+ 41
+ 40
+
+ -
+ 8553
+ 27731
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 450d1836-007e-42fe-9e6e-fe593816a576
+ - Move
+ - Move
+
+
+
+
+ -
+ 8420
+ 27575
+ 138
+ 44
+
+ -
+ 8488
+ 27597
+
+
+
+
+
+ - Base geometry
+ - 68453121-dd05-471b-a271-3b0e6e0e6681
+ - Geometry
+ - Geometry
+ - true
+ - 28ffb627-e1d3-4ada-af3e-d72a32b969c3
+ - 1
+
+
+
+
+ -
+ 8422
+ 27577
+ 51
+ 20
+
+ -
+ 8449
+ 27587
+
+
+
+
+
+
+
+ - Translation vector
+ - e88170f6-4ac7-4245-a6a9-6b3334fc6328
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27597
+ 51
+ 20
+
+ -
+ 8449
+ 27607
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -0.5
+ -0.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 44ac77be-fbeb-466e-bddb-7f1328440517
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27577
+ 53
+ 20
+
+ -
+ 8531
+ 27587
+
+
+
+
+
+
+
+ - Transformation data
+ - df6843f5-81ac-4924-88f4-bf5656d3e788
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27597
+ 53
+ 20
+
+ -
+ 8531
+ 27607
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - c29714be-f7d1-4db0-91e2-ed8c9ccfa8c6
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 8420
+ 27488
+ 138
+ 64
+
+ -
+ 8488
+ 27520
+
+
+
+
+
+ - Base geometry
+ - 4d9bfc44-2c61-4e4f-bb88-4b8e0e181ef0
+ - Geometry
+ - Geometry
+ - true
+ - 44ac77be-fbeb-466e-bddb-7f1328440517
+ - 1
+
+
+
+
+ -
+ 8422
+ 27490
+ 51
+ 20
+
+ -
+ 8449
+ 27500
+
+
+
+
+
+
+
+ - Center of scaling
+ - aedb4df6-b9b1-4980-9b64-4f53b9963a22
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27510
+ 51
+ 20
+
+ -
+ 8449
+ 27520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - eea675a8-779d-4d23-82f1-8d86d1584a87
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27530
+ 51
+ 20
+
+ -
+ 8449
+ 27540
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 7dcd6b2d-8a1b-43b9-a02b-7edb3c6aca31
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27490
+ 53
+ 30
+
+ -
+ 8531
+ 27505
+
+
+
+
+
+
+
+ - Transformation data
+ - a359d01a-11cf-4ae0-abbb-97ed147383af
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27520
+ 53
+ 30
+
+ -
+ 8531
+ 27535
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
+ - Curve
+ - Curve
+ - false
+ - 7dcd6b2d-8a1b-43b9-a02b-7edb3c6aca31
+ - 1
+
+
+
+
+ -
+ 8463
+ 27443
+ 50
+ 24
+
+ -
+ 8488.357
+ 27455.06
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - 27269ca2-746d-493e-bd7f-1659cea6783b
+ - f4b20cd0-ad6e-4694-a5db-9f4fb1e8a455
+ - b1869d86-deda-4a0d-9417-d722ff5a6f76
+ - 055cc576-c38c-4518-a0b7-02351a6ac391
+ - 450d1836-007e-42fe-9e6e-fe593816a576
+ - c29714be-f7d1-4db0-91e2-ed8c9ccfa8c6
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
+ - 8
+ - 63aabaa5-28e3-4fc1-b4ee-df782655ab68
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1fab4ce0-a0d3-4eef-ae07-03b6a706010f
+ - e1d9245b-0e46-4612-a05c-086ece7d4f27
+ - 02e2de16-a5ea-48e8-a96e-3b64d8d23d4c
+ - 226678fa-f252-40a7-b562-5dfcb4e05d00
+ - ac285a80-dc09-42f6-9b54-e64c17da6742
+ - 192040a4-1cd3-4c8f-8e89-0ca4b6f62685
+ - 6
+ - a623b2c3-a5b0-49e2-b73b-eab18c0d990e
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - c6962fb8-3d1c-49a2-b22a-4827e9d2360b
+ - d5a438d3-3624-45f7-8df0-89028443357c
+ - ccb305be-cb59-465a-9acf-f1f5034c5276
+ - 02013e4e-1e61-4bef-ad96-dfc5f621f77b
+ - 165bbe7c-b8bd-4704-8cc2-729d3323717b
+ - 1f193c86-cd91-46ac-a421-f28cf1694bee
+ - 11b93464-3cc5-44d5-9e38-71e30ea766b0
+ - fc6bf02e-b210-4277-98ec-1a0b90c929e9
+ - 864b7f47-5221-46f4-b928-5e95786a21dd
+ - f81b6740-886e-4d18-995c-e46164bf51c2
+ - 81d23b3f-5eab-4b2f-b94d-2e34670f4ec3
+ - f0e77e85-00dc-4753-b1f8-c019eb7b2364
+ - 6bd907dc-57cb-4742-9c89-a2702989d263
+ - 0d13e044-b45b-4b63-a3f7-772495650337
+ - c224342c-801f-4459-9224-44879ddf539f
+ - ea3a5d1a-aaf7-41de-9cb2-7ada0a73a5b8
+ - 3fc8c3f3-c97d-473c-83ca-e47c7969c7ee
+ - 262c6e8b-4b9e-4aca-a3ed-39a8bbf6286c
+ - 2582f4b3-14b2-43b6-a7e3-2636d387b3ad
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - f3c34928-3165-4117-b76b-514e7d82f38d
+ - dd47101f-2388-491f-92f7-e72aab796c08
+ - 3aedad9c-cf89-438e-8768-29f7d86cf020
+ - 538664f1-d67f-4787-82e7-6fc05c19b34a
+ - 155e20fc-d926-4d97-9d2b-9d1bc13bb0fc
+ - 87a8363e-8858-4d94-95b3-1537b8d42117
+ - 0afa08b2-a687-4a33-944b-40eee9b38aaf
+ - e0c6babc-e8da-4f54-bad1-dce2aeab8e99
+ - d9015fa1-dd1d-4e44-84bc-6aa6429708cb
+ - 45a24ef7-68d3-48cb-bbbb-969364f72549
+ - 94238e7e-3afa-4ff4-8f6b-0eeeb14d6b66
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - e85d0add-2b95-478d-9116-94de43ded83d
+ - 880c5140-108e-41c5-a8aa-e2b4fbf23449
+ - bbbb547f-ea1b-4e71-b00e-880ada1ffff1
+ - 62843cee-dee2-4d6d-9cfd-cd87a0a985b3
+ - 2e0e8788-d2ee-41ee-a01e-c72064bae97f
+ - 09e59d6e-ffbe-42c4-b530-eab4c96d633c
+ - e0971e96-3f16-42b0-9104-ac79bfe228c6
+ - caa7e05c-2ef5-4691-9bd8-2bcf031aaccc
+ - 92c1a519-14c5-4a9c-b9a2-e3808c50abec
+ - 23efc14d-245b-4f21-9e33-37233a57e49b
+ - fde665ed-bc3c-47d3-aa9c-b421ed286f16
+ - 37241510-ecb8-43e4-b374-dd0f3c68f364
+ - b5f4a8cb-af12-4438-928a-ceecf06b9d82
+ - 73a704b7-a370-4b11-a6c5-977abd81b48a
+ - 713b3506-6340-4518-8f30-244fc9b70046
+ - 94564bd6-6ce4-49d9-9472-e5e367a6ff51
+ - bbedb044-1e50-4506-b494-269e9e7252d9
+ - 61bedb29-55a8-49ed-901b-dbc9b1417af0
+ - 9aaff8fa-e58c-4895-bb33-3ef7c760a7bd
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 145c46d9-134d-4641-b349-73259d0c97fb
+ - 6eb14d8d-11bd-412b-82cd-63e3ac800396
+ - 033f87ae-a026-4278-bddc-c4aa063cc49c
+ - 8823ba42-6f15-4003-82f1-c1650974ddca
+ - 94146238-fdbe-4668-9869-9f3cefa62a09
+ - 2f9a098a-1b8d-486c-9413-69955d8633f8
+ - 59369b31-4d53-40f1-a65e-5f6c81eed120
+ - e663577f-113b-487b-ae01-cffe8fb83921
+ - 9640ee8d-6323-4b9c-81e7-cf5e50ede458
+ - 7a18aa51-407d-45b0-9c6e-b90530c5e229
+ - 960c6295-912f-41e6-91dd-508159afeccd
+ - 8862ba1d-e3d5-4b38-b01c-0a18b62f4a2a
+ - 27793e20-3a8e-4426-b865-b1bfab18c84f
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - 2a8aacab-d290-42ce-a378-f1950fa0b550
+ - 768a75cc-fb01-4727-a926-3d23b105c6e2
+ - c3a7ca30-fdc3-495a-b83c-c1e5e2018c2b
+ - 94a179f4-42f2-4db4-a2f2-e60c841ea624
+ - ae0b3969-bca9-4c9e-aa42-57868d8cb8a3
+ - f65c8122-df19-4758-9715-bd93b7eb63f2
+ - 64deed38-d62c-478f-a39a-8bc3cb7f065a
+ - a4df3653-5914-4105-b7a5-3d9ff807534d
+ - 9aca1b3c-518c-42fe-baff-2260c150d2fd
+ - ed591d71-a137-4f2d-b6c9-3b694455668c
+ - 702989bc-2cf2-4ade-8ffd-246a00bee486
+ - 33e22ec1-2435-4d45-b738-df841e8d28ca
+ - 734a27ff-cbd3-408b-8679-e9bd39cb249b
+ - a3cc0d8d-dbf0-44e6-8e22-5a6b0ed0677d
+ - 6147a32d-2685-42b3-98f0-4307b92ad40a
+ - 50decb4c-c6f9-45b9-bf8d-ff80699b9d3c
+ - ce5a7258-3733-4174-8e88-1b4cc94ef234
+ - a6af5b65-d9e5-4705-b850-f1e26fdaf68a
+ - dfb4326a-cf04-4535-bd2b-ff73a6bb5796
+ - 85
+ - ce80bd26-9cae-4ce0-9a36-3b0fd204daa5
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - d5a438d3-3624-45f7-8df0-89028443357c
+ - ccb305be-cb59-465a-9acf-f1f5034c5276
+ - 02013e4e-1e61-4bef-ad96-dfc5f621f77b
+ - 165bbe7c-b8bd-4704-8cc2-729d3323717b
+ - 1f193c86-cd91-46ac-a421-f28cf1694bee
+ - 11b93464-3cc5-44d5-9e38-71e30ea766b0
+ - fc6bf02e-b210-4277-98ec-1a0b90c929e9
+ - 864b7f47-5221-46f4-b928-5e95786a21dd
+ - f81b6740-886e-4d18-995c-e46164bf51c2
+ - 81d23b3f-5eab-4b2f-b94d-2e34670f4ec3
+ - f0e77e85-00dc-4753-b1f8-c019eb7b2364
+ - 6bd907dc-57cb-4742-9c89-a2702989d263
+ - 0d13e044-b45b-4b63-a3f7-772495650337
+ - c224342c-801f-4459-9224-44879ddf539f
+ - ea3a5d1a-aaf7-41de-9cb2-7ada0a73a5b8
+ - 3fc8c3f3-c97d-473c-83ca-e47c7969c7ee
+ - 262c6e8b-4b9e-4aca-a3ed-39a8bbf6286c
+ - 2582f4b3-14b2-43b6-a7e3-2636d387b3ad
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - f3c34928-3165-4117-b76b-514e7d82f38d
+ - dd47101f-2388-491f-92f7-e72aab796c08
+ - 3aedad9c-cf89-438e-8768-29f7d86cf020
+ - 538664f1-d67f-4787-82e7-6fc05c19b34a
+ - 155e20fc-d926-4d97-9d2b-9d1bc13bb0fc
+ - 87a8363e-8858-4d94-95b3-1537b8d42117
+ - 0afa08b2-a687-4a33-944b-40eee9b38aaf
+ - e0c6babc-e8da-4f54-bad1-dce2aeab8e99
+ - d9015fa1-dd1d-4e44-84bc-6aa6429708cb
+ - 45a24ef7-68d3-48cb-bbbb-969364f72549
+ - 94238e7e-3afa-4ff4-8f6b-0eeeb14d6b66
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - e85d0add-2b95-478d-9116-94de43ded83d
+ - 880c5140-108e-41c5-a8aa-e2b4fbf23449
+ - bbbb547f-ea1b-4e71-b00e-880ada1ffff1
+ - 62843cee-dee2-4d6d-9cfd-cd87a0a985b3
+ - 2e0e8788-d2ee-41ee-a01e-c72064bae97f
+ - 09e59d6e-ffbe-42c4-b530-eab4c96d633c
+ - e0971e96-3f16-42b0-9104-ac79bfe228c6
+ - caa7e05c-2ef5-4691-9bd8-2bcf031aaccc
+ - 92c1a519-14c5-4a9c-b9a2-e3808c50abec
+ - 23efc14d-245b-4f21-9e33-37233a57e49b
+ - fde665ed-bc3c-47d3-aa9c-b421ed286f16
+ - 37241510-ecb8-43e4-b374-dd0f3c68f364
+ - b5f4a8cb-af12-4438-928a-ceecf06b9d82
+ - 73a704b7-a370-4b11-a6c5-977abd81b48a
+ - 713b3506-6340-4518-8f30-244fc9b70046
+ - 94564bd6-6ce4-49d9-9472-e5e367a6ff51
+ - bbedb044-1e50-4506-b494-269e9e7252d9
+ - 61bedb29-55a8-49ed-901b-dbc9b1417af0
+ - 9aaff8fa-e58c-4895-bb33-3ef7c760a7bd
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 145c46d9-134d-4641-b349-73259d0c97fb
+ - 6eb14d8d-11bd-412b-82cd-63e3ac800396
+ - 033f87ae-a026-4278-bddc-c4aa063cc49c
+ - 8823ba42-6f15-4003-82f1-c1650974ddca
+ - 94146238-fdbe-4668-9869-9f3cefa62a09
+ - 2f9a098a-1b8d-486c-9413-69955d8633f8
+ - 59369b31-4d53-40f1-a65e-5f6c81eed120
+ - e663577f-113b-487b-ae01-cffe8fb83921
+ - 9640ee8d-6323-4b9c-81e7-cf5e50ede458
+ - 7a18aa51-407d-45b0-9c6e-b90530c5e229
+ - 960c6295-912f-41e6-91dd-508159afeccd
+ - 8862ba1d-e3d5-4b38-b01c-0a18b62f4a2a
+ - 27793e20-3a8e-4426-b865-b1bfab18c84f
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - 2a8aacab-d290-42ce-a378-f1950fa0b550
+ - 768a75cc-fb01-4727-a926-3d23b105c6e2
+ - c3a7ca30-fdc3-495a-b83c-c1e5e2018c2b
+ - 94a179f4-42f2-4db4-a2f2-e60c841ea624
+ - ae0b3969-bca9-4c9e-aa42-57868d8cb8a3
+ - f65c8122-df19-4758-9715-bd93b7eb63f2
+ - 64deed38-d62c-478f-a39a-8bc3cb7f065a
+ - a4df3653-5914-4105-b7a5-3d9ff807534d
+ - 9aca1b3c-518c-42fe-baff-2260c150d2fd
+ - ed591d71-a137-4f2d-b6c9-3b694455668c
+ - 702989bc-2cf2-4ade-8ffd-246a00bee486
+ - 33e22ec1-2435-4d45-b738-df841e8d28ca
+ - 734a27ff-cbd3-408b-8679-e9bd39cb249b
+ - a3cc0d8d-dbf0-44e6-8e22-5a6b0ed0677d
+ - 79
+ - c6962fb8-3d1c-49a2-b22a-4827e9d2360b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 33e22ec1-2435-4d45-b738-df841e8d28ca
+ - 1
+ - d5a438d3-3624-45f7-8df0-89028443357c
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 02013e4e-1e61-4bef-ad96-dfc5f621f77b
+ - 1
+ - ccb305be-cb59-465a-9acf-f1f5034c5276
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 165bbe7c-b8bd-4704-8cc2-729d3323717b
+ - 1
+ - 02013e4e-1e61-4bef-ad96-dfc5f621f77b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1f193c86-cd91-46ac-a421-f28cf1694bee
+ - 1
+ - 165bbe7c-b8bd-4704-8cc2-729d3323717b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 11b93464-3cc5-44d5-9e38-71e30ea766b0
+ - 1
+ - 1f193c86-cd91-46ac-a421-f28cf1694bee
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - fc6bf02e-b210-4277-98ec-1a0b90c929e9
+ - 1
+ - 11b93464-3cc5-44d5-9e38-71e30ea766b0
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f81b6740-886e-4d18-995c-e46164bf51c2
+ - 1
+ - fc6bf02e-b210-4277-98ec-1a0b90c929e9
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 864b7f47-5221-46f4-b928-5e95786a21dd
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7062
+ 34337
+ 50
+ 24
+
+ -
+ 7087.684
+ 34349.01
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 3
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 864b7f47-5221-46f4-b928-5e95786a21dd
+ - 1
+ - f81b6740-886e-4d18-995c-e46164bf51c2
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 45a24ef7-68d3-48cb-bbbb-969364f72549
+ - 1
+ - 81d23b3f-5eab-4b2f-b94d-2e34670f4ec3
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6bd907dc-57cb-4742-9c89-a2702989d263
+ - 0d13e044-b45b-4b63-a3f7-772495650337
+ - c224342c-801f-4459-9224-44879ddf539f
+ - ea3a5d1a-aaf7-41de-9cb2-7ada0a73a5b8
+ - 3fc8c3f3-c97d-473c-83ca-e47c7969c7ee
+ - 262c6e8b-4b9e-4aca-a3ed-39a8bbf6286c
+ - 2582f4b3-14b2-43b6-a7e3-2636d387b3ad
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - dd47101f-2388-491f-92f7-e72aab796c08
+ - f3c34928-3165-4117-b76b-514e7d82f38d
+ - 81d23b3f-5eab-4b2f-b94d-2e34670f4ec3
+ - f81b6740-886e-4d18-995c-e46164bf51c2
+ - 2a8aacab-d290-42ce-a378-f1950fa0b550
+ - 768a75cc-fb01-4727-a926-3d23b105c6e2
+ - c3a7ca30-fdc3-495a-b83c-c1e5e2018c2b
+ - 94a179f4-42f2-4db4-a2f2-e60c841ea624
+ - ae0b3969-bca9-4c9e-aa42-57868d8cb8a3
+ - f65c8122-df19-4758-9715-bd93b7eb63f2
+ - 8862ba1d-e3d5-4b38-b01c-0a18b62f4a2a
+ - 27793e20-3a8e-4426-b865-b1bfab18c84f
+ - 20
+ - f0e77e85-00dc-4753-b1f8-c019eb7b2364
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - dd8134c0-109b-4012-92be-51d843edfff7
+ - Duplicate Data
+
+
+
+
+ - Duplicate data a predefined number of times.
+ - true
+ - 6bd907dc-57cb-4742-9c89-a2702989d263
+ - Duplicate Data
+ - Duplicate Data
+
+
+
+
+ -
+ 7035
+ 35608
+ 104
+ 64
+
+ -
+ 7094
+ 35640
+
+
+
+
+
+ - 1
+ - Data to duplicate
+ - e2688b69-7c7e-4bee-999f-7fb6de320159
+ - Data
+ - Data
+ - false
+ - dfea2356-2637-41c2-8564-7376b29d9a56
+ - 1
+
+
+
+
+ -
+ 7037
+ 35610
+ 42
+ 20
+
+ -
+ 7059.5
+ 35620
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of duplicates
+ - 73dc03d6-62ae-4e3f-928f-5a2597601da4
+ - Number
+ - Number
+ - false
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - 1
+
+
+
+
+ -
+ 7037
+ 35630
+ 42
+ 20
+
+ -
+ 7059.5
+ 35640
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 500
+
+
+
+
+
+
+
+
+
+
+ - Retain list order
+ - c47db31b-057e-4855-9fc5-1b2fd3832ad1
+ - Order
+ - Order
+ - false
+ - 0
+
+
+
+
+ -
+ 7037
+ 35650
+ 42
+ 20
+
+ -
+ 7059.5
+ 35660
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Duplicated data
+ - 06bcc225-fd3c-45e3-b8a4-c20cc7bfa93a
+ - Data
+ - Data
+ - false
+ - 0
+
+
+
+
+ -
+ 7109
+ 35610
+ 28
+ 60
+
+ -
+ 7124.5
+ 35640
+
+
+
+
+
+
+
+
+
+
+
+ - fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
+ - DotNET VB Script (LEGACY)
+
+
+
+
+ - A VB.NET scriptable component
+ - true
+ - 0d13e044-b45b-4b63-a3f7-772495650337
+ - DotNET VB Script (LEGACY)
+ - Turtle
+ - 0
+ - Dim i As Integer
+ Dim dir As New On3dVector(1, 0, 0)
+ Dim pos As New On3dVector(0, 0, 0)
+ Dim axis As New On3dVector(0, 0, 1)
+ Dim pnts As New List(Of On3dVector)
+
+ pnts.Add(pos)
+
+ For i = 0 To Forward.Count() - 1
+ Dim P As New On3dVector
+ dir.Rotate(Left(i), axis)
+ P = dir * Forward(i) + pnts(i)
+ pnts.Add(P)
+ Next
+
+ Points = pnts
+
+
+
+
+ -
+ 7021
+ 33569
+ 116
+ 44
+
+ -
+ 7082
+ 33591
+
+
+
+
+
+ - 1
+ - 1
+ - 2
+ - Script Variable Forward
+ - Script Variable Left
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
+ - true
+ - true
+ - Forward
+ - Left
+ - true
+ - true
+
+
+
+
+ - 2
+ - Print, Reflect and Error streams
+ - Output parameter Points
+ - 3ede854e-c753-40eb-84cb-b48008f14fd4
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - true
+ - true
+ - Output
+ - Points
+ - false
+ - false
+
+
+
+
+ - 1
+ - false
+ - Script Variable Forward
+ - ecd1c3fa-01d8-45dd-b5ef-8f56b743826c
+ - Forward
+ - Forward
+ - true
+ - 1
+ - true
+ - 06bcc225-fd3c-45e3-b8a4-c20cc7bfa93a
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7023
+ 33571
+ 44
+ 20
+
+ -
+ 7046.5
+ 33581
+
+
+
+
+
+
+
+ - 1
+ - false
+ - Script Variable Left
+ - 144ed15a-44ee-404a-b36f-1c2a705af420
+ - Left
+ - Left
+ - true
+ - 1
+ - true
+ - 18ea7325-1cde-41b1-8680-7e4a6d2772ca
+ - 1
+ - 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
+
+
+
+
+ -
+ 7023
+ 33591
+ 44
+ 20
+
+ -
+ 7046.5
+ 33601
+
+
+
+
+
+
+
+ - Print, Reflect and Error streams
+ - d36f84b7-71dc-43f0-8ba1-4bd4712e97de
+ - Output
+ - Output
+ - false
+ - 0
+
+
+
+
+ -
+ 7097
+ 33571
+ 38
+ 20
+
+ -
+ 7117.5
+ 33581
+
+
+
+
+
+
+
+ - Output parameter Points
+ - c1e5e0c9-5751-45fb-a95d-7b071aee05ea
+ - Points
+ - Points
+ - false
+ - 0
+
+
+
+
+ -
+ 7097
+ 33591
+ 38
+ 20
+
+ -
+ 7117.5
+ 33601
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - true
+ - ea3a5d1a-aaf7-41de-9cb2-7ada0a73a5b8
+ - Series
+ - Series
+
+
+
+
+ -
+ 7032
+ 34826
+ 101
+ 64
+
+ -
+ 7082
+ 34858
+
+
+
+
+
+ - First number in the series
+ - 17b46bf3-be74-4cc9-abbf-94950e7a91fb
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7034
+ 34828
+ 33
+ 20
+
+ -
+ 7052
+ 34838
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 6fe33372-cabc-46e1-bf0b-0c1c50454ab4
+ - Step
+ - Step
+ - false
+ - 702989bc-2cf2-4ade-8ffd-246a00bee486
+ - 1
+
+
+
+
+ -
+ 7034
+ 34848
+ 33
+ 20
+
+ -
+ 7052
+ 34858
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 7ad5e6ef-367a-4eff-94a3-c75ff32ad5b7
+ - Count
+ - Count
+ - false
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - 1
+
+
+
+
+ -
+ 7034
+ 34868
+ 33
+ 20
+
+ -
+ 7052
+ 34878
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 9ddcbba7-661b-44d5-adcb-ca59a0101ceb
+ - Series
+ - Series
+ - false
+ - 0
+
+
+
+
+ -
+ 7097
+ 34828
+ 34
+ 60
+
+ -
+ 7115.5
+ 34858
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 3fc8c3f3-c97d-473c-83ca-e47c7969c7ee
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7020
+ 35792
+ 150
+ 20
+
+ -
+ 7020.363
+ 35792.85
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 65536
+ - 0
+ - 0
+ - 256
+
+
+
+
+
+
+
+
+ - a4cd2751-414d-42ec-8916-476ebf62d7fe
+ - Radians
+
+
+
+
+ - Convert an angle specified in degrees to radians
+ - true
+ - 262c6e8b-4b9e-4aca-a3ed-39a8bbf6286c
+ - Radians
+ - Radians
+
+
+
+
+ -
+ 7020
+ 35096
+ 120
+ 28
+
+ -
+ 7081
+ 35110
+
+
+
+
+
+ - Angle in degrees
+ - 76a9c477-6c2b-4784-8fe0-c0d5f86cbe65
+ - Degrees
+ - Degrees
+ - false
+ - 75a76088-d302-4aef-9bb6-8195f698b08f
+ - 1
+
+
+
+
+ -
+ 7022
+ 35098
+ 44
+ 24
+
+ -
+ 7045.5
+ 35110
+
+
+
+
+
+
+
+ - Angle in radians
+ - 413b0c3d-7f4f-4f73-befe-cf14f0614b3b
+ - Radians
+ - Radians
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 35098
+ 42
+ 24
+
+ -
+ 7118.5
+ 35110
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 2582f4b3-14b2-43b6-a7e3-2636d387b3ad
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00140149998
+
+
+
+
+ -
+ 6960
+ 35547
+ 251
+ 20
+
+ -
+ 6960.574
+ 35547.81
+
+
+
+
+
+
+
+
+
+ - 75eb156d-d023-42f9-a85e-2f2456b8bcce
+ - Interpolate (t)
+
+
+
+
+ - Create an interpolated curve through a set of points with tangents.
+ - true
+ - f3c34928-3165-4117-b76b-514e7d82f38d
+ - Interpolate (t)
+ - Interpolate (t)
+
+
+
+
+ -
+ 7007
+ 32804
+ 144
+ 84
+
+ -
+ 7093
+ 32846
+
+
+
+
+
+ - 1
+ - Interpolation points
+ - 4faf2dc5-cb14-451d-8b7f-38ecbe79a777
+ - Vertices
+ - Vertices
+ - false
+ - 02e2de16-a5ea-48e8-a96e-3b64d8d23d4c
+ - 1
+
+
+
+
+ -
+ 7009
+ 32806
+ 69
+ 20
+
+ -
+ 7045
+ 32816
+
+
+
+
+
+
+
+ - Tangent at start of curve
+ - 44600514-14ba-4c92-bf75-c6c64bda6994
+ - Tangent Start
+ - Tangent Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32826
+ 69
+ 20
+
+ -
+ 7045
+ 32836
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0.0625
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Tangent at end of curve
+ - a87eff4f-84a4-4f37-8eca-696d4d9bd7df
+ - Tangent End
+ - Tangent End
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32846
+ 69
+ 20
+
+ -
+ 7045
+ 32856
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
+ - 1889e66a-fc4c-46d3-a2f7-b9ad0ea83967
+ - KnotStyle
+ - KnotStyle
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32866
+ 69
+ 20
+
+ -
+ 7045
+ 32876
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Resulting nurbs curve
+ - 6038c01d-02f7-4a3a-bdd7-796c2f088fc4
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 7108
+ 32806
+ 41
+ 26
+
+ -
+ 7130
+ 32819.33
+
+
+
+
+
+
+
+ - Curve length
+ - cacca442-69e8-4250-b6a6-6d7bf6e55559
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7108
+ 32832
+ 41
+ 27
+
+ -
+ 7130
+ 32846
+
+
+
+
+
+
+
+ - Curve domain
+ - 2c1ebaac-42d5-4b81-ae15-4242cf4ebbbb
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7108
+ 32859
+ 41
+ 27
+
+ -
+ 7130
+ 32872.66
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 6bd907dc-57cb-4742-9c89-a2702989d263
+ - 0d13e044-b45b-4b63-a3f7-772495650337
+ - c224342c-801f-4459-9224-44879ddf539f
+ - ea3a5d1a-aaf7-41de-9cb2-7ada0a73a5b8
+ - 3fc8c3f3-c97d-473c-83ca-e47c7969c7ee
+ - 262c6e8b-4b9e-4aca-a3ed-39a8bbf6286c
+ - 2582f4b3-14b2-43b6-a7e3-2636d387b3ad
+ - bade2dc2-5919-4723-bde3-ebdd9bc0713a
+ - a4df3653-5914-4105-b7a5-3d9ff807534d
+ - 880c5140-108e-41c5-a8aa-e2b4fbf23449
+ - 960c6295-912f-41e6-91dd-508159afeccd
+ - 64deed38-d62c-478f-a39a-8bc3cb7f065a
+ - 9aca1b3c-518c-42fe-baff-2260c150d2fd
+ - 03e38bb8-97d0-4289-ad4c-03ff1baad258
+ - 14
+ - dd47101f-2388-491f-92f7-e72aab796c08
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 3aedad9c-cf89-438e-8768-29f7d86cf020
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7007
+ 32636
+ 144
+ 64
+
+ -
+ 7081
+ 32668
+
+
+
+
+
+ - Curve to evaluate
+ - 34b94be6-0ddb-4c7d-99b0-b2bfeb844122
+ - Curve
+ - Curve
+ - false
+ - 6038c01d-02f7-4a3a-bdd7-796c2f088fc4
+ - 1
+
+
+
+
+ -
+ 7009
+ 32638
+ 57
+ 20
+
+ -
+ 7039
+ 32648
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - b020249d-7296-47be-8d3e-1640e75cdc2a
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32658
+ 57
+ 20
+
+ -
+ 7039
+ 32668
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - f3e9b956-d14f-417f-96bd-4bc2c73098fc
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32678
+ 57
+ 20
+
+ -
+ 7039
+ 32688
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - c2dd30f5-fcac-4f6e-abf5-eb20923ed75e
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32638
+ 53
+ 20
+
+ -
+ 7124
+ 32648
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 80368855-d31e-4c79-9fad-594aa9c1f3bc
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32658
+ 53
+ 20
+
+ -
+ 7124
+ 32668
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 057e31cb-2e4f-4ceb-a252-797ac07ef37f
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32678
+ 53
+ 20
+
+ -
+ 7124
+ 32688
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 538664f1-d67f-4787-82e7-6fc05c19b34a
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7010
+ 32574
+ 138
+ 44
+
+ -
+ 7078
+ 32596
+
+
+
+
+
+ - Base geometry
+ - ed44113b-cc1b-40e3-a72f-8dab4f2cc7dc
+ - Geometry
+ - Geometry
+ - true
+ - 6038c01d-02f7-4a3a-bdd7-796c2f088fc4
+ - 1
+
+
+
+
+ -
+ 7012
+ 32576
+ 51
+ 20
+
+ -
+ 7039
+ 32586
+
+
+
+
+
+
+
+ - Mirror plane
+ - c54e0b96-d1ac-4bd5-807c-4fa4b18b8359
+ - Plane
+ - Plane
+ - false
+ - 55012827-509c-4029-8775-593cac858058
+ - 1
+
+
+
+
+ -
+ 7012
+ 32596
+ 51
+ 20
+
+ -
+ 7039
+ 32606
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 02994e66-519b-42de-a8b1-2b0a7b0e4132
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7093
+ 32576
+ 53
+ 20
+
+ -
+ 7121
+ 32586
+
+
+
+
+
+
+
+ - Transformation data
+ - c93cf93c-b1dd-46aa-b305-89752294f33c
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7093
+ 32596
+ 53
+ 20
+
+ -
+ 7121
+ 32606
+
+
+
+
+
+
+
+
+
+
+
+ - 4c619bc9-39fd-4717-82a6-1e07ea237bbe
+ - Line SDL
+
+
+
+
+ - Create a line segment defined by start point, tangent and length.}
+ - true
+ - 155e20fc-d926-4d97-9d2b-9d1bc13bb0fc
+ - Line SDL
+ - Line SDL
+
+
+
+
+ -
+ 7026
+ 32720
+ 106
+ 64
+
+ -
+ 7090
+ 32752
+
+
+
+
+
+ - Line start point
+ - 394956d3-3216-4005-b4ac-e359eebca16d
+ - Start
+ - Start
+ - false
+ - c2dd30f5-fcac-4f6e-abf5-eb20923ed75e
+ - 1
+
+
+
+
+ -
+ 7028
+ 32722
+ 47
+ 20
+
+ -
+ 7053
+ 32732
+
+
+
+
+
+
+
+ - Line tangent (direction)
+ - 8c992cad-581e-4379-bd1e-39aac27f2c61
+ - Direction
+ - Direction
+ - false
+ - 80368855-d31e-4c79-9fad-594aa9c1f3bc
+ - 1
+
+
+
+
+ -
+ 7028
+ 32742
+ 47
+ 20
+
+ -
+ 7053
+ 32752
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Line length
+ - b11b89c2-4b05-4b84-a02c-5fb3b29d53c4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7028
+ 32762
+ 47
+ 20
+
+ -
+ 7053
+ 32772
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Line segment
+ - 55012827-509c-4029-8775-593cac858058
+ - Line
+ - Line
+ - false
+ - 0
+
+
+
+
+ -
+ 7105
+ 32722
+ 25
+ 60
+
+ -
+ 7119
+ 32752
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - 87a8363e-8858-4d94-95b3-1537b8d42117
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7020
+ 32512
+ 118
+ 44
+
+ -
+ 7083
+ 32534
+
+
+
+
+
+ - 1
+ - Curves to join
+ - 15eaba9c-0ea2-4184-a0a3-d696935109a1
+ - Curves
+ - Curves
+ - false
+ - 6038c01d-02f7-4a3a-bdd7-796c2f088fc4
+ - 02994e66-519b-42de-a8b1-2b0a7b0e4132
+ - 2
+
+
+
+
+ -
+ 7022
+ 32514
+ 46
+ 20
+
+ -
+ 7046.5
+ 32524
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 58ce11a5-49d7-4b2e-9dd3-5139838575ca
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7022
+ 32534
+ 46
+ 20
+
+ -
+ 7046.5
+ 32544
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - 9a25efc3-eb4a-4e0b-b48d-00958b06bd8a
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7098
+ 32514
+ 38
+ 40
+
+ -
+ 7118.5
+ 32534
+
+
+
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 0afa08b2-a687-4a33-944b-40eee9b38aaf
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7007
+ 32428
+ 144
+ 64
+
+ -
+ 7081
+ 32460
+
+
+
+
+
+ - Curve to evaluate
+ - b4513c83-9767-4d44-8e15-f245af5c60be
+ - Curve
+ - Curve
+ - false
+ - 9a25efc3-eb4a-4e0b-b48d-00958b06bd8a
+ - 1
+
+
+
+
+ -
+ 7009
+ 32430
+ 57
+ 20
+
+ -
+ 7039
+ 32440
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - cef20338-9ec3-4786-8b13-e9e58493ca67
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32450
+ 57
+ 20
+
+ -
+ 7039
+ 32460
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - d5a0dfea-1ff8-4c20-b4e8-feaed470c69d
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32470
+ 57
+ 20
+
+ -
+ 7039
+ 32480
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e06e0e11-49b3-4e54-b0ac-51a6b5dafc07
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32430
+ 53
+ 20
+
+ -
+ 7124
+ 32440
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 0e26b1d1-d334-4d17-95cd-0fedadaf602d
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32450
+ 53
+ 20
+
+ -
+ 7124
+ 32460
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 512d557c-a339-4020-bb78-4b6ad5ba3ad9
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32470
+ 53
+ 20
+
+ -
+ 7124
+ 32480
+
+
+
+
+
+
+
+
+
+
+
+ - b7798b74-037e-4f0c-8ac7-dc1043d093e0
+ - Rotate
+
+
+
+
+ - Rotate an object in a plane.
+ - true
+ - e0c6babc-e8da-4f54-bad1-dce2aeab8e99
+ - Rotate
+ - Rotate
+
+
+
+
+ -
+ 7010
+ 32345
+ 138
+ 64
+
+ -
+ 7078
+ 32377
+
+
+
+
+
+ - Base geometry
+ - 0ef117b4-02ba-4ea9-bb17-8f72d4b709c2
+ - Geometry
+ - Geometry
+ - true
+ - 9a25efc3-eb4a-4e0b-b48d-00958b06bd8a
+ - 1
+
+
+
+
+ -
+ 7012
+ 32347
+ 51
+ 20
+
+ -
+ 7039
+ 32357
+
+
+
+
+
+
+
+ - Rotation angle in radians
+ - cc30f941-f14c-4ac2-9ba6-5bf2ff7bcb48
+ - Angle
+ - Angle
+ - false
+ - 0
+ - false
+
+
+
+
+ -
+ 7012
+ 32367
+ 51
+ 20
+
+ -
+ 7039
+ 32377
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 3.1415926535897931
+
+
+
+
+
+
+
+
+
+
+ - Rotation plane
+ - f07ce203-42fb-4b8c-98e5-ea0eb3ee5965
+ - Plane
+ - Plane
+ - false
+ - e06e0e11-49b3-4e54-b0ac-51a6b5dafc07
+ - 1
+
+
+
+
+ -
+ 7012
+ 32387
+ 51
+ 20
+
+ -
+ 7039
+ 32397
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rotated geometry
+ - 57e0e5aa-ecac-4d7f-90e7-97f63bd5fff7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7093
+ 32347
+ 53
+ 30
+
+ -
+ 7121
+ 32362
+
+
+
+
+
+
+
+ - Transformation data
+ - e1e5f86c-286d-4c4a-a118-d5e67fd9e466
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7093
+ 32377
+ 53
+ 30
+
+ -
+ 7121
+ 32392
+
+
+
+
+
+
+
+
+
+
+
+ - 8073a420-6bec-49e3-9b18-367f6fd76ac3
+ - Join Curves
+
+
+
+
+ - Join as many curves as possible
+ - true
+ - d9015fa1-dd1d-4e44-84bc-6aa6429708cb
+ - Join Curves
+ - Join Curves
+
+
+
+
+ -
+ 7020
+ 32282
+ 118
+ 44
+
+ -
+ 7083
+ 32304
+
+
+
+
+
+ - 1
+ - Curves to join
+ - bd696906-949d-40b9-b109-2bddc3b7b3e7
+ - Curves
+ - Curves
+ - false
+ - 9a25efc3-eb4a-4e0b-b48d-00958b06bd8a
+ - 57e0e5aa-ecac-4d7f-90e7-97f63bd5fff7
+ - 2
+
+
+
+
+ -
+ 7022
+ 32284
+ 46
+ 20
+
+ -
+ 7046.5
+ 32294
+
+
+
+
+
+
+
+ - Preserve direction of input curves
+ - 50beebf8-2806-436f-a80c-e0b55d526d0b
+ - Preserve
+ - Preserve
+ - false
+ - 0
+
+
+
+
+ -
+ 7022
+ 32304
+ 46
+ 20
+
+ -
+ 7046.5
+ 32314
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Joined curves and individual curves that could not be joined.
+ - c4cf4f4a-e0fb-49e2-815e-1040eff66724
+ - Curves
+ - Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 7098
+ 32284
+ 38
+ 40
+
+ -
+ 7118.5
+ 32304
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - f3c34928-3165-4117-b76b-514e7d82f38d
+ - 3aedad9c-cf89-438e-8768-29f7d86cf020
+ - 538664f1-d67f-4787-82e7-6fc05c19b34a
+ - 155e20fc-d926-4d97-9d2b-9d1bc13bb0fc
+ - 87a8363e-8858-4d94-95b3-1537b8d42117
+ - 0afa08b2-a687-4a33-944b-40eee9b38aaf
+ - e0c6babc-e8da-4f54-bad1-dce2aeab8e99
+ - d9015fa1-dd1d-4e44-84bc-6aa6429708cb
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - 1fab4ce0-a0d3-4eef-ae07-03b6a706010f
+ - e1d9245b-0e46-4612-a05c-086ece7d4f27
+ - 02e2de16-a5ea-48e8-a96e-3b64d8d23d4c
+ - 226678fa-f252-40a7-b562-5dfcb4e05d00
+ - 192040a4-1cd3-4c8f-8e89-0ca4b6f62685
+ - ac285a80-dc09-42f6-9b54-e64c17da6742
+ - 15
+ - 45a24ef7-68d3-48cb-bbbb-969364f72549
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 94238e7e-3afa-4ff4-8f6b-0eeeb14d6b66
+ - Panel
+
+ - false
+ - 0
+ - 37241510-ecb8-43e4-b374-dd0f3c68f364
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7014
+ 34922
+ 145
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7014.104
+ 34922.36
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - Curve
+ - Curve
+ - false
+ - 6038c01d-02f7-4a3a-bdd7-796c2f088fc4
+ - 1
+
+
+
+
+ -
+ 7062
+ 32249
+ 50
+ 24
+
+ -
+ 7087.684
+ 32261.92
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - 1
+ - e85d0add-2b95-478d-9116-94de43ded83d
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 880c5140-108e-41c5-a8aa-e2b4fbf23449
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.35721403168191375/4/4
+
+
+
+
+ -
+ 6868
+ 35159
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6868.664
+ 35159.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - bbbb547f-ea1b-4e71-b00e-880ada1ffff1
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7007
+ 32156
+ 144
+ 64
+
+ -
+ 7081
+ 32188
+
+
+
+
+
+ - Curve to evaluate
+ - 7136bcb7-315b-4a5e-8c85-f405f19d782c
+ - Curve
+ - Curve
+ - false
+ - c4cf4f4a-e0fb-49e2-815e-1040eff66724
+ - 1
+
+
+
+
+ -
+ 7009
+ 32158
+ 57
+ 20
+
+ -
+ 7039
+ 32168
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 8abd8cd8-cfac-4b6b-ad0c-ebf584ee36e4
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32178
+ 57
+ 20
+
+ -
+ 7039
+ 32188
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - b37687b5-acfb-49c0-ad07-6b721fd7c9a5
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 32198
+ 57
+ 20
+
+ -
+ 7039
+ 32208
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - a134baac-1181-4ed8-b6f3-10a185cafea5
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32158
+ 53
+ 20
+
+ -
+ 7124
+ 32168
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 54239564-7e2a-4899-877d-1100100c2522
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32178
+ 53
+ 20
+
+ -
+ 7124
+ 32188
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - de67a795-d63a-4d2c-9f54-5a70c9589c80
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 32198
+ 53
+ 20
+
+ -
+ 7124
+ 32208
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 62843cee-dee2-4d6d-9cfd-cd87a0a985b3
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 31934
+ 194
+ 28
+
+ -
+ 7082
+ 31948
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 303ab730-1d1c-45d3-9e53-d36c38914a43
+ - Variable O
+ - O
+ - true
+ - 31d55072-d2b4-4d67-9c93-7cb85e743848
+ - 1
+
+
+
+
+ -
+ 6984
+ 31936
+ 14
+ 24
+
+ -
+ 6992.5
+ 31948
+
+
+
+
+
+
+
+ - Result of expression
+ - b855e1d3-b5d5-495b-81d0-4ebe24db275e
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 31936
+ 9
+ 24
+
+ -
+ 7171
+ 31948
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 2e0e8788-d2ee-41ee-a01e-c72064bae97f
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7013
+ 32068
+ 132
+ 64
+
+ -
+ 7060
+ 32100
+
+
+
+
+
+ - Input point
+ - 23229073-90f3-4486-bbf3-d5e882e4bf3a
+ - Point
+ - Point
+ - false
+ - a134baac-1181-4ed8-b6f3-10a185cafea5
+ - 1
+
+
+
+
+ -
+ 7015
+ 32070
+ 30
+ 60
+
+ -
+ 7031.5
+ 32100
+
+
+
+
+
+
+
+ - Point {x} component
+ - 31d55072-d2b4-4d67-9c93-7cb85e743848
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 32070
+ 68
+ 20
+
+ -
+ 7110.5
+ 32080
+
+
+
+
+
+
+
+ - Point {y} component
+ - e8c46654-040e-4bd6-a2ef-572a31c285e5
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 32090
+ 68
+ 20
+
+ -
+ 7110.5
+ 32100
+
+
+
+
+
+
+
+ - Point {z} component
+ - 50476afb-ea86-4b68-964d-4ba7928e5ee3
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 32110
+ 68
+ 20
+
+ -
+ 7110.5
+ 32120
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 09e59d6e-ffbe-42c4-b530-eab4c96d633c
+ - Panel
+
+ - false
+ - 0
+ - b855e1d3-b5d5-495b-81d0-4ebe24db275e
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31915
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.455
+ 31915.5
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - e0971e96-3f16-42b0-9104-ac79bfe228c6
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 31848
+ 194
+ 28
+
+ -
+ 7082
+ 31862
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 67b503ea-51ba-489d-9608-20c74ff7a790
+ - Variable O
+ - O
+ - true
+ - e8c46654-040e-4bd6-a2ef-572a31c285e5
+ - 1
+
+
+
+
+ -
+ 6984
+ 31850
+ 14
+ 24
+
+ -
+ 6992.5
+ 31862
+
+
+
+
+
+
+
+ - Result of expression
+ - 3d945b87-8df0-4d60-ae4f-ffc3c585201b
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 31850
+ 9
+ 24
+
+ -
+ 7171
+ 31862
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - caa7e05c-2ef5-4691-9bd8-2bcf031aaccc
+ - Panel
+
+ - false
+ - 0
+ - 3d945b87-8df0-4d60-ae4f-ffc3c585201b
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31827
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.455
+ 31827.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 92c1a519-14c5-4a9c-b9a2-e3808c50abec
+ - Division
+ - Division
+
+
+
+
+ -
+ 7038
+ 31746
+ 82
+ 44
+
+ -
+ 7069
+ 31768
+
+
+
+
+
+ - Item to divide (dividend)
+ - bb91c926-9e46-461e-9305-169ba7039377
+ - A
+ - A
+ - false
+ - 09e59d6e-ffbe-42c4-b530-eab4c96d633c
+ - 1
+
+
+
+
+ -
+ 7040
+ 31748
+ 14
+ 20
+
+ -
+ 7048.5
+ 31758
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - c00f33b8-bf5f-46e3-969d-4ec977f47ac7
+ - B
+ - B
+ - false
+ - caa7e05c-2ef5-4691-9bd8-2bcf031aaccc
+ - 1
+
+
+
+
+ -
+ 7040
+ 31768
+ 14
+ 20
+
+ -
+ 7048.5
+ 31778
+
+
+
+
+
+
+
+ - The result of the Division
+ - 07bbb0ec-f43d-488c-a265-ee12d3fe794f
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7084
+ 31748
+ 34
+ 40
+
+ -
+ 7102.5
+ 31768
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 23efc14d-245b-4f21-9e33-37233a57e49b
+ - Panel
+
+ - false
+ - 0
+ - 37241510-ecb8-43e4-b374-dd0f3c68f364
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31660
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.693
+ 31660.56
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - fde665ed-bc3c-47d3-aa9c-b421ed286f16
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 31699
+ 194
+ 28
+
+ -
+ 7082
+ 31713
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 94d126c1-628e-46de-9fd9-6515d10c15bc
+ - Variable O
+ - O
+ - true
+ - 07bbb0ec-f43d-488c-a265-ee12d3fe794f
+ - 1
+
+
+
+
+ -
+ 6984
+ 31701
+ 14
+ 24
+
+ -
+ 6992.5
+ 31713
+
+
+
+
+
+
+
+ - Result of expression
+ - 8c80ef74-a5ff-481a-9307-b42fd4aab8cb
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 31701
+ 9
+ 24
+
+ -
+ 7171
+ 31713
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 37241510-ecb8-43e4-b374-dd0f3c68f364
+ - Relay
+
+ - false
+ - 8c80ef74-a5ff-481a-9307-b42fd4aab8cb
+ - 1
+
+
+
+
+ -
+ 7059
+ 31624
+ 40
+ 16
+
+ -
+ 7079
+ 31632
+
+
+
+
+
+
+
+
+
+ - a0d62394-a118-422d-abb3-6af115c75b25
+ - Addition
+
+
+
+
+ - Mathematical addition
+ - true
+ - b5f4a8cb-af12-4438-928a-ceecf06b9d82
+ - Addition
+ - Addition
+
+
+
+
+ -
+ 7038
+ 31561
+ 82
+ 44
+
+ -
+ 7069
+ 31583
+
+
+
+
+
+ - 2
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - First item for addition
+ - b59f7c9c-cd4b-435d-b3cf-9cf3430f11cf
+ - A
+ - A
+ - true
+ - caa7e05c-2ef5-4691-9bd8-2bcf031aaccc
+ - 1
+
+
+
+
+ -
+ 7040
+ 31563
+ 14
+ 20
+
+ -
+ 7048.5
+ 31573
+
+
+
+
+
+
+
+ - Second item for addition
+ - f06a52cc-8420-4c62-b716-5444ffec7d44
+ - B
+ - B
+ - true
+ - 09e59d6e-ffbe-42c4-b530-eab4c96d633c
+ - 1
+
+
+
+
+ -
+ 7040
+ 31583
+ 14
+ 20
+
+ -
+ 7048.5
+ 31593
+
+
+
+
+
+
+
+ - Result of addition
+ - 58e59b95-1ead-4ad5-9cda-f57e737eb0a4
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7084
+ 31563
+ 34
+ 40
+
+ -
+ 7102.5
+ 31583
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 73a704b7-a370-4b11-a6c5-977abd81b48a
+ - Division
+ - Division
+
+
+
+
+ -
+ 7038
+ 31411
+ 82
+ 44
+
+ -
+ 7069
+ 31433
+
+
+
+
+
+ - Item to divide (dividend)
+ - d2e9030e-e610-47ba-a750-e73fe1f6c017
+ - A
+ - A
+ - false
+ - bbedb044-1e50-4506-b494-269e9e7252d9
+ - 1
+
+
+
+
+ -
+ 7040
+ 31413
+ 14
+ 20
+
+ -
+ 7048.5
+ 31423
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - a0695883-058c-40f6-a58b-332d798b8602
+ - B
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 7040
+ 31433
+ 14
+ 20
+
+ -
+ 7048.5
+ 31443
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - Grasshopper.Kernel.Types.GH_Integer
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - The result of the Division
+ - c73375ca-6eb8-4957-9ff6-a6390cd6a9ce
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 7084
+ 31413
+ 34
+ 40
+
+ -
+ 7102.5
+ 31433
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 713b3506-6340-4518-8f30-244fc9b70046
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 31363
+ 194
+ 28
+
+ -
+ 7082
+ 31377
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - fee63b6c-2504-4002-9cd8-cc9076eb01bd
+ - Variable O
+ - O
+ - true
+ - c73375ca-6eb8-4957-9ff6-a6390cd6a9ce
+ - 1
+
+
+
+
+ -
+ 6984
+ 31365
+ 14
+ 24
+
+ -
+ 6992.5
+ 31377
+
+
+
+
+
+
+
+ - Result of expression
+ - cf501144-1a3c-4e14-8e75-e4f31d0cc568
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 31365
+ 9
+ 24
+
+ -
+ 7171
+ 31377
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 94564bd6-6ce4-49d9-9472-e5e367a6ff51
+ - Panel
+
+ - false
+ - 0
+ - cf501144-1a3c-4e14-8e75-e4f31d0cc568
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31343
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.455
+ 31343.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - bbedb044-1e50-4506-b494-269e9e7252d9
+ - Panel
+
+ - false
+ - 0
+ - 67c6598d-0bd8-4f5d-969c-81bbed36c146
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31495
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.455
+ 31495.33
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 61bedb29-55a8-49ed-901b-dbc9b1417af0
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 31514
+ 194
+ 28
+
+ -
+ 7082
+ 31528
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 93bbcf7b-c557-4e0a-96f5-17f771493ac6
+ - Variable O
+ - O
+ - true
+ - 58e59b95-1ead-4ad5-9cda-f57e737eb0a4
+ - 1
+
+
+
+
+ -
+ 6984
+ 31516
+ 14
+ 24
+
+ -
+ 6992.5
+ 31528
+
+
+
+
+
+
+
+ - Result of expression
+ - 67c6598d-0bd8-4f5d-969c-81bbed36c146
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 31516
+ 9
+ 24
+
+ -
+ 7171
+ 31528
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 9aaff8fa-e58c-4895-bb33-3ef7c760a7bd
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7002
+ 31240
+ 154
+ 64
+
+ -
+ 7086
+ 31272
+
+
+
+
+
+ - Base geometry
+ - 1bb2b89e-79df-4e9b-a35e-8c984079648d
+ - Geometry
+ - Geometry
+ - true
+ - 3162fd5f-5802-485a-ac52-32bdd05c04df
+ - 1
+
+
+
+
+ -
+ 7004
+ 31242
+ 67
+ 20
+
+ -
+ 7047
+ 31252
+
+
+
+
+
+
+
+ - Center of scaling
+ - bca639f8-4e0a-45ca-9f14-506d34575029
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7004
+ 31262
+ 67
+ 20
+
+ -
+ 7047
+ 31272
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 644daef9-be97-45ee-a5c0-6bcb1ae32664
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 94564bd6-6ce4-49d9-9472-e5e367a6ff51
+ - 1
+
+
+
+
+ -
+ 7004
+ 31282
+ 67
+ 20
+
+ -
+ 7047
+ 31292
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 5c8485da-d1d4-41f8-b5d2-ab8fbfcaa3c7
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7101
+ 31242
+ 53
+ 30
+
+ -
+ 7129
+ 31257
+
+
+
+
+
+
+
+ - Transformation data
+ - 7178d4a9-9e84-4bfc-a11e-d9e364ebc98a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7101
+ 31272
+ 53
+ 30
+
+ -
+ 7129
+ 31287
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - Curve
+ - Curve
+ - false
+ - 5c8485da-d1d4-41f8-b5d2-ab8fbfcaa3c7
+ - 1
+
+
+
+
+ -
+ 7060
+ 30648
+ 50
+ 24
+
+ -
+ 7085.434
+ 30660.92
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 145c46d9-134d-4641-b349-73259d0c97fb
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 32021
+ 194
+ 28
+
+ -
+ 7082
+ 32035
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 428a078e-bdfb-4334-b4d5-7241a8d4c9b9
+ - Variable O
+ - O
+ - true
+ - 50476afb-ea86-4b68-964d-4ba7928e5ee3
+ - 1
+
+
+
+
+ -
+ 6984
+ 32023
+ 14
+ 24
+
+ -
+ 6992.5
+ 32035
+
+
+
+
+
+
+
+ - Result of expression
+ - 0a640ed4-6e92-4837-995a-8dea0dc25780
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 32023
+ 9
+ 24
+
+ -
+ 7171
+ 32035
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 6eb14d8d-11bd-412b-82cd-63e3ac800396
+ - Panel
+
+ - false
+ - 0
+ - 0a640ed4-6e92-4837-995a-8dea0dc25780
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 31986
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.324
+ 31986.27
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 033f87ae-a026-4278-bddc-c4aa063cc49c
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 7007
+ 31030
+ 144
+ 64
+
+ -
+ 7081
+ 31062
+
+
+
+
+
+ - Curve to evaluate
+ - 1d64f95a-5bb7-4371-973f-457b35a5c882
+ - Curve
+ - Curve
+ - false
+ - 5c8485da-d1d4-41f8-b5d2-ab8fbfcaa3c7
+ - 1
+
+
+
+
+ -
+ 7009
+ 31032
+ 57
+ 20
+
+ -
+ 7039
+ 31042
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - 96e209ce-79ec-47f9-b4c8-3c83a32f86a9
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 31052
+ 57
+ 20
+
+ -
+ 7039
+ 31062
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 7d602e1a-4125-4949-a748-bea99b36d02a
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 31072
+ 57
+ 20
+
+ -
+ 7039
+ 31082
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - 4ffd9c37-19f5-42af-a9b6-fb4a3a732ccd
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 31032
+ 53
+ 20
+
+ -
+ 7124
+ 31042
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - d0d7445b-c041-43d2-ac26-19375fc41ecd
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 31052
+ 53
+ 20
+
+ -
+ 7124
+ 31062
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 38c7fe26-ac45-4dfd-932f-d81cd614022e
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 31072
+ 53
+ 20
+
+ -
+ 7124
+ 31082
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 8823ba42-6f15-4003-82f1-c1650974ddca
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 30813
+ 194
+ 28
+
+ -
+ 7082
+ 30827
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ad55c61d-2b41-40f4-ac44-7e0d1975e374
+ - Variable O
+ - O
+ - true
+ - 0c262858-e928-4c05-8a99-ce48851cdb1a
+ - 1
+
+
+
+
+ -
+ 6984
+ 30815
+ 14
+ 24
+
+ -
+ 6992.5
+ 30827
+
+
+
+
+
+
+
+ - Result of expression
+ - 6fe4f565-0bb7-4843-af8b-2fb16536ff41
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 30815
+ 9
+ 24
+
+ -
+ 7171
+ 30827
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9abae6b7-fa1d-448c-9209-4a8155345841
+ - Deconstruct
+
+
+
+
+ - Deconstruct a point into its component parts.
+ - true
+ - 94146238-fdbe-4668-9869-9f3cefa62a09
+ - Deconstruct
+ - Deconstruct
+
+
+
+
+ -
+ 7013
+ 30947
+ 132
+ 64
+
+ -
+ 7060
+ 30979
+
+
+
+
+
+ - Input point
+ - c0b280e2-3c34-4906-a1f6-21f8ddc88e57
+ - Point
+ - Point
+ - false
+ - 4ffd9c37-19f5-42af-a9b6-fb4a3a732ccd
+ - 1
+
+
+
+
+ -
+ 7015
+ 30949
+ 30
+ 60
+
+ -
+ 7031.5
+ 30979
+
+
+
+
+
+
+
+ - Point {x} component
+ - 0c262858-e928-4c05-8a99-ce48851cdb1a
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 30949
+ 68
+ 20
+
+ -
+ 7110.5
+ 30959
+
+
+
+
+
+
+
+ - Point {y} component
+ - 2fb35ce7-12a5-4e8e-bbbf-e45e639ea034
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 30969
+ 68
+ 20
+
+ -
+ 7110.5
+ 30979
+
+
+
+
+
+
+
+ - Point {z} component
+ - a7505a1a-40ea-48aa-8499-28460dee63b8
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7075
+ 30989
+ 68
+ 20
+
+ -
+ 7110.5
+ 30999
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 2f9a098a-1b8d-486c-9413-69955d8633f8
+ - Panel
+
+ - false
+ - 0
+ - 6fe4f565-0bb7-4843-af8b-2fb16536ff41
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 30788
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.705
+ 30788.85
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 59369b31-4d53-40f1-a65e-5f6c81eed120
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 30727
+ 194
+ 28
+
+ -
+ 7082
+ 30741
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 697d566c-4ebd-449f-a3c2-0ee30bcaad47
+ - Variable O
+ - O
+ - true
+ - 2fb35ce7-12a5-4e8e-bbbf-e45e639ea034
+ - 1
+
+
+
+
+ -
+ 6984
+ 30729
+ 14
+ 24
+
+ -
+ 6992.5
+ 30741
+
+
+
+
+
+
+
+ - Result of expression
+ - f0893d67-2bc4-4e05-8e51-7221f7ae0446
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 30729
+ 9
+ 24
+
+ -
+ 7171
+ 30741
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e663577f-113b-487b-ae01-cffe8fb83921
+ - Panel
+
+ - false
+ - 0
+ - f0893d67-2bc4-4e05-8e51-7221f7ae0446
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 30703
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.715
+ 30703.21
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9640ee8d-6323-4b9c-81e7-cf5e50ede458
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 30899
+ 194
+ 28
+
+ -
+ 7082
+ 30913
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - daaf0d6e-dddc-4147-8de7-81a6c2baf42a
+ - Variable O
+ - O
+ - true
+ - a7505a1a-40ea-48aa-8499-28460dee63b8
+ - 1
+
+
+
+
+ -
+ 6984
+ 30901
+ 14
+ 24
+
+ -
+ 6992.5
+ 30913
+
+
+
+
+
+
+
+ - Result of expression
+ - 4055b9b5-8de7-49be-b7a8-71e4c7d76d63
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 30901
+ 9
+ 24
+
+ -
+ 7171
+ 30913
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 7a18aa51-407d-45b0-9c6e-b90530c5e229
+ - Panel
+
+ - false
+ - 0
+ - 4055b9b5-8de7-49be-b7a8-71e4c7d76d63
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7006
+ 30875
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7006.455
+ 30875.06
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 960c6295-912f-41e6-91dd-508159afeccd
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 1 16 0.35721403168191375
+1 256 0.0014014999884235925
+1 4096
+
+
+
+
+ -
+ 6898
+ 35229
+ 379
+ 104
+
+ - 0
+ - 0
+ - 0
+ -
+ 6898.113
+ 35229.51
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 8862ba1d-e3d5-4b38-b01c-0a18b62f4a2a
+ - Panel
+
+ - false
+ - 0
+ - 13d1cfbe-ccf7-4f57-8b00-7e5eedacfad7
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6933
+ 33193
+ 337
+ 276
+
+ - 0
+ - 0
+ - 0
+ -
+ 6933.184
+ 33193.61
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 27793e20-3a8e-4426-b865-b1bfab18c84f
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 33521
+ 194
+ 28
+
+ -
+ 7082
+ 33535
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 19d9a185-fc01-4052-a798-127716ffa964
+ - Variable O
+ - O
+ - true
+ - c1e5e0c9-5751-45fb-a95d-7b071aee05ea
+ - 1
+
+
+
+
+ -
+ 6984
+ 33523
+ 14
+ 24
+
+ -
+ 6992.5
+ 33535
+
+
+
+
+
+
+
+ - Result of expression
+ - 13d1cfbe-ccf7-4f57-8b00-7e5eedacfad7
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 33523
+ 9
+ 24
+
+ -
+ 7171
+ 33535
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - Number
+
+
+
+
+ - Contains a collection of floating point numbers
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - Number
+ - Number
+ - false
+ - 841bc79c-9937-423d-9430-76e4ebfeb004
+ - 1
+
+
+
+
+ -
+ 7070
+ 35751
+ 50
+ 24
+
+ -
+ 7095.414
+ 35763.15
+
+
+
+
+
+
+
+
+
+ - cae9fe53-6d63-44ed-9d6d-13180fbf6f89
+ - 1c9de8a1-315f-4c56-af06-8f69fee80a7a
+ - Curve Graph Mapper
+
+
+
+
+ - Remap values with a custom graph using input curves.
+ - true
+ - 2a8aacab-d290-42ce-a378-f1950fa0b550
+ - true
+ - Curve Graph Mapper
+ - Curve Graph Mapper
+
+
+
+
+ -
+ 6910
+ 33803
+ 160
+ 224
+
+ -
+ 6978
+ 33915
+
+
+
+
+
+ - 1
+ - One or multiple graph curves to graph map values with
+ - da19051d-a45f-42b0-8d6f-aab981a878a1
+ - true
+ - Curves
+ - Curves
+ - false
+ - 9838c9db-77a0-40d4-87f9-aabc44cf86f7
+ - 1
+
+
+
+
+ -
+ 6912
+ 33805
+ 51
+ 27
+
+ -
+ 6939
+ 33818.75
+
+
+
+
+
+
+
+ - Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
+ - 7e37752d-b8b4-4714-946a-6fa9a41d9b28
+ - true
+ - Rectangle
+ - Rectangle
+ - false
+ - 9e21aea5-b940-440e-a4c5-09319331cd6d
+ - 1
+
+
+
+
+ -
+ 6912
+ 33832
+ 51
+ 28
+
+ -
+ 6939
+ 33846.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+ -
+ 0
+ 1
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
+ - bb3d2e18-c1dc-4f7b-8c65-f5b24ab81854
+ - true
+ - Values
+ - Values
+ - false
+ - 9ddcbba7-661b-44d5-adcb-ca59a0101ceb
+ - 1
+
+
+
+
+ -
+ 6912
+ 33860
+ 51
+ 27
+
+ -
+ 6939
+ 33873.75
+
+
+
+
+
+
+
+ - Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
+ - f694e59b-9818-4203-8909-d6234bcd88e7
+ - true
+ - X Axis
+ - X Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 6912
+ 33887
+ 51
+ 28
+
+ -
+ 6939
+ 33901.25
+
+
+
+
+
+
+
+ - Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
+ - 41ed79e5-a9b0-40e7-960c-09ba9dfdee0a
+ - true
+ - Y Axis
+ - Y Axis
+ - true
+ - 0
+
+
+
+
+ -
+ 6912
+ 33915
+ 51
+ 27
+
+ -
+ 6939
+ 33928.75
+
+
+
+
+
+
+
+ - Flip the graphs X Axis from the bottom of the graph to the top of the graph
+ - 4eb62839-837c-4a5d-ac00-ed33a35ec3f4
+ - true
+ - Flip
+ - Flip
+ - false
+ - 0
+
+
+
+
+ -
+ 6912
+ 33942
+ 51
+ 28
+
+ -
+ 6939
+ 33956.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
+ - f812b945-1bed-4fcb-a442-87822d61175a
+ - true
+ - Snap
+ - Snap
+ - false
+ - 0
+
+
+
+
+ -
+ 6912
+ 33970
+ 51
+ 27
+
+ -
+ 6939
+ 33983.75
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Size of the graph labels
+ - d2b87abb-a7d8-4fc1-af20-cc1ac4b6dc13
+ - true
+ - Text Size
+ - Text Size
+ - false
+ - 0
+
+
+
+
+ -
+ 6912
+ 33997
+ 51
+ 28
+
+ -
+ 6939
+ 34011.25
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.015625
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Resulting graph mapped values, mapped on the Y Axis
+ - d93c2af4-9806-41a1-b182-ba8af4e155d5
+ - true
+ - Mapped
+ - Mapped
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33805
+ 75
+ 20
+
+ -
+ 7032
+ 33815
+
+
+
+
+
+
+
+ - 1
+ - The graph curves inside the boundary of the graph
+ - afb61b52-80bc-43b9-8d90-329931c31fb7
+ - true
+ - Graph Curves
+ - Graph Curves
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33825
+ 75
+ 20
+
+ -
+ 7032
+ 33835
+
+
+
+
+
+
+
+ - 1
+ - The points on the graph curves where the X Axis input values intersected
+ - true
+ - 8057f143-f5f7-4881-a2b7-b1acbb1d1000
+ - true
+ - Graph Points
+ - Graph Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33845
+ 75
+ 20
+
+ -
+ 7032
+ 33855
+
+
+
+
+
+
+
+ - 1
+ - The lines from the X Axis input values to the graph curves
+ - true
+ - 5cb60d0e-d259-4747-9eb7-ed37c1c8d838
+ - true
+ - Value Lines
+ - Value Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33865
+ 75
+ 20
+
+ -
+ 7032
+ 33875
+
+
+
+
+
+
+
+ - 1
+ - The points plotted on the X Axis which represent the input values
+ - true
+ - 3f5fc38b-5882-43ed-b97e-618e7789a027
+ - true
+ - Value Points
+ - Value Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33885
+ 75
+ 20
+
+ -
+ 7032
+ 33895
+
+
+
+
+
+
+
+ - 1
+ - The lines from the graph curves to the Y Axis graph mapped values
+ - true
+ - 7c8e8a62-17c6-481a-a836-55416b85c54d
+ - true
+ - Mapped Lines
+ - Mapped Lines
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33905
+ 75
+ 20
+
+ -
+ 7032
+ 33915
+
+
+
+
+
+
+
+ - 1
+ - The points mapped on the Y Axis which represent the graph mapped values
+ - true
+ - 779bd4c1-3481-4558-8437-a0c0ebf75a39
+ - true
+ - Mapped Points
+ - Mapped Points
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33925
+ 75
+ 20
+
+ -
+ 7032
+ 33935
+
+
+
+
+
+
+
+ - The graph boundary background as a surface
+ - 3b6dc28f-5914-4421-a86b-fc08da06b135
+ - true
+ - Boundary
+ - Boundary
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33945
+ 75
+ 20
+
+ -
+ 7032
+ 33955
+
+
+
+
+
+
+
+ - 1
+ - The graph labels as curve outlines
+ - c0daa05a-1574-4e9b-a734-968fd6494708
+ - true
+ - Labels
+ - Labels
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33965
+ 75
+ 20
+
+ -
+ 7032
+ 33975
+
+
+
+
+
+
+
+ - 1
+ - True for input values outside of the X Axis domain bounds
+False for input values inside of the X Axis domain bounds
+ - 54a4fc6f-2f0c-416c-bb16-744d06bbd201
+ - true
+ - Out Of Bounds
+ - Out Of Bounds
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 33985
+ 75
+ 20
+
+ -
+ 7032
+ 33995
+
+
+
+
+
+
+
+ - 1
+ - True for input values on the X Axis which intersect a graph curve
+False for input values on the X Axis which do not intersect a graph curve
+ - 948b9b23-5208-4878-8f93-ce7235d0738a
+ - true
+ - Intersected
+ - Intersected
+ - false
+ - 0
+
+
+
+
+ -
+ 6993
+ 34005
+ 75
+ 20
+
+ -
+ 7032
+ 34015
+
+
+
+
+
+
+
+
+
+
+
+ - 11bbd48b-bb0a-4f1b-8167-fa297590390d
+ - End Points
+
+
+
+
+ - Extract the end points of a curve.
+ - true
+ - 768a75cc-fb01-4727-a926-3d23b105c6e2
+ - End Points
+ - End Points
+
+
+
+
+ -
+ 7031
+ 34228
+ 96
+ 44
+
+ -
+ 7081
+ 34250
+
+
+
+
+
+ - Curve to evaluate
+ - c6622106-b47b-4b11-9868-e4b1ea91247a
+ - Curve
+ - Curve
+ - false
+ - 9838c9db-77a0-40d4-87f9-aabc44cf86f7
+ - 1
+
+
+
+
+ -
+ 7033
+ 34230
+ 33
+ 40
+
+ -
+ 7051
+ 34250
+
+
+
+
+
+
+
+ - Curve start point
+ - 8387afc8-613a-4359-99b3-e52b1bb23b94
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 34230
+ 29
+ 20
+
+ -
+ 7112
+ 34240
+
+
+
+
+
+
+
+ - Curve end point
+ - 7a828836-aaef-4157-81c9-22a2639e4ed6
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 7096
+ 34250
+ 29
+ 20
+
+ -
+ 7112
+ 34260
+
+
+
+
+
+
+
+
+
+
+
+ - 575660b1-8c79-4b8d-9222-7ab4a6ddb359
+ - Rectangle 2Pt
+
+
+
+
+ - Create a rectangle from a base plane and two points
+ - true
+ - c3a7ca30-fdc3-495a-b83c-c1e5e2018c2b
+ - Rectangle 2Pt
+ - Rectangle 2Pt
+
+
+
+
+ -
+ 7021
+ 34100
+ 126
+ 84
+
+ -
+ 7079
+ 34142
+
+
+
+
+
+ - Rectangle base plane
+ - b570b5c1-9819-419d-a206-864e30b899b6
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7023
+ 34102
+ 41
+ 20
+
+ -
+ 7045
+ 34112
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - First corner point.
+ - 32164c42-4f13-48b5-8bbd-ed0ff0802688
+ - Point A
+ - Point A
+ - false
+ - 8387afc8-613a-4359-99b3-e52b1bb23b94
+ - 1
+
+
+
+
+ -
+ 7023
+ 34122
+ 41
+ 20
+
+ -
+ 7045
+ 34132
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second corner point.
+ - 4466b1fd-1a33-4c17-9c91-614bf240e786
+ - Point B
+ - Point B
+ - false
+ - 7a828836-aaef-4157-81c9-22a2639e4ed6
+ - 1
+
+
+
+
+ -
+ 7023
+ 34142
+ 41
+ 20
+
+ -
+ 7045
+ 34152
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0;0}
+
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Rectangle corner fillet radius
+ - 7176f083-819c-4984-919d-acab98e927d1
+ - Radius
+ - Radius
+ - false
+ - 0
+
+
+
+
+ -
+ 7023
+ 34162
+ 41
+ 20
+
+ -
+ 7045
+ 34172
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Rectangle defined by P, A and B
+ - 9e21aea5-b940-440e-a4c5-09319331cd6d
+ - Rectangle
+ - Rectangle
+ - false
+ - 0
+
+
+
+
+ -
+ 7094
+ 34102
+ 51
+ 40
+
+ -
+ 7121
+ 34122
+
+
+
+
+
+
+
+ - Length of rectangle curve
+ - 2316177b-e69c-4ce4-bf32-85027e7648e1
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7094
+ 34142
+ 51
+ 40
+
+ -
+ 7121
+ 34162
+
+
+
+
+
+
+
+
+
+
+
+ - 310f9597-267e-4471-a7d7-048725557528
+ - 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
+ - GraphMapper+
+
+
+
+
+ - External Graph mapper
+You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
+ - true
+ - 94a179f4-42f2-4db4-a2f2-e60c841ea624
+ - GraphMapper+
+ - GraphMapper+
+
+
+
+
+ - true
+
+
+
+
+ -
+ 7070
+ 33923
+ 126
+ 104
+
+ -
+ 7137
+ 33975
+
+
+
+
+
+ - External curve as a graph
+ - 0b0904e1-e281-411d-a1b3-c01c54257274
+ - Curve
+ - Curve
+ - false
+ - 9838c9db-77a0-40d4-87f9-aabc44cf86f7
+ - 1
+
+
+
+
+ -
+ 7072
+ 33925
+ 50
+ 20
+
+ -
+ 7098.5
+ 33935
+
+
+
+
+
+
+
+ - Optional Rectangle boundary. If omitted the curve's would be landed
+ - fdc11498-497b-46be-b650-0482e6aa7096
+ - Boundary
+ - Boundary
+ - true
+ - 9e21aea5-b940-440e-a4c5-09319331cd6d
+ - 1
+
+
+
+
+ -
+ 7072
+ 33945
+ 50
+ 20
+
+ -
+ 7098.5
+ 33955
+
+
+
+
+
+
+
+ - 1
+ - List of input numbers
+ - fff58225-9d0b-4431-9a9c-66597dbf1678
+ - Numbers
+ - Numbers
+ - false
+ - 9ddcbba7-661b-44d5-adcb-ca59a0101ceb
+ - 1
+
+
+
+
+ -
+ 7072
+ 33965
+ 50
+ 20
+
+ -
+ 7098.5
+ 33975
+
+
+
+
+
+ - 1
+
+
+
+
+ - 9
+ - {0}
+
+
+
+
+ - 0.1
+
+
+
+
+ - 0.2
+
+
+
+
+ - 0.3
+
+
+
+
+ - 0.4
+
+
+
+
+ - 0.5
+
+
+
+
+ - 0.6
+
+
+
+
+ - 0.7
+
+
+
+
+ - 0.8
+
+
+
+
+ - 0.9
+
+
+
+
+
+
+
+
+
+
+ - (Optional) Input Domain
+if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 2417f242-54bb-4e3f-b425-1912127d6986
+ - Input
+ - Input
+ - true
+ - 29035143-7d18-4a14-be6a-f49b25690cad
+ - 1
+
+
+
+
+ -
+ 7072
+ 33985
+ 50
+ 20
+
+ -
+ 7098.5
+ 33995
+
+
+
+
+
+
+
+ - (Optional) Output Domain
+ if omitted, it would be 0-1 in "Normalize" mode by default
+ or be the interval of the input list in case of selecting "AutoDomain" mode
+ - 837d7ccd-d97f-4c9d-8f60-c0d768c816dc
+ - Output
+ - Output
+ - true
+ - 29035143-7d18-4a14-be6a-f49b25690cad
+ - 1
+
+
+
+
+ -
+ 7072
+ 34005
+ 50
+ 20
+
+ -
+ 7098.5
+ 34015
+
+
+
+
+
+
+
+ - 1
+ - Output Numbers
+ - 453e75d5-92b0-4a27-b9cc-b473e17c51ca
+ - Number
+ - Number
+ - false
+ - 0
+
+
+
+
+ -
+ 7152
+ 33925
+ 42
+ 100
+
+ -
+ 7174.5
+ 33975
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - ae0b3969-bca9-4c9e-aa42-57868d8cb8a3
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 7045
+ 33720
+ 89
+ 64
+
+ -
+ 7090
+ 33752
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 05434edb-9ff2-4c29-a552-3a05b96ad3fe
+ - Gate
+ - Gate
+ - false
+ - f0f12603-4482-4f72-b137-884cc0158300
+ - 1
+
+
+
+
+ -
+ 7047
+ 33722
+ 28
+ 20
+
+ -
+ 7062.5
+ 33732
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 54200318-4c9d-4d4c-b52b-eac554eda9c4
+ - false
+ - Stream 0
+ - 0
+ - true
+ - d93c2af4-9806-41a1-b182-ba8af4e155d5
+ - 1
+
+
+
+
+ -
+ 7047
+ 33742
+ 28
+ 20
+
+ -
+ 7062.5
+ 33752
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - e772bd76-aeb1-42eb-a54d-ba9445b62a22
+ - false
+ - Stream 1
+ - 1
+ - true
+ - 453e75d5-92b0-4a27-b9cc-b473e17c51ca
+ - 1
+
+
+
+
+ -
+ 7047
+ 33762
+ 28
+ 20
+
+ -
+ 7062.5
+ 33772
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 18ea7325-1cde-41b1-8680-7e4a6d2772ca
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 7105
+ 33722
+ 27
+ 60
+
+ -
+ 7120
+ 33752
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - f65c8122-df19-4758-9715-bd93b7eb63f2
+ - Number Slider
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7023
+ 33643
+ 150
+ 20
+
+ -
+ 7023.074
+ 33643.44
+
+
+
+
+
+ - 0
+ - 1
+ - 0
+ - 1
+ - 0
+ - 0
+ - 1
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 64deed38-d62c-478f-a39a-8bc3cb7f065a
+ - Panel
+
+ - false
+ - 1
+ - d2529351-9147-40e9-9455-d774d0ba87a2
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6997
+ 34425
+ 185
+ 271
+
+ - 0
+ - 0
+ - 0
+ -
+ 6997.145
+ 34425.71
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - true
+ - true
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - f44b92b0-3b5b-493a-86f4-fd7408c3daf3
+ - Bounds
+
+
+
+
+ - Create a numeric domain which encompasses a list of numbers.
+ - true
+ - a4df3653-5914-4105-b7a5-3d9ff807534d
+ - Bounds
+ - Bounds
+
+
+
+
+ -
+ 7020
+ 34367
+ 122
+ 28
+
+ -
+ 7084
+ 34381
+
+
+
+
+
+ - 1
+ - Numbers to include in Bounds
+ - 577b15d2-3f2a-4b45-a2d9-10602b24bf5f
+ - Numbers
+ - Numbers
+ - false
+ - 9ddcbba7-661b-44d5-adcb-ca59a0101ceb
+ - 1
+
+
+
+
+ -
+ 7022
+ 34369
+ 47
+ 24
+
+ -
+ 7047
+ 34381
+
+
+
+
+
+
+
+ - Numeric Domain between the lowest and highest numbers in {N}
+ - 29035143-7d18-4a14-be6a-f49b25690cad
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 7099
+ 34369
+ 41
+ 24
+
+ -
+ 7121
+ 34381
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - 9aca1b3c-518c-42fe-baff-2260c150d2fd
+ - true
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6982
+ 34781
+ 194
+ 28
+
+ -
+ 7082
+ 34795
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 35dce544-d89f-4967-9916-86c7249ee939
+ - true
+ - Variable O
+ - O
+ - true
+ - 9ddcbba7-661b-44d5-adcb-ca59a0101ceb
+ - 1
+
+
+
+
+ -
+ 6984
+ 34783
+ 14
+ 24
+
+ -
+ 6992.5
+ 34795
+
+
+
+
+
+
+
+ - Result of expression
+ - d2529351-9147-40e9-9455-d774d0ba87a2
+ - true
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7165
+ 34783
+ 9
+ 24
+
+ -
+ 7171
+ 34795
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:0.00000000000000000000}",O)
+ - true
+ - ed591d71-a137-4f2d-b6c9-3b694455668c
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 6896
+ 35013
+ 367
+ 28
+
+ -
+ 7082
+ 35027
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 5fa00b9f-6db9-4f29-967c-3b95e5f8183b
+ - Variable O
+ - O
+ - true
+ - 413b0c3d-7f4f-4f73-befe-cf14f0614b3b
+ - 1
+
+
+
+
+ -
+ 6898
+ 35015
+ 14
+ 24
+
+ -
+ 6906.5
+ 35027
+
+
+
+
+
+
+
+ - Result of expression
+ - 2bb0ea0d-1f84-4809-8cff-f0ab0c1728c9
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7252
+ 35015
+ 9
+ 24
+
+ -
+ 7258
+ 35027
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 702989bc-2cf2-4ade-8ffd-246a00bee486
+ - Panel
+
+ - false
+ - 0
+ - 2bb0ea0d-1f84-4809-8cff-f0ab0c1728c9
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 6997
+ 34962
+ 179
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6997.283
+ 34962.58
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 1
+ - 33e22ec1-2435-4d45-b738-df841e8d28ca
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 734a27ff-cbd3-408b-8679-e9bd39cb249b
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7002
+ 31155
+ 154
+ 64
+
+ -
+ 7086
+ 31187
+
+
+
+
+
+ - Base geometry
+ - 977df226-e7bc-47be-ad68-1ae1fad50bed
+ - Geometry
+ - Geometry
+ - true
+ - 02e2de16-a5ea-48e8-a96e-3b64d8d23d4c
+ - 1
+
+
+
+
+ -
+ 7004
+ 31157
+ 67
+ 20
+
+ -
+ 7047
+ 31167
+
+
+
+
+
+
+
+ - Center of scaling
+ - d933ef33-b13b-415a-b144-8e3185377e37
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7004
+ 31177
+ 67
+ 20
+
+ -
+ 7047
+ 31187
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 87c7b173-d14e-4414-a30e-6d9fb3af21c6
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 94564bd6-6ce4-49d9-9472-e5e367a6ff51
+ - 1
+
+
+
+
+ -
+ 7004
+ 31197
+ 67
+ 20
+
+ -
+ 7047
+ 31207
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 88d6a414-48f8-4aeb-b9a3-26ba846ed881
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7101
+ 31157
+ 53
+ 30
+
+ -
+ 7129
+ 31172
+
+
+
+
+
+
+
+ - Transformation data
+ - 1a64b0cd-0d89-49f3-9703-8471b5f0dcab
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7101
+ 31187
+ 53
+ 30
+
+ -
+ 7129
+ 31202
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - a3cc0d8d-dbf0-44e6-8e22-5a6b0ed0677d
+ - Point
+ - Point
+ - false
+ - 88d6a414-48f8-4aeb-b9a3-26ba846ed881
+ - 1
+
+
+
+
+ -
+ 7061
+ 31127
+ 50
+ 24
+
+ -
+ 7086.434
+ 31139.1
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 6147a32d-2685-42b3-98f0-4307b92ad40a
+ - true
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7007
+ 30345
+ 138
+ 44
+
+ -
+ 7075
+ 30367
+
+
+
+
+
+ - Base geometry
+ - bd057fd3-526b-4f93-8bed-a8783cafa787
+ - true
+ - Geometry
+ - Geometry
+ - true
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 1
+
+
+
+
+ -
+ 7009
+ 30347
+ 51
+ 20
+
+ -
+ 7036
+ 30357
+
+
+
+
+
+
+
+ - Mirror plane
+ - f77ca6a3-d68c-47cc-ae03-94dbdea61a9f
+ - true
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7009
+ 30367
+ 51
+ 20
+
+ -
+ 7036
+ 30377
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - ac647f08-25d8-4a09-abb9-42d3ecd00f6a
+ - true
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7090
+ 30347
+ 53
+ 20
+
+ -
+ 7118
+ 30357
+
+
+
+
+
+
+
+ - Transformation data
+ - 946b1701-79f6-471d-80a9-2e7d3a165dbd
+ - true
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7090
+ 30367
+ 53
+ 20
+
+ -
+ 7118
+ 30377
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 50decb4c-c6f9-45b9-bf8d-ff80699b9d3c
+ - Curve
+ - Curve
+ - false
+ - aacdfd4c-63e4-4340-99ad-26a73de0196e
+ - 1
+
+
+
+
+ -
+ 7060
+ 30248
+ 50
+ 24
+
+ -
+ 7085.684
+ 30260.1
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 9838c9db-77a0-40d4-87f9-aabc44cf86f7
+ - Relay
+
+ - false
+ - 2e8cf701-e613-4bce-a201-e77a3206a409
+ - 1
+
+
+
+
+ -
+ 7059
+ 34289
+ 40
+ 16
+
+ -
+ 7079
+ 34297
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ce1e7a8c-da01-4140-a68a-70f93092ee0a
+ - Curve
+ - Curve
+ - false
+ - 98aa5440-91ae-45a6-b36f-55fcadfe7f8e
+ - 1
+
+
+
+
+ -
+ 6609
+ 34675
+ 50
+ 24
+
+ -
+ 6634.479
+ 34687.04
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 2e8cf701-e613-4bce-a201-e77a3206a409
+ - Curve
+ - Curve
+ - false
+ - a0b553cc-a35d-49dd-aa49-df8606ac577d
+ - 1
+
+
+
+
+ -
+ 6609
+ 34393
+ 50
+ 24
+
+ -
+ 6634.58
+ 34405.38
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 13f9f6f2-f835-4227-829f-52e42e7ce766
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 6550
+ 34422
+ 154
+ 64
+
+ -
+ 6634
+ 34454
+
+
+
+
+
+ - Base geometry
+ - 23e7bc17-ab96-4268-b3d2-51651523bcbd
+ - Geometry
+ - Geometry
+ - true
+ - ce1e7a8c-da01-4140-a68a-70f93092ee0a
+ - 1
+
+
+
+
+ -
+ 6552
+ 34424
+ 67
+ 20
+
+ -
+ 6595
+ 34434
+
+
+
+
+
+
+
+ - Center of scaling
+ - 9c2338d1-e810-4c35-8949-cb1f8413458b
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 6552
+ 34444
+ 67
+ 20
+
+ -
+ 6595
+ 34454
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 4b418207-fe15-4a08-beec-95993c36a10f
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - 9b841fa1-df46-463a-8a58-7dc4660c77b4
+ - 1
+
+
+
+
+ -
+ 6552
+ 34464
+ 67
+ 20
+
+ -
+ 6595
+ 34474
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a0b553cc-a35d-49dd-aa49-df8606ac577d
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 6649
+ 34424
+ 53
+ 30
+
+ -
+ 6677
+ 34439
+
+
+
+
+
+
+
+ - Transformation data
+ - ddbe1e8f-5b14-4fdc-aa82-8a4b681ebb11
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 6649
+ 34454
+ 53
+ 30
+
+ -
+ 6677
+ 34469
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - ce1e7a8c-da01-4140-a68a-70f93092ee0a
+ - 2e8cf701-e613-4bce-a201-e77a3206a409
+ - 13f9f6f2-f835-4227-829f-52e42e7ce766
+ - 27899f96-8899-44d3-a06c-50d23c4c5623
+ - a638e35b-eefc-438d-ad6b-88de925b4ae7
+ - c1097ae3-2c41-4805-9030-5760ad4ef55b
+ - bfa0c160-a745-4e5f-8af0-f36e9d9f8b16
+ - 84f60e1f-b839-4276-a2ce-a4cf3fd7e590
+ - 8bf0e2b3-2eba-4d67-bd97-afd806325847
+ - d759ef81-9f90-46c2-81a7-f670722cbc4d
+ - 10
+ - dbdc0d00-2cc3-49d5-be5f-515c18d22314
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - ce5a7258-3733-4174-8e88-1b4cc94ef234
+ - Move
+ - Move
+
+
+
+
+ -
+ 7007
+ 30281
+ 138
+ 44
+
+ -
+ 7075
+ 30303
+
+
+
+
+
+ - Base geometry
+ - d30bf2e4-9c13-4e95-bcbd-d8b811bf7bf5
+ - Geometry
+ - Geometry
+ - true
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 1
+
+
+
+
+ -
+ 7009
+ 30283
+ 51
+ 20
+
+ -
+ 7036
+ 30293
+
+
+
+
+
+
+
+ - Translation vector
+ - 0865fcfa-b0fb-4b1b-b6b0-f97c42f66bc7
+ - Motion
+ - Motion
+ - false
+ - 898ce28f-2883-4804-880e-63e52726128d
+ - 1
+
+
+
+
+ -
+ 7009
+ 30303
+ 51
+ 20
+
+ -
+ 7036
+ 30313
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 3
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - aacdfd4c-63e4-4340-99ad-26a73de0196e
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7090
+ 30283
+ 53
+ 20
+
+ -
+ 7118
+ 30293
+
+
+
+
+
+
+
+ - Transformation data
+ - 28632f0f-c56b-41b9-81dc-ac87d9c6b6fd
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7090
+ 30303
+ 53
+ 20
+
+ -
+ 7118
+ 30313
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - a638e35b-eefc-438d-ad6b-88de925b4ae7
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 30.9312132004
+
+
+
+
+ -
+ 6509
+ 34618
+ 250
+ 20
+
+ -
+ 6509.879
+ 34618.46
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - c1097ae3-2c41-4805-9030-5760ad4ef55b
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 16.93121320041889709
+
+
+
+
+ -
+ 6567
+ 34518
+ 144
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6567.039
+ 34518.08
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - bfa0c160-a745-4e5f-8af0-f36e9d9f8b16
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6609
+ 34350
+ 50
+ 24
+
+ -
+ 6634.58
+ 34362.38
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNx7PBR9/PD/dahURCpJJR1JJaTSSftGKJESodRGoRNCJSUrKqmkkiixRVJKiwoJ6xRyPp9Z57N0UFLyW9f1vubT/f0+7n9+f93+6HnNa2Z2Z2dmZz6XBY2PRqON8r7GHPsS5uf9s2eXzRFbOw27EyfsbJfLGB92cDxiZ7tprYLSKgVlpVUqqrz/UFRUWi6jceq40ymHw5tsD59ycjh4fLmMwSmL40csdQ+f3W137LDtptWrlZVVlQ6vW2u5dvXq1asUx409i+Q/D66gfdjuxGEnh7MKBnbHz2qccjh9WJA3c8Lpf59s0kEHS5sjpw+vOnRiop39YVvbUw4WjoKHDjodHFtISEiIf2w7xWRpNGWed35PFp4owPsP0bF/yj1pNP5hN35ajue/r+nXKD9tOr4+blmlvnZX6dSUNpqYB9+CgeeD8l6/efNv4bJigrT/+TWw+X+lf3vK/yzj/tcyivR/paM6qAF9bANHZP73Bs6a+mr/zsllU1P+/LuB26TOzhzbwExcVkwAFxzbUIH/Dtv/n439X+v+zy82PhYHzUaL0DK0Cq1DuWgz2oq2o51oN9qL9m/+P1/DZ/QL+hX9hg6i39Ef6BD6Ex1Gf6G/0RH0Dzr6376j//MvE6Xx4TRK48dplCaA0yhNEKdR2jicRmnjcRqlTcBplCaE0yhtIk6jtEk4jdIm4zRKE8ZplCaC0yhtCk6jNFGcRmli/0pHmSgHpU3F+SgT5aA0cZyPMlEOSpuG81EmykFp03E+ykQ5KG0GzkeZKAelSeB8lIlyUNpMnI8yUQ5Kk8T5KBPloLRZOB9lohyUJoXzUSbKQWmzcT7KRDkobQ7OR5koB6XNxfkoE+WgNGmcjzJRDkqbh/NRJspBaTL/KoPSUQbKRFkoB+WitPm4PkpHGSgTZaEclIvSFuD6KB1loEyUhXJQLkpbiOujdJSBMlEWykG5KG0Rro/SUQbKRFkoB+WitMW4PkpHGSgTZaEclIvSluD6KB1loEyUhXJQLkqTxfVROspAmSgL5aBclCaH66N0lIEyURbKQbkobSmuj9JRBspEWSgH5aI0eVwfpaMMlImyUA7KRWnLcH2UjjJQJspCOSgXpS3H9VE6ykCZKAvloFyUtgLXR+koA2WiLJSDclGaAq6P0lEGykRZKAflorSVuD5KRxkoE2WhHJSLUoMW4v8eZ5Cvfc6iAmXGKvA/u7fKPUG1i/ogfWvS4sAV49X+6zf+6fthWO0Ird16YfJ/3dr6pEdUkxV03ZW0FR6n/j+Wt4WffOJTfAoY1PKVzIY0q6mOsPozw8dlnxu1vM0/j3MaBtnBeRHqD6nlf+oJan6PdgHuo/iFTdsTqeWv/fP4F6D4bb//W+dqankfkbvN6kvdIWZ5rGdn+g+1//N5PUALNGebL5egxlXzvsmGev/0hPNTft6WZqtQ47Aj/2zPZTjyUTPVRM+QWp5d886yJMcLLq6bUWXM70At/+uf7fSG2l7advd8X2p59VS9RVL3r8MV5dH3cWavqOX/3T8+sP3MUUudLx+p3m1o/0VxtS8sZMuZtF2oI8v/87puweME9skt/p1UV8xKKNk99zbE61fcdRr6QvXSf17vHXi5neZ3dOMvqp9aLxDrPM4Ppm5JHNXz56f/16f9sx/8wLu+LUzZTojqr19uvxPUdxf27i7ZHbhKlOr6/+wff4grHh4/+8w0qvfI+Dtyyu+BWUzVq4aymVS/+M9+C4AzU7ZWn4yfQ/WZfo2GrUmBYMJnuf/etPlUf/bP/rwPwVbKOWunLaL66glLVYTCH0D9Yr2tWeayVOdwxvZzEGg3cIe/DMpTXcPFYfpyn4dQ9lB62LpBgeoZq8b2fzC4azyI7rquRPVNfYnfdpwOgRjX5UtPlq+iusk/x4UFVYtrP8tsW0P1KeyL3eteseCaVUrgjl5VqicLjx2vR5B35HOUYdIGqh898rRGN/QRpJheTfFIViP7/8PYcXwMGuzC5Q+G6FSPXZD30fzeY5hX9mTcwUh1qhu4jR3fULi0wjBazVmT6m21A+/sroXCxeKW040HtKjuqDp23MNgcbnlw34LHar/8psR6e4WBhf0Go/NvLiN6s6fx86HMHi4w2LpuOTtVO/XW//gjuMT8BkYmmM5cwfV9z0fO0+eAPtxpZZtlgHVE8cfuPbEOhxuRusc9BHfRfUZlmPnTzjYvjJytz5hSHVGise5uL1PoTjcc9uOqt1UD5k9dl49hc2P9zIeGBpTvehMxLGcHRGg9oJh9ahxD9UHS8fOtwgwKpxFiztvSvWJivl7azWegbCESLHSsr1UF7k+dh4+gzZvznnrnn1UH+34rNu39jkcUn0X/jJpP9VbNMbOz+dwbTr95/KdDKrHhEhsHF0WCe9X5fE1bT9I9eO/5HjnbSRMdMtInrvLguyHPRuWT5V5AbG/evimHLSk+uOYsfP5BdBejXtYd/YQ1SWnMOYsnP4SlgeXHXwddJgcryNj5/lLcCuYvYCTY0X1pAxP4dVCUbB2S/AreT4bqnfNGzv/o+D2hHl10hpHqP7d5dlvrd9RUCN18GzWzaPk9ZaPvS9ewTZPWdMdHceo/lqxoNdk4BXM37par2nrCaqzt4y9X9gQYasnGxFnS46Lw1nb1Q5smOgauM9a0p7qS1lj7yM2GDnv7k6pIX1r/jUrtV42VC5LWPz18Umq7xn2472/omGl1LMzEicdqL5DNni/tlU0DGeO27p5iyPVlXePve+ioTaaze8xz4nqI0y2sQE3GmwZ10R+jJIe+3Ls/RgDRrvPlLDbT5HHr0nTNzWLAQUx43eZpaepXjJ+7H0aAwESExV0s85QfcOqci2LshhQ7D7pb5zqTPWrB8bev7EQIOKwbyT1LNUTrnWoHdOPhSMCPZ27c1yonh839r6OBR395DCHynNUT2v5ucYpOxYK7POHjvWep3qg6Nj7/TUE9P3UMxa6QHWdDcIrXdVfg672YhHtZW5Ur7Mauw68hk3MgMJn8kyy/29Ly15+/xra9Nze6qSTfitp7PrwGrry4z55H3Cnekyn4ryba97Ag9SYledGSY+aNnbdeANburnyi0IvUt1dTWNmAPsNrJ0Ye9d3mwfV5Y+MXU/eQFJj4KLcQdKf3jESfST/FuRWjr/eEOZJ9cGk/bzrzFtIi7dhlu+5RHXJTusJz8PeQsMm5bfvplym+njxsevPW8hwK20KyCE9c4PLaIx0HKRsTopz8bpCdYPDY9elOFiymdF7VNeLbI/P9R+JAXGwbvMKFSfxq1TPjrvLu17FgR7fXY1H9aRHc4M/ZYjHw3MtocLfL7ypfmDi2HUsHsKKfnjfYl6jepFSdEf+9XhwYZQtO2pynerjzMaub/FwOW6K1S2VG1T/7Z7eWDE+Acbfm9k/dYYP2f/P8njXvQTYyTng/P0n6TLF5ZWNzAR4/m1PwtaWm1TXHWrgXQ8TIMolXvmajS/VleZ1FnYOJ0B96o2A2CbSc7eMXSffwUXFQzYLzW9RXfr4cNZnp3egLev0u7GG9Pm3BXjXz3eQN/57VL/ZbaqXxQlzhvvfQeLKBTW760lXrZ/Bu64mQgy/UtVMiztU1+KfFy9wJBH2cs0ENnWR/mfJ2PU2EUyXVr3JcfCjOkNXiS3ckgj6ak1b0/+Qbmm3nncdfg9tblGzVt64S/UpdzQiZpi/h7f6zm7i0v5UN367nXd9fg9Ok8+UO0STrlZtxJKufA+vJVpOGWnfo3rar/2863YSLCj+9i6lkfT6uTYBsjuTYP+D1j9vXQKo7rf5JO96ngRTKrof0CUDqV7NcPFVzE2C4qbNvQfjSX/t7sG7zieD/rw522T23qf6nMfXvdZtSYYFn+JE3WkPqC6Sdpd3/U+GoWjde1cjSPduCmaqpyTD4WzRDZsNg6h+kxbBuy8kg+SdjUZPaQ+pPn1etLPuuhR44TCJnsUmXWrTO979IgUys6KNwiyDqR5ilm6/OzYF+L8eHdCYFUJ11pk83n0kBfiMbI9GFpM+6ePR11ESHFCVHZ5ir8Wi+ugeO979hQMDIfdjHJ+Q/rLNUTHWkAMjGSp6LeMeUX2GozPvvsMB9ofWa6nWpK+gub6I8+WAYfmH2VNzSR+57s67H3Fg0/wfz8pWPqa666zLcu/zOZBQc6tlij/pL5548+5THJipHHsqbYT0G0o3wziTUuHZnjMiX6xCyf5JusO7f6VC4rnhPaxi0g10AmQytVMhuMCEv2hTGNVVSoN497VUeMSMSvCIJP2d+aOgHM9UmJY2c1my1BOqd3c84d3vUkEjnS1w8Rrp708+lyxITQXX13cHikdIV/wVxbsPpoL4h+Zg9slwqm/xjPUr+ZMKBnKvE2U6SP8uHM+7P6aBx+Ql3xbtf0qWv/terHJDGgyH7B5MqSB9xdxU3n0zDQQl9h3/ZhBB9VdhmddrndOg56HJ+Mw80j8s+8i7n6aBgI2Vvcq2Z1S3iykQ4r5JA9+wR3u25JD+SrWUd59Ng06PJUeGtz6nuktypWfrlzTYuWbqLuM80ss16nj333SQ6nVN2WsQSfZPNpfWtTIdfMu99otUkC6n18a7L6cDbaF+3QnzF1SfV9x1vu94OsQIdre5tZMeuLufd79Oh8HnznJaJ19S3b/yy9DnZ+kgoSWxM32E9OlmP3j38XQwH98oPHwtiupT6n45fW/nLT/nk1Df7FdUv2JO493fM+B6nMWX4Jekn24Q/Dy8MAOuCC7bcFWGTfW6/RN59/0MsGN9kVl8jPS3DSInRhkZEK4t4R72lnSB/eK88UAG7BRfFCMkEE31lDqJLoHgDPCTfD7J0ID0drPZvHECrzusafIMJv1M1bzDQrUZcFp1z/WQPtJPGi3ijR8ywPzifYuwTTFULyiWaxKWzAQ7G593fj6k++qt4I0rMqGYP7X7JJf0yGwl86lGmRB2hLN106pYcrw01vDGG5kg/EZKYegy6X/er6+ecTsTlEfM+0NrSV+6ZjNvHJIJKmaSTaD0murPozSMpAozYV1r5b7SK6S7LNHhjU8y4WCsfLxpI+kPH24vlhb+AKWNwVsr1r6hutD0nbxxywdgu6dZb7tF+vurRnoLt34AqeiFR+J6SI//Y8obz3wA1csGYdLab6n+1WF/juzlD7BoVqWdeyjp9u0WvHHOBxC+uGVBEy2O7AdT6y3L0z/AxOql4psPkC6Ve4w3/vkAGmvE/YOSSdfYaJ+qSMuCiujrgr+k46nOeuHEGxdlQael7Ou9TNKXzDm7afWmLAg6ZP8rpZn0Jm9X3ngpC0TyBhWXaiVQPXXIPWGdSxYcjtkSGfCc9KzDl3njqCzefb+fIyr2juqfir1Xq8Vlwfp9rtk3T5O+ftNN3vgqC37tcJeUaiA96OmdaPVvWbBgodcEtlYi1SWnBvDGXdlQ0Devdxeb9Odng1ZoK2XD/OyKOYKz31Ndv4nFG49lw9qP6wcyLpP+R/vJM13bbFglXPPe/yvpcS+f8cZp2bAmXL3a5WAS1V3EoxYbRGaDKZs/yKGI9E2nY3jjt2xIVY/Y60ZPpjqt+u2j3Z3ZcP1Uqu3jaNI56xN547ocKGXULatfmEL10w9S5pouzoHEOVe6FO+RPu9XOm+8lwPRXFm3wnEcqr83zQ40t8gB+1UWDD866epxebxxYA5E3k5I7zhHOnta8QyLkBw4OenU7o9xpI+zK+eND3OgJLw2aeM30tfmVN+yqsuBakeVyM1KqVTXWtDAGzfmQKDrh6xSW9IVXZpFjs36CLOLqpJ/viC9q6idN578CA5nYjbE9JDusqTnqp3xR4hwu981Ip9G9UKXT7xx5kfI+1bpWH+U9E/5X8c53fkI/c3Rl3ZGkl42b0jje/RHkDS2+2jWS/oZ+9/uzkUfYa/Znr6fK9KpXpJC441LP0LaL3bgSnvSO0TG/TkvkgtmWukuv2NIf2E2kTdezYWVWuUbDn4nfX64iIv7tlwwmqDgtX99BtU3DEzljWNzIf/u9MmDF0j/rSrx/dKVXIgaKbRbnEG6OVOKN77NBZru04MDEzOpbvJB2sE7IxcKrjZdMzYgvXvSQt64NxfkPmQGmtwjXUxftt+HLw8khB+s+dFAesbNZbzxcB5EWEeIrJL9QLancOXRO2p50NKq8lHYnvSkKSq8cXIe1Ny8MvNSAulDuqrt987lgb9TBytIIIvq0Vc28sbPeSAT8mDqbn3S61LpFkHxecCc3TP9RSDp54c1eePqPCgZnGP8pI10d6WtDazBPPi8zplJV86m+mcrPd54Ox88vmlsvuBG+vv7O82eKOeD4cqsTQfySe/JM+KNw/Oh/I+ObOvsHKofGTGteGaXD292iD0VOUa62vL9vPF5Pvx+fMim7h3p+0wtdkW9yIdJBtckdk7+SPV0TyveuD0fwjjF+47vI/1o1NGCmK58uKFm3a4QRbpehS1vPF8Acu49+wNpuVS3/u2wLW5JAex8Zmb/wpD0GJkzvHF+AZzLKPho85R0eY1zHxItC0A248aEwl+k3xK4cF/cuQAydt8Uu6SSR3VnSzfe/xcUwPqZn91+G5C+33pn0qgbP/O/6f+HfhDif3/w8e8zoTKoIkpHDVAGao8yUV+UhbJRDlqEctGB/54fv5kshsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vsmtjI+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4TXMxVAZVROmoAcpA7VEm6ouyUDbKQYtQLjrw3zfrVfD5URlUEaWjBigDtUeZqC/KQtkoBy1CuegASluNz4/KoIooHTVAGag9ykR9URbKRjloEcpFB1AafjghhsqgiigdNUAZqD3KRH1RFspGOWgRykUH/vtQZC0+PyqDKqJ01ABloPYoE/VFWSgb5aBFKBcdQGn4IYwYKoMqonTUAGWg9igT9UVZKBvloEUoFx3478Ofdfj8qAyqiNJRA5SB2qNM1BdloWyUgxahXHQApa3H50dlUEWUjhqgDNQeZaK+KAtloxy0COWiAygNP+wSQ2VQRZSOGqAM1B5lor4oC2WjHLQI5aID/33IthGfH5VBFVE6aoAyUHuUifqiLJSNctAilIsOoLRN+PyoDKqI0lEDlIHao0zUF2WhbJSDFqFcdACl4YeKYqgMqojSUQOUgdqjTNQXZaFslIMWoVx04L8PMzfj86MyqCJKRw1QBmqPMlFflIWyUQ5ahHLRAZT6qU3i2Djj/zaw2ZvOtD1yvQBeVu/65HiC9MsXPdQ5rAJo2VUV+iCcdKuQK0z1lALoabIU4B8h3fzdteSM+gLQMlq/RXx3PtWdSm/+1vpdAIcTZxTlRpIe2n1nfY5UIXDG131dIVhA9e7Re8666wrhgMSt8armpOtMC3qbv6cQupTv7ut6S3rCIta3HacLgSGesA2mFlKdrhKmXOJXCNN0Xy3efJz0Uoiw3x1bCEaXlNWbs0g/q/ciqqK4EJazXIenixdRfcUedq/JQCF4aR/M8aaT7rzS7O6JCUUQFCWjusuO9H3K+15HSRTBXgPJz0eDSddV2V/6aXER+ISHBZflk75+NeOL4uoikFy2oMdnhHTF1RZTHTSLQMCkjxm4opjqi1UOKcYaFoHMU4tJ38xJX6BsteObRRF4325QCvYhfe5KG9vVDkUw3S/p0b2Uv/qyozdOuxdB8uJ9gtwB0ucsOf4izrcIzqVKCJ5ZUEKWl7HNHQopgqVNW3X37f6rz7LvXveqCCr+7PS8eZl06akOE88lF4Gl3zVTsYS/upCT3Pv8IsibbXiqoYf0OX9OaY/UFcGPKeMu/pQupfrsr2es1HqLoLNjZOnBXaRLdJy95ParCNxk7s+ccZl0sZpzYZxJxZCovGZw+jvSx+e5pvNJFYNHgMIJRj/pv9+7NasvLYby3MalPxaUUb3/hTufp2oxhGmFl1ftIb3ugYdMpnYxVF1skBp3g/SMq5c2j99TDPuHW0PPpZH+8vSV/dpWxbBVVmL2xiHSb1pcdfU6VQwWHgXyWgrlVLfVuxaU41kM8V5HXQMPka6z9kbiJL9iUIrWSlr9gPQ5MjdrdEOL4cPpFD+pEtL7Jtz6eT2mGI4ZKkVpT6yg+rv+25IFqcUgmjoU+55OunuZ31rR4mIIXedgcNaZdM0Ef2MDbjEsXTu8wpVN+mhQwKlbn4rh1Kq+71mdpMe53fcr+VMMtyKeGpnOr6T60YNBsdOmlICT2OVvimakS6oHl+yeWwIT2lpd9e+QnjKf9fnu8hJQZckEReeRbkl7LFa5oQQE39/9aTq+iup8DaErJXVLwCSGRdemk37/3RN9U7MSWDnycPZZF9JX+j89cf9ICZyR6Fb59Jr0ZPtn12udS2Cpc9OaZ59I37otMnKOVwksC+LmhstXUz1/wcuP5vdK4PRvjeCOw6QbDEd1BYeXwLRpNibHHpFeUMQW4r4pgTLTZ2FK9aRrh8fIzs8sgdRth1asn1VD9USX11oWZSWQdmAwyNOI9JX6bw+HtpRAo3jCQ7HbpN+Xifds/VICPfWTa+oLSB//JSF0MX8pjKzf9rtnci3V7dIS06ymlsLX0KKo9VtJL7+V1PRUphQ+3v71IOcy6WsYKbSulaVwxF3WNiCD9IAVqfPkN5dCZRe7MJy/jurff6apHdMvhR9bvh39RifdODPD/IV5KeSJ6ncz3UiPufnhfN/xUoBUqSHdZNJFTLMfKJwvBXrZWzWjEdKPzf/4zu5aKdSmXbAJ2lhP9Q+dudXs+6XQPb5w3vzzpC98lT/0+Vkp2EoJirYkks50Kpy5KqEUjM+4cJt+kc5VLV7jlF0Kj+75qM3d2EB1+F1i9KayFDYMBpX6nSc9NLnM6Xt7KYhN4t+mk0T6ZGbFnbXfS0HOQGr72j+kn6ZXxTiPK4NjoO55cHMj1VtHq4sTppdB8Z6KoA9M0vck1w4MLyyDnSKr6FZppBeeqxfduKoMek+YCcvwc6mup9qo4KpeBtHS+zqXLiS9+CtXL3lnGXwt337VQJP0fVHNx0cZZfC8yCzjzmHS+61br9HtyyBf97Xt18ukX5Vpf+7uVgYHPK+Y20WQvqKqIyfNpwyM4/itJnwkvcanq1MguAwi5+82T+wh/bZmz4QtL8tgL+255DWRJqrv/tm75PL7MjD3VT5xeiXpC172b8nK5b2uKXMUXXeS/vvAwCGh2jIwiPdbE+JIevPULx5bu8tg5cePRnV3Sa9M+/rY+2cZGLn3WqjEk17nMJiaK1QOMVJyq57WkP5p/g+usGQ5aJRGPlAZIX1a0dConmw5TOh8crJuXjPVtV2HpW+uKYfBu5reweqk+yz9valoSzkISb1953KY9I6ykX1TjcpBLVquyt6L9N1uo+d2HSqHGwEf45iRpJfJ8T2448h7fOGPCs8LSD9azP+u7GI5HNc1Eu/7TLrEWcHqGbfLYcD3/tqtM1qoXj1v/JDxo3I4L5XtmKxK+uvMCTMD2OUwabFw0PZ9pD8/OnFNdUo5POjzu/TVjfS4KZONpArLYW6077jYUNKbo4Wd9jaUQ+CLFZ+9s0hfvHvKnaC+cqDNvT/3XA/pVwZFY+p/l4PRZkGGh2gr1cf7Ty2WFq4AH4P7N0JXkR66etrAgdkVEH7D+1ztHtIZZdNFH8lXwP1VAqPy50nf7CCh0LyuAo64KffdYpG+SVRSb+HWChgXpTVbLJN0i8hZxw+ZVMCp3yf2P+ki/anW7GtPrCvg+dOKazuntFFdvGnO8/bTFfCkN8p5+irSw1ykc2QvV8ABocXDfXtIPzBNptPmbgVUrbVuqz9POj1y/oTnYbztiQ8VbX1E+jb1hUt6YiugNVNIn5ZF+oWqRVuWp1eAQ3DGKeVe0rknlhw6UVIBzy6M2+cytZ3qJ/jlPKKaKuBy6M/yyjWky/svffxpoAIEthXGb9tH+vSly1IVaZUw59Xr6hJ30hUTl3NPilZCoWiViP1T0s9tVxiNka4E8WfW8gvySR+pWyn9bUUldMbdEuz6Qjr7uNKm1ZsqQeus58kMyQ6qB/xS3nd6eyUsk7fVeq1GetxVlXNxeyvh9gRXk/hDpE+Zueb+0NFKcNZvPF/kTXpw6NqEdS6VUL0h3es3m3TrleuqXK5WwkvhPTs3VpJ+4t36H4kBlTA4kh15c4T0V5obJUaeVsLz7donvi/sJPuhYNNqtbhKyFpNO2a/jfRPxpt3u32oBN3v811G7En/3EB35JRXwsrcGruH90hXsVK/zddWCQ6fTeYbJJOe0KsRrf6tEkTCP1rOaCP9ssOWIg+BKvi9eL9w3+Quqvv/0PqUIV4Fm6JgoEKZ9E/ndKaMX1AF+edCW0tMSb81unWFtlIVPMmNTuYyST9/UXe7F70K0mruG9IiSH8tqHcsZ0cVzGu/7qxUSLrqZX3vSQeqIEn+Lb/Td9KFJxg807WtgjttmllZc7uprnBlZ/Z11yoINrR+sHwL6Y/HG3bkX6+Cxmjd3Y+Pk3700u7xokFVoLtJJkvOj/RLAsaLDSKroFV5Wk5KIunfmXs0b72rgkeFu1Zat5CePGJiWZJTBR4GIoXSk3uo3njW7OK0al7/Yu/arky62eDeR7s7eY/zJVI02Yx0JXtzzt0fVVBxo9fsyUXSLbv3N1aMrwYZvoMqQc9J/27J+DNTohrOXV178nEJ6V11B+eaLq6GVsvg9rhh0jcZWW68r1INe/LTj9Qt6KX617xDe2s1qqGAv6JQVJd0MU0rlzmG1aADAv07HUm/9c460NyiGtIyzwY+fkD6ecUj8cEnq2FdvvVTvgzSC58crWxkVkOY369e217SfaSOf5fxrYZJppabu6f3Uf2dz4kZFiHVYL4n39FxE+m7+O1UQqOqgZVnfWCSFel7T9kbtiZVQ94gozLKh/SyjpMOi/OrgSvawWbEkZ5m6njLqq4aqvbIpc7jkr4w14n9tKca2JMM63uE+qn+a8Ppws7hajh0+G5NhhLpui/O9C+dVANfwub6PDcjXXzOWZFjs2rAZLxUfpAH6XuuuSx/IVcDtz7EH3/wgnTJ4XO6fWtr4N4COfXw8r+Wt3E9qqBdAyf2+C9I+kP69IoLV+2Ma2DiY6WWRtlPVN+twYxgH64B281yplN2ki7Jds/67FQDd49HmOq4kH5wjke7smcNnLPiJtwIJV3Ry3Oc050amHf0j35DHuleXy8tevO4BlxfK/av+0760f1XNL5H14B26q41RaIDVK/M9rJYm1oDz70yC70WkV6q7O3uXFQD7QUTorTWkW4edI2V0FgDZ2PYiRP1SXcedyNluL8GGnfuaSm2IH2RrU/Dhj81EJh7WzTkDOlWFTdHzovUwhK1YfmT10nfrHZrTvKcWuDPXiSj84j0l09ubxhdVgtRV55VL3xLepywnxl9Qy2EP5inLphL+l7Hu2fdt9XC0QXSml2NpAdV+wekmdaCy/qNH0u+kX5+c0CcwJFa2Mk/NYUz8TPVR8ICKzSda8E+YJVIrDTp8yY9GLx0pRaMZ28IebaK9DbboOlZ/rXg9iz5QJgO6btKH64SCq+FYweN1oWak269NmTX1je1EHjQXyLcgfRFD1gnvTNqwStbsvnFFdKv/3nkm1taC7GvHS/HBZH++GDoK+GWWgjWVOvPjCbdKiOsQO9LLaT7iwpWfSC9dkl4nw9fHYTmXIjpqyWd7+pT4SKxOkj8taB1/GfS67sjlk2VqYPrunc8Fo7/QnXb7c+37VpZB3cqrc5pzCb97cvII3fU6kAvWeWtlSLp8VNeepXp1cFGaT/pG1tIP20X9XSGeR3UzJgT8taM9IHCVx+Mj9dBZLrlghY70uUVo9vunauDZVr8d8Qvkb7YN0aw2rsOqhJ9ajXvk978KXah1P06UNJgtZ99Rbrljjfqe5/VwZvh/ODoDNIjo94eDIqvg2baq/6eatITReKZ9Vl1sM6phiP3ifS7xxNCpCvrQNmxY9Ra8CvVN+S+Sz7QXgcH55zwfzaL9Kil7+tZg3Xw9Qa/XZ8C6QNXkn43CdZDQIea0ypN0se1J89eOL0erDQSfM+Zkt6rwVl/aGE9aBYJvcq0Jf3Zo1TTJ8r14GSXkTDVk/SNo2nO7VAPExd5PjgQSPrTfRn3ZHfWg2VcrdqrKNI/JWS+tWHUQ3+crQ8tg/SpM7PKn9nVw43qJ06G1aRPc8r+1n2hHjROZdY97Sd9sChn2nKfepgh3xA1IvCN6vErcpVPPKyH7uqvDbtnkX7QO29n1It6kJpxUuWlAukd7fn2nxLrwcBOee4ETdKdNQpvKubWwwVOWyDDlHRBVlHUyZp6yJW4seqdLem3fxfnx3TVw6ODDpnTPEmfb1ra+3WoHlaVHzM9EUj6yzdlk1cLNYBBdEXvhyjSN4hXyJ+e2QDuadZMmQzSc2wrt8YtaYA6//5pLtWkG+dW2QytboAzS52flvaT3ipbc2XdlgboGKVtWCE4SHVHz9pwl90NkC7kXXB5Fumj3LrMRMsGmC04zYKrQPqNTQ2tvx0aYKZA0OA6TdJ7Fzfqy7k2gOWL7S9P7SJ99v1GAbWLDTCPb/HVO6ak3+KXKv9/9Ach/vcHH/8ghIqhkqgMKocqoqooHdVBDVATlIHaoPaoM8pEvVBfNABloREoG41HOWg2WoRWoVy0Ex1Aqd+eg38VQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQyhN/V+FUDFUEpVB5VBFVBWlozqoAWqCMlAb1B51RpmoF+qLBqAsNAJlo/EoB81Gi9AqlIt2ogPoEErT+FchVAyVRGVQOVQRVUXpqA5qgJqgDNQGtUedUSbqhfqiASgLjUDZaDzKQbPRIrQK5aKd6AA6hNLwt0KFUDFUEpVB5VBFVBWlozqoAWqCMlAb1B7977dRmagX6osGoCw0AmWj8SgHzUaL0CqUi3aiA+jQf78Nu+VfhVAxVBKVQeVQRVQVpaM6qAFqgjJQG9QedUaZqBfqiwagLDQCZaPxKAfNRovQKpSLdqID6BBKw9/+FULFUElUBpVDFVFVlI7qoAaoCcpAbVB71Bllol6oLxqAstAIlI3Goxw0Gy1Cq1Au2okOoEP//daz9r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZT6s1XEsXHG/21gs3UKN97wSgPUGI0cimaQHvGdu8DtVgPIjr6c02dL+mrDZuCwGmDBnzVsLU/SM161MPjYDXDuZ4oGK5B0A+E2N/WUBjDm31r5M4r0Rpv2YI+CBsiqKj5qmEH68cyOpIx63sDs2N4/L6pJH5rfVTeurwGSNjffGv+J9CsXun9p/W6AfgPHxQzB71SfXtsj5TW5ESavaIhPmEV62Nq+dTlSjfCQVbl92krSlfz6TSbJN4Jjz/uG45qkJw98OqO7rhE4cMj5gynp+nqf/a/rNELf7ZmD8+xIL3325U3+nkZY3FdVf9aTdNfx38qmWDfCbjnjVSWBpIPl4NcdpxtBruqY5dJXpC/kfBe/dakRhq97rnbLIH3R3CGlEr9GiJYLe1haTbqWy0+DaWGNYLCt1mPJJ9JvVg7b7Y5thNpttqVnBH9Q/afKb5+7aY2wuiHzdNYs0m/cHnlZUdwIH29fMpmxkvStA3/yZjY1wk8lsDyoSbqSPq3XZKARqpN93SNNSdd8wTf5/mgjhEtNDv5q+1e/xHf3xAQubHPSDl3nSbqrysVFU0S5UN9Wd841kPTiFv7XURJcEL5pIZ4SRfqmOx4aO6S5MM7HbuefdNIz1QVLPy3mwj6+Bws3VJNu88XTwncFF65OOO94qp90+cfjviiu5oJIyrNlLwWGqD5x12X34o1csNJKXNMsSfoE/glTHTS5MO29ttt0BdIXxFxhiW/ngp9a+ycNDdIZFkKKsYZcsOxd4WhvQnqK+NUUw71cEGh98zXwBOn09Ik7vllw4bPGjH2ci6S3OHo3+B3lQqR8i3/LPdJfLJpsu9qBCzFv3/oIvCQ9sPzaSPlZLlwcL6sgk0Z61GXhG6fdufBANffAukrSO9bemDPzKhfOHVs/ZUcv6Vu7RF7E+XKBlTR50UG+n1Qvv++zwSSAC956FdfsJEi/ul00dyiEC2/XKSm6LCPd+s9Ns8CnXAhjxf5i0kk/yRbrXveKC6Wsb1UeRqRHWNw6W/OWCykm12IuHiVdeIb4xHPJXOhsn+Lo6kZ6UNbtgNkfuFBwRGKckx/p5i7T5N7nc6FvVNXQ6hnpeiv84vaVcyEjS0RndzLpJ7jTtUfquFDWuKxgUynpKXfuVjxs5UKAlXzRgk7SNbUlrNR6ueDrwlIVGCH917D/YMNXLmxav/hLw9RhqndGzbzk9osLszJ2dLxZQvpEy4DpMgJN8GRNHL/XBtIPzJwVxpnUBAfYXxSMDEjvzQ1cdVC8CTJ3BBrPPUx6NFMqnU+qCfasUj/EPUv6q9UPdj2e3wR3znqqB/uQ3t49u1l9aRN8p/+oNQ4lfQ8r6GSLYhPQIpRmT4onnd94Lp+nahMo5H/sjssjvWdysO8iOm/5QtPVjCbSRdOkZTK1m+Br7qk2/u+k2zuHvDq8owmuNL9pC5n0i+pTV8psHr+nCdYpRcusnUf6QBurIHw/b/mKP8zsVaSLPpy/X9uqCb4MrP5sqEO63e7HfR0nmmAwuG9v9T7SxYUXunqdagLx0feRJidJH0wPFV7qytufKzfkFl8ife75RUE5nk1wbcdomOZ90q+qPFl29HoTtJ9nLYyOIn193+LESX5NsKvijdLMdNIVw8O3RT5oAn2XioTTlaSfOCBboxvaBCZXAsMLe0j/LBlxpPd5E/TP9m+eT/tN9aQSuZ/XY5rA19jS5MR00suuP/Na8a4J4o0CvkTLkb5KW16yILUJetfmPfi0kfR6vsintjlN8Gi2v9qSnaQXv1+2VrS4Cczn3cg0Okz6NOcXH15VNUHgQZ3ZF86S/mjVCmMDbhNU0g7Ih9wg/fynl20DHU1we7ZNffwj0sMjFU7d+tQE24uGpXPfkC5j80pQ+UcTMDdFVZfnkN61SNGv5E8TRLnPGqqqJ52/mb3QcXwzGCaWHir7TPqJEKXYaVOaoV/IaVL2uBGqLzOPUX89oxl+e90qjZ1F+sbZq0p2z22GEdP05/dWkB5SHXtwcFEz2N5nuTgC6SYBKp/vLm+GfBvOCm0j0q32vGGuUWmGgJaEKPEjpH+UWCNWuaEZdixd1Fl+nnTPirchZzSawc7EP8PXl/S7/mtXSuo2g9PNpwoaYaSPGMcnx+9qhsbefrG+ONLTZq7TNzVrBoWbAsY+uaTXVyXU/zzYDPV+5zuXNJK+6/76E/ePNMPxOZ9j3n4hfeG+xN/rTzbDHs2hkE3j/1B9h/TG67XOzTBv2dL7ibNIr+a+n32e2Qz0T1LXFVeQnhS6KXKOVzOsfXWIEUQnnc86eX3SzWa4dPUh36gh6aHymz+a32uG8KB9ZibWpD/uTzH9E9wMkhPWGUW4kM4fS+8KDm8Gs46cuv4bpGecSXXeHNUMXXvDa5c9Ir1to7oQ900zaHgc3njgNelW/On3mEnN0HkuuMsri/Tt2Rqy8zObweBQZ35EDel+PhlvU/OaQWBvTWlyH+mbjbZoWZTxjteFye0faaNU15/zoZy/rhnk+sQ/5U0jPb1F63BoSzPcz7xSnbGE9IeRWd80epph6xI+35h1pNc56ni2fmmGtyskRu5uJ91jY860S8PNYDxsPtnuAOm3xm0LXczfAq+e2z3Z5ED6uMKPyh8mtsAm8+Y3fJdIbw3QTbOa2gLnFPVkE++RLm+Zt3PCrBboUtduPfKc9NoVek1PZVpAMNa6UiSJ9O9D+fY6ci2gF7KlJ7yQ9PMZ+rSulS2wcYnzpNXNpB/zLbx5dW0LGFr5z4v/Rnr2PoN58ptbQCjlwaQAARr1l+puLS2O+qjVAt+3/DxaIEx61vedasf0W0Blz8olozNIP5pRkj/ZuAX4L15Vkp9H+vnbhuYvzFvgoZHhxR1ypP9ilPVuP9wCmgerROyUSO9ZaXS+73gLqKocyvFaT/rW0fLJPk4t8MZc/XmQBumShcYPFM63wO/jyU+ebyd9T0ilfKFHC2z7vDA6xoh0IXuTd3bXWqDxbHLq6/2ky0P1VrE7LTB0tzqPbU16irhZNft+C1SVcbLC7UnPbK2x2fm4BeIzU576nyWdHrd36POzFqj/Md+CeZH0Fd51V25HtwBzWLnX8hrpvubmM1cltEDzPrUN4Ef6YaWG8FJOC2yJuqkp+ZB09rgDa5yyecu7Oox0PiH9ZE1j5vSiFvhlprw3Nor08FcMozeVLVBYJmV4Jo703ZeaWo0aecfF5UyNCof0M3stnL63t8Dj2jvtPdmkiym3CNzrb4G5VxKPBxWTvnDioTtrv7eAvvB6C60a0l9yWxdUjbSAw7DZ+65m0l/FH45xHtcKH7lH7C/3/LX/b7XDLJFW8NOPcZzzjfS5R62LE6a3wuRSt8TI36R7a3QyzOa0guPI3E0q4/jIfph7ZGB4YSsImVf1vREhveRHl9uDZa0w0X04TVGC9JclR0U3rmqF10OF0WHSpAtE9QTXrW+FrYZhr6bKkl5x9biCq3orTJBJjz6zkvSFVn1Jc7e1wrL+My8r1pLeq26rl7yzFQa3TwlQoJOuLPOpbr9pKzzOLbZy0yF9cMTu+CiD97p+iojmGJCuUjfwK8SmFcIOT7k82ZT0T+9OXqPbt4JTiHSq1kHS5e5/kWo60wqL13i/cTlCOves43N3t1b4HB9k8vQk6TPMvq1bcKUVpOIeheSdJT1n/amcNJ9WqE9pdet2J3149ncTS/9WOGMR3U/zJj1y5HSnQDBvPygYNoneJr2m8ceZsCetoBIzQ2/mfdK905wnbHnZCsWumrIzH5Me9+Snf9vrVlCXWXZY9Dnph6+6LLn8vhXS5Wb8Ho0m/e6JX2+WZLTCvSX6TZ0JpMOu81uyclvhR8T8SR9TSbdfO1JmXcrbP5trj4XmkD5v7oVDQrWtwHD+8MupmPQdAqNfI5pbobVF4ZVaNemjXW4eW7t5+1OMcY7WRLpSMW1a9+dWyPR5YvSuk/SWePfH3j9bgdW7bdXxAdJnPuJXXsbXBikJDyZKDJFecNUjNVeoDQ5easmPGyVd0FFw53GxNkhvOHFq5wR+qiftu8QVlmwDWaPLg81TSB/SGm//cl4bfDjjrHFcgvRYpSujerJt0Fp+c3ffXNK/zBG62a/QBkl/ZkpbLSb9tdBV6Ztr2sDXfd/diuWk//g2MWqlWhsE9kW8UlMhPbHJe1PRljaYVaJjEbyBdIHCyfn2em1gkHzl8aA66QXvr++batQGLhB9WHMb6VKRIr3R+9qgrFvskfdO0rsCfc7tOtQGIVu/bM02IX3DVdHJX4+1gWQfy2jkAOlTzvrev+PYBhcO2SQstSbd6shUeZVzbSC22e+oni3pdLPbCWUX22CKsP1+m1Ok39edtvWUdxtEm2l7u5wn/ewmv6oZt9tg3bvDLR4epNeunGHzNrANuhMkDnh6k568wP+H8aM24F3Mv5y7RfoiiZlXfkS0QUzF/jtHA0gXnhQgEcBuAy3xG2sMQkg/80cyXDW+DX7Kny9eHk76oa+Bq6tT2kCIfcaU9pL00k6pzLNZbRCrmJv+MZb0jIYHu6UK22DNxrRx19+Rrlo+p/VdBW//H4yYrplK+oq8h457G9ogQzGn7UsW6WHp0gK/29pgm6q9bUAB6UGJIbeD+togbEJXqEo56TNfyyzYNNgGogpu57JqSRd/+Si6/ncbZK+/0G3QTPrN8AVwQbAdRJOU2os6Sb/BCi2SFm6HBZptltqfSBd5sIiRMq0d6AdaTV4P/rU//Z98OjC7HZ48dHk38zfp128tcaMtbIc7Pl9dT/ILkH7j6ZRH8u2gmXo/IFWIdGFvuWBQbodfGYmjE0RJF7nybEXzunb4JPc4QnPGX4/jKZ90EdrB+nyg15nZpN+4GLl94dZ2eKjf58eaT/pE9+V16QbtkK/QlZYiS7oQ8+WxQybtsP5F1YTyFaR7uCn8EmS0g7TxBFPuKtIvuL3yfmLdDu8TOZFN60gfdFOU0rJrB73jBoNVm0nvY0Y/az/dDtN+8C37sIX0AxeV11250A7be2TUn+mSvsMzNlv2cjsoVA2tvLiT9PeXVUyyb/Du8XrlXQZ7SA+/+qbD5m475FbxHZ5hTvrkG2vOTHzYDrbCH/0LLUjv9Y0b/zysHYbtzjq52ZC+9a6q/7YX7TDwcu/XRbaky9xPWNwT2w7vPiUKcRxJdwhZ/+ZaYjvE0jueGZwlXe1Jouby9HawebIwr+LCX/szcmNZ3kfedu4tPrTLk3T1mCTLEyXtQEvvt0m/SrpLgtpXkZp2+Hyuo2DpTdI1jmyOWNjYDh6lK7e9v036ptSUi1FN7RD5aXGqhx/pmqK3l/0/+oMQ//uDj38QQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ/+9/q3/KoSKoZKoDCqHKqKqKB3VQQ1QE5SB2qD2qDPKRL1QXzQAZaERKBuNRzloNlqEVqFctBMdQIdQGv5ZYyFUDJVEZVA5VBFVRemoDmqAmqAM1Aa1R51RJuqF+qIBKAuNQNloPMpBs9EitArlop3oADr0359z1v1XIVQMlURlUDlUEVVF6agOaoCaoAzUBrVHnVEm6oX6ogEoC41A2Wg8ykGz0SK0CuWinegAOoTS8M9XC6FiqCQqg8qhiqgqSkd1UAPUBGWgNqg96owyUS/UFw1AWWgEykbjUQ6ajRahVSgX7UQH0KH//my33r8KoWKoJCqDyqGKqCpKR3VQA9QEZaA2qD3qjDJRL9QXDUBZaATKRuNRDpqNFqFVKBftRAfQIZSm/69CqBgqicqgcqgiqorSUR3UADVBGagNao86o0zUC/VFA1AWGoGy0XiUg2ajRWgVykU70QF0CKXhn2kXQsVQSVQGlUMVUVWUjuqgBqgJykBtUHvUGWWiXqgvGoCy0AiUjcajHDQbLUKrUC7aiQ6gQ//9eXqD/+XYOOP/NrBZM4tuvq61HUomz1HV9SfdIIcuvqOrHeoXvQioCCS9vzj10aeBdqic7vx7TgjpfLXqSr5D7eBtPC/NJIx0r9Z0jiKtA0S2rvl69RnpzH5Ng+IJHbD2RvJ9dhTp3UOZjSdFO2BG2570vFjS0wW07cRndoD09vdnGuL/GqCKZv+Jke6A/rfBaW1JpHOktvoYLumARb9jo5rTSOcu+Tj324oOUD7J1irPIv34Kt2Xfqs7QN5H525S3l8DbHrextWbOqAiVfHJg2LS3+np5ZVrdgDTda67XQXp5/YW7D29vQPSlNJXraslPezIjh6J3R1gvaMia6iRdAXnIpe4vR2wQnuyTlQr6XOv7JxkYsl73qsSKaZdf22nf0ng0NEOmO/1Yu2vPtLnhBsuDXTogOIY9/e3v5Au/7Ysfp1LB4S5bDOR+UH6vQ9GOjXuHWBukDgj7BfpjMqKSperHfA+zGt0Lk2Q6p6de6xn3+qAi51WMj6CpAsMV31PDOgAu+uTPL4JkV432ezyPlYHaPLJKe8UIV1YunbGyFPe/olzVA2bSvptxX1PHr7qgOcyj1l9M0g/qVGvohbH254X1qdWSJH+yHh/RkNyByTkOadaSpO+5GijoduHDrD8fPWm7wLSR1wZLfMKOuDstR3dsUv+Wv52kwOnvAOSJ1+oy5cnPSTcgv9gfQcMNOfYNyiQbp3YcouvrQNK3Dui25RJP190aP7j3g5YbHrtecsa0pva2tjq3zogovrI4ar1pN/8ZUVv+dUBc53W9qWrkX51amehh0AnaAVGbA9XJz1P9siBRZM7oTnhpI+bFummat39GeKdEKOlnbRjG+krjY5dOCzVCWfY9S0S+qRvO94rMn5BJwxadwmX7yQ90uPEw/ClndBZL63hbUS64YP+5dpKnTDdQ/nWGlPS1WLt3neodsL67Cq+mn2kH80d0PWid4Kk9IcQJwbpNS0na+V0OsFxMOrU+EOkX/v95WjOjk4QStH2uWlN+rkZTsNH9nRCUI/mN9FjpL9QGLw66UAn9PWYxVyxJX22zulZkVadkKSoVvr9JOnZB39E6Np2Qr586EHzU6Szzzmr9p7qhIZtajaJzqSX3f2Zdd21E9h8GZ/FzpO+iu2yZ8WlThjP6RTa7/bXcfn4qz3/eieEfGfEP7741/nTdv60rV8nbJJomtR4ifRntD/jRIM64dHNuZOnXSW9e7bb3VehnXC99GO62nXSLdbSFhtEdkLKroebLW6SPtXQ/fVATCcMu2696nqb9K+2/Jq33nUC7YNHpO9d0idd8yhVSuuEWw9o0Q8CSN/9VNCyJKcTTtg5hQU/IL04/dIXh+JO2BNzxzcwmPQL3PEXp1V3gmi5OPP6I9LNR65Mfc3tBGOdcNczYaSfkJr4aHcn73id5/cze/rXcVzrrTj4qRP8W2rzVz8nfZbRZM7dH50g3te+euJL0l87XN+xZrQTZCZVVZS9+ut95yvSWDG+Cy5FWiYGxJBuH+Vje2ZKF4yAWv/uN6T75on+mSnRBXpqc1wmxv91fnb73oif2wWrp8YcefuO9J0TxeeaLu6CM8teZ+1NIn1A9s6Ln8u7oHikIvhnCulxWtM33lfpAqGfBT9vppH+9PDd3PUbu6D2hkGLdCbpyZ4Se2s1ukBkhZhVeNZf16vQe93ndLtgn3ba9SUfST+YLukyx7ALvPVmW4Tk/XX+NAdOTDLrAjN24YBYIen3+WcHmlt0wXXuHY1zxaTbLgiS+3OkC5r15xxuKCX9kPrc+OCTXTDn+FzG+grSXS2CtTef7YJfEbqbb1aRnnBxXmUjswvg9F6R+hrSZ4ayrJheXfBKk698YT3pd9Pnf5fx7YJxlz6zLBtJX936+FLqvS6YEME9F9RE+jfBRTMsQrrAUdrDvqCF9NLFT8L4n3aBsOmNqz/b/jpvtZaohEZ1wZ3s2OK5naT3Wj9N13jbBTn1zw03dP91/b8qZ9ia1AV2E2WldvX+dV49f9bsmdkFWu/rVlr0k/4pV95hcX4XiFozQ44NkO7WF8n3oawLbrh8cLT9QvpS0RW3rOq6wM3aMu7oN9L7FaNkJrR2QUTw5FOM76QX7lrJftrTBVm+jnE7hkjPcWJv1vnaBSFRO66qDpNe769U2DncBQM2uwelfpM+MSFm/1X+bnBVXDP+xwjpO2pX9S+d1A3jTz/7kDf61/tx5LXrx6ndoPfcAoL4xpFv3MmsETk2qxvE1STcDwuQ/kI9Lmjy/G6QeOzsKzeOdP3DqstfyHXDHG01l7bxpI/3SkjcrtgNbQ9nbw0SIr3s+XrdvrXdoDgzc4LeJNLj8hNrbmzuBs7CT5wfk0l/NbDxqIJ2Nxir6LsFiZD+flryzwL9bnid4K+3QZT02jWbr9oZd8P9Ra5rysRIFzPjSIrt74actjea1uKkG7tCBPtwNwjaDl78Nu2v52Wlrd15ohsmKwz8OjeDdKkMjazPTt0Q4m/2bkSC9ICODOPb57vhomRX9llJ0pdM1mpX9uyGU4sMlAdmkZ6lkHWq9Fo3rFumyXdwNulndumMc7rTDTcfnqXnzSFd9XSO3/QH3bC+N2xYSZr0ife3LXrzuBt+XnFZf3se6V1JubFGz7vBpylqUp8M6VVN2zW+R3dD4pHvp9QX/NXHFZT4J3QD3Bp35fZC0tuW7rBYm9oNTdm+OvWLSKfpF32uzO6Gfe7bMxcsIX2pw05356JucFjWN8FSlvQD/iVis6q6oXOt7OxgOdIfvzNkJTR2w/mZryaWLSX9a0PZSrOObvi8fl2D4DLSDQSMU4b7u0Fomkuo4nLSE2Qr9R985+1/sSWH9qwgXWG7ScOGP90wL+yz/FmFv46vffWJunE98FjtFr//StLX3zUbOS/SA3kGCYMvFUkvSai9PndGDxzQlRZNVSLdsWHfnOQ5PSAV4mRaqEz6PIGGyP2LeiDlvX1j1SrSK2UPbBhd1gPiM7Ii61VIv7ed+zFkVQ8USS7PqV9NusXJg2b0DT2QrLpbvXoN6av9m7u46j3woO3r/KK1pE9NtDzrvq0H5H1THNJUSf/R2Cq0YFcPLHt2bDN73V/HV9AqIM20B/Y/enE7cP1f76OlHbKWB3vAq2vNmQsbSK/Rt4kTONIDNl+Sf+zfSDrXsUsrzJ73epf/lN6wifRPAUcrNJ17QH/i/R/iaqSPS+453ObWA1VDRtfb/+rzW44PXrrSA9LHmzrebCZdS6jfc8nNHuCWDkx3p5N+coXd9Cx/XmepSusA6Y92DYRaB/dAo8aJKZPV/9r+MydXCYX3QPAKjYGcv7rkwy9pES97oKnAtsBTg3TzNMddW9/0gFVAWOwGTdLDO741db3vgU/DAc/7/+qDwqdPemf0wGZrWvLDLaTrKv+gLcvrAQn9m0M6WqQ/2ePsm1vaA6tlhg8N/NUFXX/OO17bA+b6gyJ+2qQfeezySrilB3ZuXf1nlc5f52fWL7WX3T1Q7G5LL/qrb+47X6D3pQdCbIwabbaSHiP+x7z/Zw+ctw1uG/mry6q69fnw9YKc4B/zm9v+ep+a01xXTuwFq/tyhnN1/zpeHu7CRWK98ONRSeHTv3poBH+QvWQvBF9jNyhsJ12+wGPZVJlekMw+7R3zV4/9KpgYLfv/tW/331yfcRzHVZpMpSnxTYsl5KaSEiLHu0ZpfKX6ElOtQ0vTrahFizOVuyg3TWUqK0Y1RGGcbq20blbJTcSKxRld10dUm24c6+zsnO/13f6CnfN6/PZ5nutc1+fz+eG6fvl8GFlcb2yx8VR2F9mehYunMUp/m/RbodDvOms09c5iNLZ+fq65XNmDguLWpjkzCr9aaX1M6G/iNV/NcGO0wfFI0mgvZU8vTIir9WRUnXe8Okbo0+u09MMVjBx3Rnc+E/rd13u/113OKNWqs99/kbKHGo20Kw1iFD8pVfuK0Me67bvms45RW/00c1Nv4fwKGeXz5xZGq85uVcQKfXVKSntGJKOqKQZH24WuXaYTbh/D6HbJvVG0WNnPN6epNyYwmlMmP3dI6CGDddO3pzJ6kOeW0S308ZO/MR53mNHyV+svz12i7L946pVUZDNKlm13ThN6zJaDcz/NZ2QZMV7WKnSHQ7KaN0WM+hKHB1gtVfZnFw6v+racUcnF/g/ChZ7/xKDH6RIjoz0nXCuFHvR+VnRLNaMBr3ODBoRuaD1h1M47jHSSnyxyUSh7s+Lo0QkNjMad6ZgTJfTMSKNpF39l1Gi+6X6l0P2ysy+s7GA0Yq3t+D+EblA9Ua4mMdrxqGviVB9hfna85dhLRu39H/cGCv2Ijsl66mekaduXniH0Vfa5b1vVOZ16Wa77s9BNVpjt/Xo4p4Qix6g+oXfF5BkYj+G0tn5ms4mvcB7lm5+qMuCk+WCZnbfQw++cnB1kzMnSNCAzQuhOLy1vqFty2j/9uc53Qh9i8INfjg2n11/U5FUL/abL1E7X2Zws5hWseSr0tM8Lv+wgTq0Wjv4jlgn73l7rYbHunNpSpyROEbpp8ZkMM29O7KnDUA+hdzfYmF1fxulK7pj7wUL/sb+kNPgzTpNmhg7ECH2Xsa2bZjCnWnWNA1lC93IvrcvfyCk9PvbIOaHLNtqtXrjt3Twz8kxvCb09vfxF105ObqEf2rcKvajCYVfiHk6VZZktL4S+43HFaKtkTq5hDR9p+Cm7+3tOx28d4JSjv1tbX+i6Vudt1mdxytT1O2Mm9FZv5ysjcjg9faihM0voBdsuehec5qRodnWaJ/SILJdW+VlOqbHVs72EPr/q8qbuSk5JctL3F/rozrlq+6s4bche8yhQ6I9H/rTP+iYn8+fS4XXiujNdDe/VcPI8nagIE9f1v1awuYmTQ0CvLFJcN3q+s04bp8BBDb3RQh+Te/12cScnw7Lurt3i8950X76kh9OM0q7hCeK6PTfY8z5OxSfSApOEHqnnsSNdTaJxPgte7RP6gjm3tWyHSdQZodaUIr7nQHlmnbZElhMrtNKE3hZ3x2KrnkRlQy6dFHthwaKKsYYSldQZR4v9q9p77mWmEtmdTk4U+yevFzf6TpXIIjoqTuz6RrXBfbYSNfp5x4u93VXRd3DOu/sxlKn04pD6WAdXiWytJ6v0qBRfvSYPicpNJ6l0j7IHuRFLJcpxNFHpsha/WQYBEm3uUR3fMfjh1cpAiZYMVR1fMjlAERAi0cCA6vhoecuTt6ESrRukOl4etiIsK0IizX91S/uV5iVR0j8/SAr74d8/Tv63H0qr+V38EMK3KHmleK2lBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/wFw==
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 84f60e1f-b839-4276-a2ce-a4cf3fd7e590
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 6611
+ 34807
+ 50
+ 24
+
+ -
+ 6636.529
+ 34819.21
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0;0;0;0}
+
+
+
+
+ - -1
+ -
+ zNxXWBNr2/jtKCIoKmADK1hBUQFRAduFFTsoFqxgQayAFcRCrGAFK2IDK4hCQu8k9A6hKIhAIl1q6F2+sNb15PL/Pse78229bHg6v5nJTCaTe+6lHovRj8Fg9Ip++uz7GdJf9MuOLUeOWliusDx50tJilvJ2s9NnjlpaLNGeo6k1Z66m1jwd0W80NDRnKa84d+LsudNmSyzMzp09vf/ELGXDcwdOHD243uzCVsvjZhZL5s+fO1dH00xX+6D2/PnztTQk+46i+M+Lz9E3szxpdvb0hTmGlicurDh3+rzZANFKqfP/Hmzw/tMHjxw9b6Z16OQgSyszC4tzpw+cGXBo/9n9fRtJS0v37ztPORUGY67Ix90yQwZJiH4j2/fLtxsMRv9Ou/6MpBv/vqeu3v6Mkfj+BDm5m/R/Z8tzyhhy1/tNFnq2zHToFq1/iNvKDWD8zx8h/Ff6t3P+Z5H8r2009P5VD12DGur1nWCP8n+f4Bh51r7NMjnynD//nuC6sRcU+k4wDreVk8AN+05U4j8f2/+fk/2vff/nDxtfi4smojw0B81DC1ABWoyWouVoJVqF1qB18P++hwa0EW1Cm9EWtBVtQ9vRDrQT7UK70R70D9r7n2un98+vTJTRD5dRRn9cRhkSuIwyBuAyypDEZZQxEJdRhhQuowxpXEYZg3AZZQzGZZQhg8soYwguo4yhuIwyhuEyypDFZZQh9696KBPlogx5XI8yUS7KGI7rUSbKRRkjcD3KRLkoYySuR5koF2WMwvUoE+WijNG4HmWiXJShgOtRJspFGYq4HmWiXJQxBtejTJSLMsbiepSJclHGOFyPMlEuyhiP61EmykUZE3A9ykS5KGMirkeZKBdlKOF6lIlyUYbyvyqjeqgpykTdUC4qQBmTcH9UDzVFmagbykUFKGMy7o/qoaYoE3VDuagAZUzB/VE91BRlom4oFxWgjKm4P6qHmqJM1A3logKUMQ33R/VQU5SJuqFcVIAypuP+qB5qijJRN5SLClCGCu6P6qGmKBN1Q7moAGWo4v6oHmqKMlE3lIsKUMYM3B/VQ01RJuqGclEBypiJ+6N6qCnKRN1QLipAGWq4P6qHmqJM1A3logKUMQv3R/VQU5SJuqFcVIAyZuP+qB5qijJRN5SLClDGHNwf1UNNUSbqhnJRAcpQx/1RPdQUZaJuKBcVoOJJC/nf8wz6Odcy33XMtlX/Ne9QF/IsPvWagIPlJeWC5QqL/9Pn/tMtwfnXiVfMXfPC/9On+I/PDu+1BtexZvlbyrf8j+3t4NaGNzxPt1Pi7Sc+Wy6Z2HsdCjrb3q067STefuo/r2MP02cVVJ9je4u3n5nV6ubTexeSZl3Wnv0uVby9xj+v7whSxzh504KqxNuPs9/2Jq33Ieg660tK1Eov+X+P+xheuIW5Oy1TifhPn/RR/UR071NQUTG35vquEm8/7Z/zcQalk9Un3JceEm8/PWbQwqBeF/DqPGt2seSaePtZ/5znS/i54lOdk+tb8fazf5VIfe19DZrNm3R2nuKKt//3+rjCh/T+hSorCsT9RW/RMV6vGwQtCxs/paRW3Mf+877egso4vcyPSR20/bDUzOTed9DuWd75ukxiqXj7f97ve8iZJ59b6TRE3F0mhOjE9X4AmYTXu75eGSHuI/+5Dh9Bc/rz255uY8T90axPrpzeT1Bjs/jKtz3K4j7on+vjDr3Tezhnjk0V9+uLHg8M7fUAj4PHF6f9URX31ui+6/YZeufYy9spzRH3I+uYJ/17PYEXeEBzxG9Ncf+e2Xc9v4DanuEzNIbNF/elO0/mePd+hb0dEv3KruqI+0dB33X2Aiun3esY+ovFXeLIrkWfe73hwT7l9aoaeuJuWt93/VkgP7x24ZYjy8V9V9iUzEw7NszbrrLELG2luPf753Nhw9OnB14kmuqL+4flLwZk2PmA6pK5L0umrBP3Zbf6Pi8fWBUyw2GC4kZxz0+S00m184V5i+pyLJQMxd1yaN/n6As3hRYf4lI3i3uXof3xJDs/yPAVfI9/YiTuN570fb5+sFnnvtx0m23iLpnX8ybezh9WaEe2PLPeIe5XxvV97v4gMIuYmfZ4p7g37DubFWMXAAdsc4wupe0W953v+u6HAJBS2zjKeNo+cQ8pq5KMsgsECefgQYM3mYq73Iy++yQQUsev6tB02S/uxif260baBUF3v1NfLjcfEPeXrL77JwjYk/Y3rjY9JO7pjbknwuyCYcCOhW4VBWbi3jy/774KhpGXJ9mHHDMX9yEXNrkF24VAt8WiC6MHHxV3hfC++y0E8qS81hiHHaPz7I3NDrALhYTJLxPyrpwQ945lffdhKPx6MTOxYauFuGfcWCTlZxcGrtP0HvyZaCXuzxL67s8wuGpvun7mhFPirj/YdyHbLhzcBA4DZkw7Le6/NvTdt+Fw903KOxXtM+J+zFHVwssuAtLmLJI1Mjr71/3fdz9HQNuf33PzLpwT95kjXd962kXCw0tVrSWe58X98Pa++zwSZo0yWPm+3Frc7Z+P+uZuxwGjBTMHrJh9Qdzv5ffd/xy4v/GBkvCKrbjrDlt9Iwu4YJV43y7350VxH8fq+15w4erIRUOnr7ws7nUG/SZmcriw3tXDRzr4irh7C/u+L1zQON488/s4prjveRgelAFR4DrCvuHNL+rtmn3foyiItBs16ZzXVXG3y7LenM6Jgi3lqnMs7a7R/XC67/sVBROvrLv/fsd1cd88Qqs6FaKh4rKEn+qCG+L+3K/vexcNZ8YXjhg17qa4xxvV3UjhRMNNJ9OpdgNviXtRU4ro+xgNpXIKOy+3U//5+PPEZIgBo5zb06c32It7pFbf9zQGnOWX93MSOoj7zexDwYmcGDjVm7g3s/W2uGuc6fv+xoBnjjubMeCuuIcPV96SALHQm2BuMU/xHn3uvn3f61hYJPdI5rrWfXG33vyzOo4TC+NKWd39tz+g8VAYLPq+x8JB23WByXaO4u7p+OxmLMRB3Y1z222MncT94Zy+cSAO3A7d94xrpm6YtlkphhMHX6x9HuY9eSjuv4/3jQ9xYLlz+upwnUf0fR88NCQK4sHgo0b/SwLqbh5940Y8fG4dyZhy7zFdt9WJW7iceCiqVLANX/RE3FmlH0XjSTxsUrjiaVRP/fS16zWRkAB7JtxLafr0lMY95b5xJgHMnt1S8DjwTNyPRiy9FcFJgLQJvokXJzuLu/OuvvEnARo2GY2xLaf+uK1DKRwSYVac9wpv7+f0vp70jUuJUDVu0LUpF13EvUIjICSUkwiX6j4NK1v/QtyXpD0SjVeJsC4vdcof5Zc0rh61MgqBJPA+y+m60El9gWTfOJYEsiYxvIN5r8Q9x02tNoiTBJFzJxTGh74Wd63FfeNbEqjeld/t/fYNfV655bcCIRneSJTdmHbfVdynn+4b95IhdpxF8sulbuIePOSdcgAnGSb+el3cFkyd4W4nGg+T4Z7SVI+v89+Ke6/e3lA/SIGoqVOCOf7UWfkLReNkCpgtjWAtWPCO5hVnFbf6clJgVujIWQqh1KcN7Rs/U4Bbtj75sN57cS/5mF3LhlTIGnZTRS2J+salPqJxNRWGXC8WHN36Qdz3fX9gz+KkgpLTrceqxdRHWpwQjbepEHT9ccGJ0x/F3Upy3SRvSIOrX9R2Lpb8RPOQVyqicTgNNLad+vTqBfUBWpJhXzlpYJZ+a//jue7irpNULBqf06Dw0AOV6WnUpU24W79AOsw/7Pl01zEPcbdofi0at9NhinLPmgWDP4u7+e2LdZ856WAo8CiK/Eq9dcJO0XieDsebM5o6NnuK+zDfBQ4ekAHjPJ9Mq+2gHrRqpGicz4DhBmPk33z4QvdnXsMkd04GtGgwjYZv+UrP3+MZovE/A2xeV9826O8l7lVXvhdmKfFgYfHlzbsDqCfqrxI9F3jQuGGn/qLj3uJ+UM5/ZpYJD1aquUm3TGGJe1jeZNHzggeFyWfnPuBT57k9tM505YFfeLfGQAO2uLseYYieIzxYsVz1RSiL+jQNy1genwcd4zdNqZD3EfcDbYWi5wsPPpzpffHgHPWtkRvkeUqZMPZkWoZfPvWeG2Gi504maGmsddq5zFfct6yfuS/DJBMiSiS+XPtMfY+8i+h5lAmPvR/UaY7wE/fhuVJf0l0z4UaQ7YxjV6ifeXVe9JzKBLNpO2fOqaZ+bX9ZWxo/E4YqhXGYO/3pOTt9q+j5lQkbUjSDDyVRf1oVvTJNKQvaDDcVFywMEPcX3pqi51oWFH9/O6TGi/qS024PU02yQHA9QvLp5EBxvzVfVvS8y4LYK3Nf5T+nfrL9clGKaxaY1j18w5ELEndhaI3oOZgFDh0nfq6+Q13u8m61FH4WyCZsnXRGMpjuh6XJoudjFsRdzl+qf426IkPXJlkpGy6vdOwfzwgR926uu+i5mQ1Dlg9Y1Mikfv7q6Lgkk2xY+jo5ML1/KD33l90UPU+zoe7SmZX7blEf1a9ZPsk1G4qlnHzfy4SJ+2LuAdFzNhtaDvlkvH1E/feVzH2J/GxoDD1ybPe4cHGftERP9PzNhq8a+puzP1Lnd3p/SVDKgZaawi1D5kaI+/jgCaLncg68Gh25ZBCXetHZe+3xJjlglWMjSDWIFPcJml2i53UOLN/oOmjXL+o/ao6uinfNgTL3aHu/sxxxl/XIEz3Hc+CRZOjIugFcmg8c0H8Ux8+Byk3v9h03pC4YHyh6vufAnphi6exX1M99n8qPVfoGxq0xttOrqF9wfCx67n+DpRcfjDPXiRL3av3+s2JNvoFt2Z0tz+ypJ/VaieYD3+BUYj/7gFzqw4L4NjGu3+BO0CLleNVoeo6c3CSaJ3yDWauv3kyypR47JSIumv8NIqXGTYxKoz73h5po/vANPjlu3uw9KUbcu+6/GB6t9B3Wnzp569F56pOWDxLNK77DSL2gqZap1F1arE2iTL6DmaP141VTYmle7VEumm98h3eNrboKF6nf37XtK9f1O+j2XLYry6beLRMrmod8B4fl21J8ZseJe0j43A4O/zu0b4u7cdmBeviJt6L5yXeoSR49Yl0p9cHj5VZzlHIhbd6jQsVl8eL+LPmKaN6SC93Tmeur31A/aFP7KNIkFwTzZsRG91C3nLZHNJ8R9YZv3m57E8TdJzOZH+GaC8YN6advRVJXu6wrmufkQkj8Hutzyoni/l3FY1YEPxf2SiZOsbxO3TdztGj+kwveejv5Zyuoh9nevBCulAcyQ3bKO2xIonn+5GbRvCgPfnbKTvL0pa6XfCA+zCQPrrvFnysYk0zXxypTNF/KA1OnuPPK16gbjdYbEeaaB0V7t921rqYuGeYtmkflwfZXkWNLtqWIe8a+Caah/DyYz19771AUdZ9+90Tzqzz4FgL6PbNTxf3N+86vIUo/4DWn0tf7JfUXK4+K5l0/oPb6/QW2g9PE/W1pbkewyQ+Y+eK87n5b6t7XV4vmYz+A/bRmslk19bBJAauDXX9A2SCdXfZ708U9LnKKaJ72A2bdebs6iUc9bdejx0H8HyD4fMpg1qoMGj9bGKL52w843C386RNKPcjRUhColA9Og/0/eynyaL6qWiSa1+WDf4zjsKdbqZtwN8wONMmHLU3qPNmH1IfuCBPN9/JhXInOu4np1N/VzLANcM2H0IJNOtEymeI+4upz0TwwH4pnjF7dtZb6vpFSCf78fFg+Ussu2YH6tU/nRPPDfLhbttZZI5H6Oe3SEf5KP+FYxZ9lc6SzxF07YYto3vgTHh5snRu7hnrctihTP5Of8OV9zoSm29RHlqiL5pM/4XjDksCwFOqzLN94+br+hMvPvrMmDssW9/aOIaJ55k9wKlgeOX4z9avXL3b68H/CtqEqTwOfUOfIVInmnz/h/GmVypo86l8eGev7KBWA+7bKY9wJOXSfKyaI5qUF8JAxLFPzIPUrr+Y/YZsUQGn44vRln6nvUfogmq8WwIYcxdEN9dTz3Yb/YrkWwGWn1Xv0tL+Je43yVdE8tgDGLjq2VcOO+hPX+tksfgHkT1D1jUqgnjx+n2h+WwDm16bOaJH7Lu53nqfaeisVwjFfiZMpu6inD18kmvcWgnPbUc1VH6k/vfs5wcukEJ687JpxUEg9r7+iaD5cCCMr9wyevjhX3O/Z3Brp5VoIYdPn3nrgQD2opjn0K6cQlrxV2vz6G/U1Jgf3f+UXwsq3SRONpuSJ+2pepmj+XAi2Vjnv2KeovwU97y9KReBgXOoUyKW+z8tbNK8ugpnvX78yk/sh7ifGTOjyNCmCHy4fLkSaUs+6flc03y6C8luvf0b5UL9S06Hv6VoEb3xmnbeSyKfno9ER0Ty8COxOtHYnb6POCv7+5DO/CAwEb6ZkeVBXGb9KND8vgpOZya9vdVPPuuz3y0OJDw6c8Uq/DX/SeFU4STRv58OLt7C78yP10EVOczxM+NDve6RkWBf1385/ctzt+LDy08sstS0FNG9sPHHR3ZUPBfpKZzd+pv5+3U/RPJ8PB7f1vFPuVyjuU96uTfzE50NxZVvvx53U1W5U/upq5oPUWSuJSU+p72sJEv13AR9e62426valLm11Z1yvXX/mf5b/D/1DiP/+i49/j4QqoxqoHmqImqJWKBN1Qt1QNspFeagAFf7n+Jp4fFQZ1UD1UEPUFLVCmagT6oayUS7KQwWoEGXMxeOjyqgGqocaoqaoFcpEnVA3lI1yUR4qQIUoQwuPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoox5eHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlzMfjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKGMBHh9VRjVQPdQQNUWtUCbqhLqhbJSL8lABKkQZ2nh8VBnVQPVQQ9QUtUKZqBPqhrJRLspDBagQZejg8VFlVAPVQw1RU9QKZaJOqBvKRrkoDxWgQpShi8dHlVENVA81RE1RK5SJOqFuKBvlojxUgApRxkI8PqqMaqB6qCFqilqhTNQJdUPZKBfloQJUiDIW4fFRZVQD1UMNUVPUCmWiTqgbyka5KA8VoEKUsRiPjyqjGqgeaoiaolYoE3VC3VA2ykV5qAAVoowleHxUGdVA9VBD1BS1QpmoE+qGslEuykMFqBBlLMXjo8qoBqqHGqKmqBXKRJ1QN5SNclEeKkCFKAPw+KgyqoHqoYaoKWqFMlEn1A1lo1yUhwpQISr+V5tk3zzjf5vY6PvFXFaVFIB6r+b7XB71aVMfD86WFcDOO4v5SUOK6A+sNiQXZikJYM3zW/uPmFNPONPPJ0tdAH/UauVDoqmPf6FzIwsEcFDN2yBsIl/cT3Esd2QZCCCha9QBi4vU40s+zcwyEcAT85/PMvOoj5Mq6sm0FMCnR3/Gnx4nEPeTM0ZlZtoJQK26LSVrHfXIdRs+ZDoKoGzZjSt3bKkPOn7dOtNVAN+2Z+U/96S+5U7oukyWAKoSZO178qk/9WiYkMkRwAPmsRnBMr/EPSdOtYGXIYDXO+SOJC6mPqjYJJbHF8DKGeq/Z1tQX9zzzJlXL4CLvOYtla7UDymkH+P1CmCzquP6tkzqtzQkl/Jkf4HEkFkXdg0oFveXaxbL85R+wYPtHVfltal/MTlTmqH+C6Bk6pDxx6h7nfMMyoBfMPp+QcSF19Q97vy6k2HwC1aqb1oyM5P60zeK+zJMfkHVB3eN2ZIl4m7tY6CZYfkLRiWNXnpNl/rGmFsDMux+wQDrJJkZFtRH50Tkpjv+gvjbtTDpPfXskmbPdNdfcKuAzTyWR53ZqHYlnfULdq1bdnbAsFJxn8w4uDmd8wvOe6dy61ZQ9x/yYmp6xi+oKGEOmWFLXVsxsy2N/wsK4+72+LKpf5ksnZJW/wss1MctvFdBXX4WvEnrFZ1n154j/hPLxN183vlTabLFMHig3Ry17dS/LvJamaZUDJtmsOYK71PnLytVSFMvBrbeuHES8dQH6o+rToViOKPScP/gH+pj1m+JTDUohgfB+zTltcvFfcKm2w9TTYoBMh5+kbGiPsyQeyjVshherw5+t+Uz9VrDNu1Uu2LI6OgNLyumHmE4RybVsRjaY565xY6vEPeLBmZFKa7FoM30bKrbTl1l4yufFFYxeA06uufQQ+rRa7NvpHCK4c4ixtWpqdTXrhpsnJJRDJnC11LqUpX0BwuwTC2FXwzhA6yeXV9OfaquzZ/k+mI4veVD9qQr1K01WZnJvaLrHHDEbFAo9SDV8g/JsiXwTqq6QbeVevnECTbJSiVweNpOJb+5v8VdYuTW9cnqJXDmt+DxWUvqw6TvTkyGEmiaw265/JW6dFdUQ5JBCfTPbK5K/01dWNMem2RSAsmeBWPMVapofCtUf55kWQKmzk9VV5tRv5N2+HiSXQnUnNoYcfw9db3w10uTHEvg06i5V3J/US/5nCOf5FoCTntPyd9WrqY/OHomU5bIKoFfU3UnME2ot15dHpzIKQH26iD98DfUj564cDcxowTmvxmjvaSIesI29r5EfgmcHvjgYf+JNeI+dmmFZmJ9CXjtWt4js4/6nmkTJRN7S6D53CHlnW+oO8psy0uQLYUzWpPf/i6i7iO8+yVBqRT0LD5Pi1CqpePmRF9JUC+FR/1Ut2abUk8N6ticAKVwMTElS+0d9XgXjWkJBqUw5020fnwJdR9b8/Z4k1KI3btw57tpdeJ+f9eblHjLUthRbOrFMaduqvvtTbxdKcyQOlQ1wZP6VIUhp+MdRefpfiowvIZ6YdPyVfGupZD+OijopXq9uN/OuKAYzyqF+riDT0JPU5/tya6O45TCt873jYqB1OOuV0TGZZTCc4VPNoEd1Dfvmfgojl8Knl3rDydNFIp7rtY2s7j6UngbapT8XY/61sH3dOJ6S2HxgquLJA5ST+BHy8TJloHsnup7m25S1/LvKIpVKgOvMZ8fBrtTf26v4RurXgYf9mSOX5ZMvW2n+c1YKIO7wy/2q6yhbqj2xjjWoAyaVCOGe8k20B+kdOWoxZqUwcn73lOc5lJvSJbpjbEsA4fZh6UebqO+2GV5VoxdGRS1djqxbKjfOHzhY4xjGfR8v/64+iX1pLlsmxjXMjgXplC8kkN96J/y9TGsMih4mGYQVkzdIHGCUgynDLj64axNAxvF/eHDrY3RGWUQnNyZ82cG9Zydd+Oi+WWwXdrtUcpG6qMnRT+Pri+D6XXRYf6nqO+paD8e3VsGCUdtp4Q+pf7xqzpEy5ZD1JHCVz9DqDdYHR4erVQOHnn9uxSLqK+Y97osSr0cRrj3kz/dv4k+l9bs4CgoB6cooU/5dOotQYPvRRmUg9+oCvb59dR32iwziTIpB/mHXYJJVtRjtW3mRlmWg86kVaMqn1DXafWWjLIrB45fvnJSCPVAv7I8rmM5zF+Q/T22iPpSq/Ffua7loP5s1eCfEs3inqVmZMdllQNErXkgM4P6mfLbW7iccmj/0DR/+ybqU9y407gZ5dA4Z29O6BnqfOO2dg5f9L42vFqs60LdW25OKqe+HAqqE5ZlRlK/k3DIldNbDs0drYHXSqnbXn55miNbAc8P6VluHNwi7pfmZq3iKFXAtjFhSzQ1qDuVS4/hqFdAhOSVltnbqYe6QE0kVMBhBbejKy5R71p/nhNpUAHli3ROnnpH3bDn66NIkwqIN92bHZRIPcqrxCzSsgI+nZluObqe+pq9Y3Uj7Spg2AHPEfdHtYp7lczmIZGOFeA8hvFk3GLqHiH2/AjXCsi0XxoTdYD6jcORvhEs0ft6cems3W3ql4a33IzgVABraabtVjb1xxFqOyMyKuD8AaPPernUk8wPzIrgV8DipjHZK/5QnyLv0hteXwHPihal7J3WJu6vQzKywnsrYPRw3qEHG6gv2T/wU7hsJRhcrD397Qx1hvSSC+FKlfBN6kvi3JfUq73ObAhXr4SlH5V0P0VT79riqRQOlTB62QFn9Srq2m2CxjCDSuhIvB2YLt9O89sXCvFhJpVwdqbX0eu61Gcu2eQSZlkJE41Krm/cT7286MaJMLtKuK2xIm/Wbeo8uzAIc6yEtewS3Uk+1KuUGoeHuVZCM+fnxZk/qGtxVMtDWZWgsHH5qTX9OsSdtdckJJRTCRtXzam1nUF9X9fTe6EZlTD9WWB01Gbqy5+nmoTyK2H+7MbY8bbUd8+T0AqtrwS59rb4u++oe2XoDgztFZ1nadHLYSnUtY9Z/QiR/Q3n+BGjPzZR75Jw/xqi9BtUcr8MNhjfKe7drwrtQtR/gzCYs27IKuo680cahcBvOHpazrPgJHX/1HXTQwx+w9QG/y7OM+pWB692BJv8Br/JscMDOdRPdASlBlv+hi/NW6MjK6l/fVDnGmz3G1y3Xin8Id8l7hpTpp0JdvwN0zV2aEstot4ZuHt1sOtvyDzb+m71IeqD1z0aE8z6DVpyZ5qc71M/VJBYE8T5DeX1JV2dgdQHWfRygjJ+g3U/U0dLAfWOP/MfB/F/w5W5f5gtg7rpejqeOBxU/xvuWn17f0+LeszE97pBvb9B+3N38ry91N28fgwJkq2CEcl3kmpvUc9YJCcIVKqCAO6z00Fs6luSVvsFqlcB21bb5WE+ddXtl28FQhU8L7sud2lAj7jvKPbbGWhQBRL1j76cn0O96GTVrECTKrh+4+KSq8bUOe3KjEDLKvB+vNXl5TXqndd2ZAfYVcHIwfMfxX2l/mTIg08BjlWw6ZtW15/v1O8+jb0Q4FoF9cXm7vr9/oh76YSuDQGsKrinXHnUVY36m4+aygEc0fu9mDJq4HbqEbOONPlnVIFUseqVi0zqy/zexPvzq2DoMoXzvZ7U1XS/ufjXV8GBW168h9+oX4mUOenfWwXPXPvvn8voFfdFK5br+ctWg57t7E7BTOpmCTYj/JWqoVlileXrbdS717HK/dSrYfVM08fmTOoS6WUhflANyflPdeEL9YuG4+/7GVTDKImeeVO/Uz+UtcXUz6Qa9q3ZPusugyH++5hYo9tafpbV4BlcGDZ4NPUXOZyBfnbVoL3WzddJjXrF1tYfvo7VkGU1o3P8MupeObO8fF2rYfmnAZdY26nXGx1k+rKqYZtpxKQ1J6izslyMfDnVkD2Kn1N+lXqdIW+6b0Y13FrScuWu81+vnz6w04dfDQs33R20wOuv11+/JM2nvhpCImftK4+mHpB4xs2ntxpSJM0Ov8qj3m+V5xkf2RpY8oIjY1xH/TtXsNpHqQZ+NCZojxnQT9znLVYY66NeA0dvDcrhj6E+IWhjLRtqIDBFNvmLOvVHmje4bIMauKd7WOLyKurPv4Q+ZpuItl/9/KjRburq0xoOsy1roPuoZvmcU9R3vFFZyLarAbWxEQdk7amPUtg3lO1YAzLp8YnNr6gfdXwiYLnWgHn3j358X+pbpVL8WKwaGDL+WltaIvX8K/3sWZwa4L5f9ziqiHp3i/YuVkYNbB7MiQxpph52wmI2i18Dt+OPHQwc3F/cx5R8YLDqa0DT4MexIGXqY3f+zPburYER455Fhi+gHpku7+4tWwvdbrPWxG+gPnDlGltvpVoI2KHakH2AekvwlY3e6rUgFTjyfZkN9QezA5S9oRa4cy/rdz2gnvm2usnLoBbcV9YmjPxIPWrU5AQvk1pwOCAcOjeMuslt4xdelrUwR2K4hFEmde/uBye97Grh4OtCJ+sK6izLOD0vx1podC9yc+2hfqi4a4SXay28d3EbnzJCQtwzts6t+MqqhZW/vWs7ZlBvjD8S+pVTC6+GPu1R0/trex3X+18zauHC5aL5+7dTP+L5zfQrvxY+sEYzXU5Q54wbMu9rfS1UjE2Ky7lG/du95VJfe2th6IKrwuEu1L16bPK/yNbBL+vk30Ys6mssWF5flOpg1g6Nl85x1D8XlTG/qNdB+LqldYU/qWduGr/1C9SBUZJd6vRG6tGRW1S+GNRBzlqm0mnpAeJ+Zc7tTk+TOvBfnsLjTKQu9YaT5mlZB91qNUmy86mbDm1187Srg1xri+b966nfuTTrrKdjHeh7F+oG7qduX31A39O1DvIl464PsaFuvMtlrCerDsaWscMOPaDem5hR+5lTB4NWzkiJ/ED9qvbAqM8ZdVDwIf7l2DDqBR8XP/nMr4MLGSWjbTKpjxp5xvxzfR1kVUVNz62gPuva54Wfe+ugbfdqX+0/1KcI+UM/y9bDBQ3+V5eRknQ+e0f/8lCqh9inWj+7Z1IPTNng76FeD1sfXmbvX0bdRve6vQfUw12P0yPjd1Bf4B6yy8OgHkpC457NtKDeMlI428OkHobFtcg53qAecG16Pw/LekhpNrrf9IL6GeGeHHe7ejjzbPwgYx/qc/c9dnd3rIfv64beDE+g3pCSZOvuWg/my5sYk4qos3UZm9xZ9XB9bMGlm83ULd0XTHLn1MPK2bHtvwcPpPFw1MnmTxn1UHH269lNk6jXXnuf8IlfD3u9nwh9tal/Ff548am+Hj5UXzqhsIn61VIPlc2d9RA34uRIyb3Uj++Ts/jUWw81KmaVFw9RLyhYVPh/9B9C/PdffPyDNCqHKqLKqCqqgeqgeuga1BA1Rk3RI6gVaoMyUQfUCX2OuqEeKBsNRrloIspD81ABWokK0fb/vP9l/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWUs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjxb9Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZK/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvKWPWv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRxup/lUblUEVUGVVFNVAdVA9dgxqixqgpegS1Qm1QJuqAOqHPUTfUA2WjwSgXTUR5aB4qQCtRIdqOMvT/VRqVQxVRZVQV1UB1UD10DWqIGqOm6BHUCrVBmagD6oQ+R91QD5SNBqNcNBHloXmoAK1EhWg7Kv7fVpF984z/bWIzs2ZR/uX+Qhi+eG9443Hqow6/V86WEoLWoY2HBLbUm18tHZwtKwTbt/MFKx9Sz8n+0ZSlIISG/Al7PrtT9xt8rjBLSQiPJw/MGxpJ/fEyuYQsFSFsnV9ndDqH+mmbL+wsdSGcGpqb8b2K+mbW6hdZ2kLoJxmxflE/KXHXLP91PQuEcCjEK8FVgbrchMsns/SFMHT3+RUD5lBvMFLckWUghKQ7OZwjK6nz7vjpZe0QQvOTAQvTdlFnRW2amWUihA3uO8I1T1F3av89IstcCNcjNyg/s6d+XP1mT6alEEaGPmvpfE1952HlikxrIexTqp6yz5/6ttdhvEw7IQiark/kJlPfn7M9NNNeCJJm0p7Kv6hflml8n+koBBNmeYhdG3XP5ffvZzoLodtTYn7hUGlxr7mgap3pKoR0mbeSulOpg0+Maaa7ECKOjRn1eCF1j8p96zJZQuhZK7mx2pD6dOVOrcwgITi9rXm2zJx62I6nEzI5os8lb3fB08vUzR01pDIThFAwpWhg5WPqsxJShLwMIUwZ2tur7Ul9cO/hfF6uECQGrvO5yaUuod0/lscXwo1b6wZkfqeuYPnai1chhPGS94rH1FLXd9dx5tUL4Uu7y3xTiUHi/oSfzeS1CaEtt7f8/Rjq/RQtj/F6hZA8Zq2gVJ36PcPBW3lSDSCc109mymrqOrc/LuHJNoCWm5/hvj3UJaL1VHgKDWCSVf3i2WnqjZ0/5XhKDbBo+fzsFAfqA+ZZd2aoNMCTw+NKet5Q1z05vDRDvQHmB87wnxVA/fEnr7QM7QYod69WN06hPlKwJigDGuCsbw0wf1EPG1PqlqHfAJ83BKd9aKN+18juToZBAxjU/oiOGzpY3K/dH3s2Y0cDaMgUSpdMof4+IWBvhkkDKEzYeLtbl3pDv836GeYNwHMJmD3ckPqRxTUaGZYNMLn9LX/KYepDrO3HZlg3wE/v1w6al6gX+UwekGHXALHz5g1f9OivXhNRm27fAO6MBjM9D+rDVHfmpjs2wKbbJieXRVI/ebCZm+7cALdWyQxfmkP9zxtHz3RX0fl/tVuyoIp6VP7MJ+nuDZCitebHDIaMuAeNjr+czmoAKyNhuuJo6oIt+83Tgxog7aqEtMQs6nqO3YbpnAb4On+oReUy6tkpzgvTExqgoOx5VeIO6q7SWlPTM0TXZ9Bc8w8nqb9blT40PbcB1o8+lGZ7nXrhtaNtafwGmHQjdOAGF+qbuQN+pVU0gEUSt1uBRZ3xxzU5rb4B/uzp71IUS71q0SL/tLYGeBEwOM41n7q87ffXab0NMGSd2bHdQupng0/Zp0k1gtLD16flBw6h+61tyKk02UZ43Q8SosZRb5nvsStNoRE2D/+2+YTmX9ufW7EyTakRBiys7pLTp37Gv2h2mkojXKsfwmLtoT6q+YJCmnojPP0ct3XNaertWqP6pWk3giTf7Xu+PfWJZ9lVqdAIbgNnTjR/Tf22//qcVP1GmO1cM7LWl7puS3lEqkEjXJA6++FEIvXZC665p+5ohI3p6wPLCqkftZ7wMNWkEU4f6NUybqJeGxxsm2reCP4Lx0rFSg8V95BOo0Oplo1QmKYyZsZE6mmL6zemWjdC0CM/I3st6rPs7min2jXCEMZat6I11L9FTZuUat8In+6dqZyzj3rygKjBqY6i68yKHGVzhvrQNXuaU5wbIbsoQD7Ugfqru22FKa6N0POwNK75NfULGY8SUtwb4SF8H6fqR/3jiDk+KaxGMN03uscokfok46QXKUGNoGGmYWRTSL3u1aEbKZxGSEtmST1tpC5T3HsyJaERGAOVB3hKDRP3Syovd6RkNMKz+0PmBo2nrndywbKU3EbYnse4GK5JfYdf5swUfiPI7HVIDFlNPbrjxMiUikawezRnAGs39et60n+S6xvhcv0VhVdW1F/av69IbmuE9KoBNcyb1AdnLM1M7m2ExV3rj+99QT1jdH5oslQTPHLmX9FkUa/bd+5DsmwTuCxYL9cTQ93cXe5BskITjDcYO4ibR11X+MU6WakJynbkbbGtpX5YV39/skoTRCbI5ar1l6XXv1a8Llm9CSxGGdjljKaelXp5XrJ2E8QGTZx/Vo36aIUxE5OhCRymyRQP1qMesN9fKlm/Ca59c7V8vpW631eDhiSDJriy9EjC+KPU5dur8pN2NMGq3Pos58vU01fcik0yaYL3o6MvDnr013k6TvJOMm8CkzPHvpz6RP1kQbhzkmUTrDx0dj0vlLrhDOOrSdZNMMH0+KppGdSfnm86lmTXBH6F+desSqgviX2wNcm+CTKMNtX6tFFfO3zm0iTHJnjzSjWoWVJO3CNM41SSnJvgwLUgaxk56k9YpvJJrk3w/NmY2RPGUs/809WZ6N4En56MTJ0xlfr5Tc6liawmqNO2WKs5h/r1N3PTE4OaIH9RjYuWDvX2urSgRE4TJO3e6quxnPo3OPo2MaEJphqdsFfdQH3iwwF3EzOaYFNhx9Bx26nzil3PJuY2gVdA9EJpU+q18xbtS+Q3gbvzvf7Co3+dp/13/cSKJni1dMKurDPUj+ef0kysb4JWs4ULWJepp84eOi6xrQkUkz7fvWVP/dVVjwGJvU1weIqmgfFD6j++rahLkGqG1RrPzk19Sf3WTH5ugmwzjP/ypqnqA/V3drZRCQrNYGAgF/nFm/qcb6O+JCg1g14eO+lwMPUZaj5PElSaYUe/1TLjo6k7X91wJUG9GdpvPrVOSfnr/eZVmCdoN8OtSWYS575RT1C/vjkBmuGIo+17RT71u/YTFyXoN4PE3ZcbAiupx/BDpiYYNENoxv2mjY3UT+psG5awoxkaFRXu87uoP3gobIs3aYbhk3uGHpeUF/cp1Xd/xZs3w6VPkseFw6jPXqWSEm/ZDM77W59bKlL3do32j7duhvhhT+9VTqL+qXPvm3i7ZrA86r5wtxr1kds77OPtm6F5VpNzwjzqXT5PTsU7NgNn5FKX2Uup7xymsTveuRnUCzZq3denrnk8ZWW8azN4L63cVW5I/Wri4Tnx7s3wqi1rgO4u6hum91eMZzWDSXT2tJsHqTvdeN0vPkjUd7F9k09QNyjRqY7jNEO37Ry3Qeep316ekxOX0Ayv+SNKltlRX/rOMjIuoxncV0y3OuNA/VR/GY+43GawO6C2+M1D6koHPz2M4zeDQ1vlougX1NfGLrsYV9EMKpFTD/HfU2+cVngorr4Zok99+NzylfoYB5tNcW3NEJY2u59kIPWIqhE6cb3NYHv/lslQDnXBRtakOKkWOHjibMiwROrXfNbJxMm2wPdpERKDMqm/H1XeHKvQAkvPTdfq/kF9pe3VolilFugedX5xZTF1M/74xFiVFjgXc2pkWjX1gauCfWLVW2CYLp/l2Uxd9YvRy1jtFpg194bE1R7qafL1N2KhBeYdmz7AcOBwug42dyxi9Vvg9qu7nxRkqbsIphnHGrTAwxsX+LkK1GPWRC2L3dECrMKA907K1K189qjFmrTA2oMDK5fNoO42tn1krHkLxPA03lZrUt984/GfGMsW0X+LdMbcX0jdvm5OZYx1C1QazlyluoL6sp3JmTF2LbAn/8aYsPXU7WLNwmLsW2CFLm/+6q3Ul2v0+xjj2AL9ZmQ9SNpD/farVw9inFug/ZDhmFVm1LcN0rGJcRW9Xw+55OCT1D+dz94f494Cc1h5T6eep3651GJ9DKsF5s6zOOVwhfqPLYPnxwS1wICmZ5tLb1EPi/o4MYbTAgPdFdV0HKlP01wmHZPQAm9lQhqvO1Mf/ragITqjBbQKlrxOcKXuIG/zMzq3BabnnFCS8KB+89qIuGh+CxR4y1gsYFOXbvb2jq5ogRAVweX9wX+9/uF1z6PrW2BKJ2vFDS71D3llV6PbWuDyLz3/N4nUI9ZfPR7d2wKzXYxj2Tzq+zjjt0VLtcKzgvAjoXl/nadW8NJo2VaYYK71LExAXdvDSDVaoRWmNV9d5l/51/0zoV4+WqkVRoOFyQchdc3Hd7qiVFrBQCKy9G479QuDppdFqbeCbveC+GOMEeK+nhmVHqXdCtplb9r1pKl/atsTHAWt4H0hzGqYHHUHy/a3Ufqt0Ht2y5RsBeqNFY/vRhm0wqNHMyQdlahXmKqfi9rRCin3B8osV6F+KD95X5RJKwybzJpRM4f60a2H10SZt0LE4N/b7i+g3p7eb26UZSuAhO2NaUupy617PS7KuhXa4lU8/VdRZ8XpSEbZtcI6+eCwhRup/1iWU8e1b4XXr4VeQVup34u0zOM6tsI2Fedzanuoxy+SieY6t0LW0VNSzw5SvxPy6QvXtRVslVcZtx2jnqe9/CnXvRUCB+btMThN3Tuw8AqX1QplufWD3lygPnTBhSPcoFY4abBlawmTenPAyC1cTiv4qsZpKDn8dd0WsBdxE1pBUWnYk82O1PcGrZ/GzWiFAXWNp22fUS/SqRjGzW2FfEPdaJfX1CtDr7Vz+K3Q09/9POsD9YtLJhZzKlrhO6ffzbAv1J9yQ1I49a0QvVy2OMKXus7KbQGctlaYqf/0WmAI9QOJwjec3lY447Bz90cu9VEb7zlwpNrgT9Sk/XcSqBtkqZzmyLaBBsvPwSydurxxzG6OQhtYynyLX/CN+q6ifas4Sm0w4dF6uT8/qauZdc7hqLSB25+CnWHF1K/VPFXkqLfBriEGzy1+Uzc9q9mfo90GfufNuQpC6nHdqdWR0AYyHdXxga1/3Vc3j3yL1G+D5E3v3Nb3UJ8kO4ATadAGm7QMl3+XGCnuCi6uHpE72kDiQJjb9sHUn05Z9CjSpA3WPvvMTpX7q3t/vxhp3gbX7woO6yhQn7jwtFmkZRuM6ZkW7DKBumr8UINI6zY4/glchFOoh2z5rBNp1wbFy5v+LJ5JPY2/cnKkfRsU3B9YdEWDuvlJgUykYxvELAe1wAXUr3ZdbIlwboOO8Qd/Fi+mrnxHgR/h2gb5udolA1ZQXz7GLzHCvQ3q5lzXHr+WernHJt8IVhsMLxycpmpAfYhu1cuIoDZguT55PnMbdf+kmzcjOG1gP7P8waTd1It2TbKMSGgD521xH4bup+5QE24ckdEGZ061pdcdpu53xXh5RG4bqCeu6B93gvpe+Wa1CH4bzF91TMvpNHX7D46jIiraYNa21TsMbahr6qj1hte3gXnkhgOSV6jvTI2vDG9rg9Ump9axrlNPuDFHfXhPG7RLzbWwsKc+cv+BrPDeNtgyUmPKhtvUN6/lsP+P/kOI//6Lj3+QRuVQRVQZVUU1UB1UD12DGqLGqCl6BLVCbVAm6oA6oc9RN9QDZaPBKBdNRHloHipAK1Eh2v6f97/2X6VROVQRVUZVUQ1UB9VD16CGqDFqih5BrVAblIk6oE7oc9QN9UDZaDDKRRNRHpqHCtBKVIi2o4x1/yqNyqGKqDKqimqgOqgeugY1RI1RU/QIaoXaoEzUAXVCn6NuqAfKRoNRLpqI8tA8VIBWokK0HWWs/1dpVA5VRJVRVVQD1UH10DWoIWqMmqJHUCvUBmWiDqgT+hx1Qz1QNhqMctFElIfmoQK0EhWi7Shjw79Ko3KoIqqMqqIaqA6qh65BDVFj1BQ9glqhNigTdUCd0OeoG+qBstFglIsmojw0DxWglagQbUcZG/9VGpVDFVFlVBXVQHVQPXQNaogao6boEdQKtUGZqAPqhD5H3VAPlI0Go1w0EeWheagArUSFaDvK2PSv0qgcqogqo6qoBqqD6qFrUEPUGDVFj6BWqA3KRB1QJ/Q56oZ6oGw0GOWiiSgPzUMFaCUqRNtRhsG/SqNyqCKqjKqiGqgOqoeuQQ1RY9QUPYJaoTYoE3VAndDnqBvqgbLRYJSLJqI8NA8VoJWoEG1HGYb/Zd8843+b2JgueXbOvH87fFGekzfjLvXJrT1h4VLtsO+zmcOvB9Sj77p8DJdth6db5hcdfUK9cNJ8x3CFdrDQmiJf4UL9VDDPJlypHRxOLlLb6Ur9ksGJA+Eq7XBv4SAd7gfqveVSG8LV2yFrts/y8Z7UW6+8nx+u3Q5Nu89sP8mivl8BlMKhHXJsHa74+VMHdr50uH47VOiqxdeFUL+/9nxjmEE7TI16qqPEob6hRL4gbIfouHv6/1oZS936sldcmEk7XDb4kmySRF1OcS0rzLwdNhUlM6zSqY/wK30eZtkOIRtfPjiXTf36Jua1MOt2OFi83c4q768JatW4E2F27VAq0C4yLaTucitoW5h9O+TdtwlcXUx96RQjCHMU9dlGIyZXUF/DrVMNc24HpmR/RlM19YC9d4aHubbDsZ0c+xAh9Vtd07pD3dthrkVcwLkW6kEuUWWhrHY47bDpqUrnX6+vszcjNKgd4mqeaGb8oa6T2x4cyhF1ftbTExKj6PXPP3kXmtAOwz4tT+uVoq4xWuNeaEY7LLwxscRhCPV5gSnnQnNF1yHSrVhKnvrT7eYmofx2cH8hkXtpFPUNbf3Xhla0w4Q9V1MqxlDf/fzN3ND6dijR35qyZiJ1ru7C8aFt7fDwXeAv18nUL/38JhnaKzp/dvGY2unU714+VR8i1QGjg4bbaahRr1Ua+iNEtgMmdzLHH1On7hbtER2i0AE3Is17XLSou5ut/Bqi1AHf1vSbzdWm3ikteBqi0gE+hfaBBYuov/560S5EvQP8ouZ/rAfq9w0VjoZod8B53VUDOlZQT2723RICHfD4trCoXZ/6VpdNi0P0O8C99ZRe/Xrq05dWTQsx6IBNcRLzCgyoLy+5KRuyowOUFwpiOUbUPRwmdQSbdECoy7I/Ljv+ev05EcXB5h0QpHqg+thu6qtyjFODLTuArXbJea4J9cu2zQHB1h2woiJpaMMB6h3KTq7Bdh0g7XZz56fD1IMS1G4H23fAqxe/b245Rj3EIuF0sGMHvBin8ablJPXuUQf3BDuLtjd/7OV4ijoz4s+qYNcOWBqzkaN8jvoKsxfqwe4dMPaMS5GHDfWVQxeMCWZ1QGoYe7TqJerXAzL7Bwd1QP2vtNNv7Kj37j1ZE8TpgAkz1f7IXP/r/AcO+h6U0AGNef1jrW5R92R94ARldMAgLceM1NvUvxvrfQ7K7YCeS4NnKd+nvrh/waMgfgcc7fIuPeZE/ecX60tBFR1Q2Rg4wOsxdfa2EYeD6jtglMce5/Jn1MN7vQ2C2jrgnkm+u8IL6n8+r9MN6u2A8r3Hlum9pn5+a/nkIKlOiKpYbWnqRl259+qQINlOCFzmudjm/d+vM6E1UKET9rPT/e0/UZfbFsIPVOqEPTZ1xQ8+UzdibEsKVOmEVUUrsu5/pR7/RegbqN4J/tMHPbjBon50x71Xgdqi7Z/ZTDrj+9f1kVC9FQid8PRUqvPOAOpLWDGWgfqdsLhnabd2MPUTu012Bhp0Qu7lwbuGhVFPkOpaHrijE/rrHA0viKC+2f/ZrECTTthh9XTOey51yf1zRwead4LV8aSw/THUS4am9wZYdkL1SbBUjKdeE3r0d4C16PqEa25NSKQ+8YhkdoBdJ1i+zD9nkULddtTb8AD7TvA2OMsfmk69J3rxpwDHTgidoPvqI++vccYqzzHAuRPU1x0Mmp9N/cLEsxcCXDvBY8zsxZHfqJ9KlT0Y4N4JXB5vPuT9Nc7YftkQwOqE4f4OrOB86umq+gsCgjpBV9rRf2Yhda3cYqUATidkyk80fMr/6367eWVQQEInnBtldb/9F3XzeWOb/DM6gbODY721lPr8koAC/9xO2DBh9djP5dSnPNoc78/vhCDPpczWyr+eF8tqWf4VnfBiZYn/4mrqh4QOLv71nfBQ3SLmYi11f9ep1/3bOkGHPSbIr/6v1zfgnvDv7YQZMsovSxuo+/zZvd1fqgsYN8NshzVT3+PdBv6yXWB8YPp+zda/xtV9j2f4K3RBasWLnRvbqcsMUx/hr9QF7TuNLA90Uh8amdztp9IF1j23vay6qc+yOFzup94FpaMvKNn8oW42sT/PT7sL8qt28WwYo2k8TH8d4gdd0BxxNOV0f+oqdrrv/fS7ICOHP+7wAOos9W/3/Ay6QPJsW+qWgdQNBVbn/XZ0wVxB1W8daeqDHg4x9TPpgoa9zZcVB1MvWOax1s+8Cwo0Nz1pkKEe17hCy8+yC5zc5urEDv2rv+eP97PuAo+6n2edZKkXbr040M+uCyJNb2zbLk998EAFoa99F1guOlw2agT1TUG+P3wdu2B7TJh6xkjq7kc2xfg6d8GwJRy4Npr6yLFVX31du0Cz1lNZXZG6c8rNZ77uXbBHMaTw2xjqsy5PYvqyukBNYuq18+Oof58TcdQ3qAu0G6eNkZ9A/ZHA2MiX0yUa/zu8Pk6kfuBR82LfhC6wqc9dP0+Z+oqVTtN9M7qg5FZ3T/gk6tqtanK+uV3QMe9tBkyhvtgjocOHL3q/Sxmp4VOpb9l1sMSnogueVRj90ZpO/cKQ3lSf+i7Ycu77qY8q1NmRLwJ92rpAZVa0pvwM6m1WC9x8ervAx3DzWuuZ1A2mZN32keqGOyqRMblq1AO+nTzjI9sNm1qWf507m/pMh0F7fRS64fmfMcMc5lD3WvhxtY9SN/R3uNycq059aa2eho9KN6h9dz82WfOv+8G1YIyPejd8mZ190Xwu9TtbbCR8tLtBKVtXy12L+krJkbVs6IbJMqNf/ZpHXSaY9Z2t3w0GY99FjV5AvejYei7boBuWrVJkrdamHjGh4jN7Rzc84flantKh7sG79pht0g2ljK/DnHWpu16feJlt3g2pY5c6By2k/nZB6GG2ZTeUH3g/MnsRde/f2wzZ1t2QPmH0o9+LqSe8atBl23XDJCfe2K4l1H8b3J/Ctu8G6z9DQqWA+miJGUPZjt1g6SV5UVaP+obA2FaWcze8+9V8ZPgy6nePmgpYrt3gxR/pKLeces747iSWezfMrHFtH7SC+nSesx+L1Q3+63nsP3/1q9e1XrOCuqFyuSC6biX1sgUZt1icbtg/evDC/FV/jSdVx6xYCd0QMthhUtRq6rGvB+5iZXTDvUNPbrzXp663+d0KVq7o/R45anF1DfWYAUtns/jdMHL3sqpda/8aB4J/jGZVdEMPc7uExjrqguPnGKz6buBNLIllrKduoyRf5d3WDdMvTFqY9ldXzP6a7d3bDa9y1ls83UA98taaCG+pHkg/9+rEzo3Ujy8s/eQt2wPb3m7UG7OJ+oQ6OydvBdH2L12ac/7q396Os/VW6oGcz6FP7hlQf7It6KC3Sg9IyFWr6RlS3zHIaKO3eg+0DDeLq/+rK0fULfDW7oHVbQdOvNxMvc7qjrI39MCjfkqzVmyhHjV1+mBv/R44ez5btuKv7pIX1eRl0AP2L0In2xtRP39vb6HXjh4w9x1mNWUr9e16HfFeJj3g3X+wRPhffXHzE7aXeQ90ZJSXG2776/7x0HjhZdkDJfv404v/6iP2pF73su4B6ebZ6ZbbqUvKHTnpZdcD/XKGVHb81TtjJHZ42f9/7dv/T9VVHMdxXBhOQl1oohNFQCGBcIZDM30T4vBLBE4ciAIGKGaiaRjIFyUxqUwZYpJfAE28n3s/9yKSJsI0TJ1MQvyGEqAg2gDRAiWliZ9zYq3tvu/6C9pej98+z52dfXbOD+fzw+dotGb2qS0ZYebek1ToV5zdP//2uEOvhJt7l8eMScV5/fM8WLg4k/eW2/bFhRrFHjxtkKw/zd2gmRSNjvTe0CcvMfe/Aoe0m0o0ipreFPkH6wNeGq6ZyjTy1NnWLY8wd7vjcypMlRoVby144xrrY+Jaj5iqNNpkXzv53aXsfHFI32m6qpFHfp3XUdb9ahySTPUaxcQ9drBdxtY/4+RyU4tGp/o3LYH1BJ+Q+aZ2jS6endZ2hfUvOx69berSaGJDa/OkSHMvOpjlaOrtf5+AL55uY/18iIuNSWoUHhDpeYf1+9aV3UYbQVGORXmTo9h+lUc0GocKmjh8D21l3T3h+QXjSEFBCfHe11kPGr+72DhO0JqE8A2O0eaeeMsrz+gmyGnJYft41vO/upxh9BZkvTFt7DHWL81csdroK+jEQNeCp6w/eWIVaiRB1cE38n2Wm/tY3cGZxkBBD/J+dk9kfUHENDdjsKDvnD3nl7KeOqRumDFMUJbP+3aPWVfPr3uhRgta8PqydNcPzb3pM9vf1HhB6VZ7j0aw/pqHckVdJ+jMbJ+cXazPavEvU5MEHXZav+Ac6xtymw+pWwRVNW1v6WJdF5jytZolqKa8JNwxxtwb+0YkqtmC5soJ5+eyPux4aaSaJ6ih28VtA+tz4oIC1UJBo24+2L2P9TSHh5NVRVBRZ+GwStZP1GwbrZYIGpG223if9UcZTtZqmaBBNc/WWseau8vUM78bKgU5jLNe6cr60odh9YYqQa3lvQf8Wd+T33POcFWQdm/wmGjWryzMVg31/fM3JD3ZxLrNqx57DC2CCtqS3XJZ96u4lG5oFxTxwdzLKuupa2PiDV2C6kOd7p9j/UdnEWLoFVQ6a0b6Lda7b+97xyAFZYbcPNrBuseOqa4GG0kPa53jX7C+kq7bGYZKShexNYPj2Lnfs6ZXP1LSHZfr90axflcZ1KofJ+n7zKISN9YdlhVV690kLY9xCPBhPXSY30m9t6S71vEGYj37YlO+3lfSiJLqznms/5KclKUnSU+UdPtFrNt42a/XB0r61KPiraWs+7cei9AHS1pUUBEYw/rmb+cH6MMkBV05/dEq1ivmtXnpoyXFnukuTGD9ufb5SH28pORJe5+tZ33KD44D9OskHTjRt3Ej62tXlncqSZJCL1p5JrOujl5cp2yRNEad4prCeltt91klS9KbUY1xqaw7Z36jKNmSLs8rsk1jPcrXPUfJkzR9dU8zH7//0YUUpVBSw8vHnbzXF0bHKYqkjpyydt7tQ/uClBJJdsbcDt6DB+X5KmWSPi4Nt+g7zkwZr1RKurZ5lUWv+qR2sFIlqdE/zqK/MmH1n7qr/eu8YoVFp4aBzbp6SSkjLXvqzsNVupb+dfO07GXvzSzVtUv6aaJl73n2635dl6SZ7pbdW03cpuuVdMvNspuS7lT3vZT/XpBk3zn/XJz8b88ZfnIi/xEi7PiuaP5sawUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/8Dc=
+
+ - 00000000-0000-0000-0000-000000000000
+
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 15e3ea3c-6a8d-4d9b-9eb6-18d90bde580f
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 6867
+ 35200
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6867.664
+ 35200.04
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - fc9f30a7-1d79-4a1e-86b0-c00e1ba238c1
+ - Panel
+
+ - false
+ - 0
+ - 75a76088-d302-4aef-9bb6-8195f698b08f
+ - 1
+ - 0.00032220000
+0.00000220000
+
+
+
+
+ -
+ 6867
+ 35323
+ 439
+ 22
+
+ - 0
+ - 0
+ - 0
+ -
+ 6867.975
+ 35323.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - a56d1180-75d2-4674-ae1e-28d033f86fb2
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00007777700
+
+
+
+
+ -
+ 6960
+ 35577
+ 251
+ 20
+
+ -
+ 6960.574
+ 35577.4
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - e742c57e-d909-497c-8fba-236d61aacaec
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.00137956207
+
+
+
+
+ -
+ 6868
+ 35557
+ 439
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 6868.414
+ 35557.55
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - 1/X
+ - true
+ - 03e38bb8-97d0-4289-ad4c-03ff1baad258
+ - Expression
+
+
+
+
+
+ -
+ 7047
+ 35688
+ 79
+ 28
+
+ -
+ 7089
+ 35702
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - ebfe3a6a-61c1-4f8e-8664-bc23bce0070c
+ - Variable X
+ - X
+ - true
+ - abfe3e45-86e8-409d-b989-fe9687303c23
+ - 1
+
+
+
+
+ -
+ 7049
+ 35690
+ 14
+ 24
+
+ -
+ 7057.5
+ 35702
+
+
+
+
+
+
+
+ - Result of expression
+ - dfea2356-2637-41c2-8564-7376b29d9a56
+ - Result
+
+ - false
+ - 0
+
+
+
+
+ -
+ 7115
+ 35690
+ 9
+ 24
+
+ -
+ 7121
+ 35702
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 1fab4ce0-a0d3-4eef-ae07-03b6a706010f
+ - Point
+ - Point
+ - false
+ - e1d9245b-0e46-4612-a05c-086ece7d4f27
+ - 1
+
+
+
+
+ -
+ 7083
+ 33109
+ 50
+ 24
+
+ -
+ 7108.395
+ 33121.13
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - e1d9245b-0e46-4612-a05c-086ece7d4f27
+ - Relay
+
+ - false
+ - c1e5e0c9-5751-45fb-a95d-7b071aee05ea
+ - 1
+
+
+
+
+ -
+ 7083
+ 33151
+ 40
+ 16
+
+ -
+ 7103
+ 33159
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 02e2de16-a5ea-48e8-a96e-3b64d8d23d4c
+ - Relay
+
+ - false
+ - a604d561-3ce7-4b4d-8aa3-505d71dd62ff
+ - 1
+
+
+
+
+ -
+ 7083
+ 32928
+ 40
+ 16
+
+ -
+ 7103
+ 32936
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 226678fa-f252-40a7-b562-5dfcb4e05d00
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7026
+ 32964
+ 154
+ 64
+
+ -
+ 7110
+ 32996
+
+
+
+
+
+ - Base geometry
+ - c973856d-2f4c-4534-9592-4c644ed6e11d
+ - Geometry
+ - Geometry
+ - true
+ - 1fab4ce0-a0d3-4eef-ae07-03b6a706010f
+ - 1
+
+
+
+
+ -
+ 7028
+ 32966
+ 67
+ 20
+
+ -
+ 7071
+ 32976
+
+
+
+
+
+
+
+ - Center of scaling
+ - f02adabb-2ab0-4625-9f1a-5cc3a93b3df7
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7028
+ 32986
+ 67
+ 20
+
+ -
+ 7071
+ 32996
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 16e2a874-a17e-45ce-89a4-546c4a5aae74
+ - 2^X
+ - Factor
+ - Factor
+ - false
+ - ac285a80-dc09-42f6-9b54-e64c17da6742
+ - 1
+
+
+
+
+ -
+ 7028
+ 33006
+ 67
+ 20
+
+ -
+ 7071
+ 33016
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a604d561-3ce7-4b4d-8aa3-505d71dd62ff
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7125
+ 32966
+ 53
+ 30
+
+ -
+ 7153
+ 32981
+
+
+
+
+
+
+
+ - Transformation data
+ - f264edaf-7ad5-4b3d-b724-082a0019928a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7125
+ 32996
+ 53
+ 30
+
+ -
+ 7153
+ 33011
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - ac285a80-dc09-42f6-9b54-e64c17da6742
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 7
+
+ - 16.00000
+
+
+
+
+ -
+ 6988
+ 33053
+ 250
+ 20
+
+ -
+ 6988.174
+ 33053.48
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 1fab4ce0-a0d3-4eef-ae07-03b6a706010f
+ - 1
+ - 192040a4-1cd3-4c8f-8e89-0ca4b6f62685
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - 445f255b-5908-4a78-8c70-da38bfb00fde
+ - Digit Scroller
+ - Digit Scroller
+ - false
+ - 0
+
+
+
+
+ - 12
+ - Digit Scroller
+ - 1
+
+ - 0.00274662475
+
+
+
+
+ -
+ 6960
+ 35491
+ 251
+ 20
+
+ -
+ 6960.074
+ 35491.39
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d759ef81-9f90-46c2-81a7-f670722cbc4d
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 2
+
+ - 0.0000000000
+
+
+
+
+ -
+ 6510
+ 34573
+ 250
+ 20
+
+ -
+ 6510.027
+ 34573.67
+
+
+
+
+
+
+
+
+
+ - 56b92eab-d121-43f7-94d3-6cd8f0ddead8
+ - Vector XYZ
+
+
+
+
+ - Create a vector from {xyz} components.
+ - true
+ - dfb4326a-cf04-4535-bd2b-ff73a6bb5796
+ - Vector XYZ
+ - Vector XYZ
+
+
+
+
+ -
+ 7006
+ 30418
+ 139
+ 64
+
+ -
+ 7091
+ 30450
+
+
+
+
+
+ - Vector {x} component
+ - eec57c0c-6af5-42f0-9364-e6cdcf81b31b
+ - X component
+ - X component
+ - false
+ - 0
+
+
+
+
+ -
+ 7008
+ 30420
+ 68
+ 20
+
+ -
+ 7043.5
+ 30430
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - Vector {y} component
+ - c97826dc-d589-48b7-8794-8147e2fc220e
+ - Y component
+ - Y component
+ - false
+ - 0
+
+
+
+
+ -
+ 7008
+ 30440
+ 68
+ 20
+
+ -
+ 7043.5
+ 30450
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 4
+
+
+
+
+
+
+
+
+
+
+ - Vector {z} component
+ - f5718903-8ca5-4858-ba81-05326eade72c
+ - Z component
+ - Z component
+ - false
+ - 0
+
+
+
+
+ -
+ 7008
+ 30460
+ 68
+ 20
+
+ -
+ 7043.5
+ 30470
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Vector construct
+ - 898ce28f-2883-4804-880e-63e52726128d
+ - Vector
+ - Vector
+ - false
+ - 0
+
+
+
+
+ -
+ 7106
+ 30420
+ 37
+ 30
+
+ -
+ 7126
+ 30435
+
+
+
+
+
+
+
+ - Vector length
+ - 8fa07177-9351-432a-a36b-d4ce89b69571
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 7106
+ 30450
+ 37
+ 30
+
+ -
+ 7126
+ 30465
+
+
+
+
+
+
+
+
+
+
+
+ - eeafc956-268e-461d-8e73-ee05c6f72c01
+ - Stream Filter
+
+
+
+
+ - Filters a collection of input streams
+ - true
+ - 8bf0e2b3-2eba-4d67-bd97-afd806325847
+ - Stream Filter
+ - Stream Filter
+
+
+
+
+ -
+ 6589
+ 34715
+ 89
+ 64
+
+ -
+ 6634
+ 34747
+
+
+
+
+
+ - 3
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Index of Gate stream
+ - 993b0d91-10d0-406f-bab1-9d7b3414eccd
+ - Gate
+ - Gate
+ - false
+ - cd2b1132-cbf4-4723-9453-261983046e3b
+ - 1
+
+
+
+
+ -
+ 6591
+ 34717
+ 28
+ 20
+
+ -
+ 6606.5
+ 34727
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 0
+ - 96939f92-e12a-4dac-9eae-8f09e0783f50
+ - false
+ - Stream 0
+ - 0
+ - true
+ - f85f3458-b345-4cb9-b89c-3dfad93a636a
+ - 1
+
+
+
+
+ -
+ 6591
+ 34737
+ 28
+ 20
+
+ -
+ 6606.5
+ 34747
+
+
+
+
+
+
+
+ - 2
+ - Input stream at index 1
+ - f22f4f40-2053-4ee7-8763-b22864549e62
+ - false
+ - Stream 1
+ - 1
+ - true
+ - a907a344-b9c0-468b-a400-728beb37d17d
+ - 1
+
+
+
+
+ -
+ 6591
+ 34757
+ 28
+ 20
+
+ -
+ 6606.5
+ 34767
+
+
+
+
+
+
+
+ - 2
+ - Filtered stream
+ - 98aa5440-91ae-45a6-b36f-55fcadfe7f8e
+ - false
+ - Stream
+ - S(1)
+ - false
+ - 0
+
+
+
+
+ -
+ 6649
+ 34717
+ 27
+ 60
+
+ -
+ 6664
+ 34747
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - f0f12603-4482-4f72-b137-884cc0158300
+ - Relay
+
+ - false
+ - 2a43fe8e-ea02-487e-9e91-e4c760c0fcaf
+ - 1
+
+
+
+
+ -
+ 7059
+ 33687
+ 40
+ 16
+
+ -
+ 7079
+ 33695
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - ac0ddbd6-2f27-47b4-b783-d6e756b4a5c0
+ - Curve
+ - Curve
+ - false
+ - abe443e8-1c35-4eb9-8bfc-db9755cabfd9
+ - 1
+
+
+
+
+ -
+ 6669
+ 30545
+ 50
+ 24
+
+ -
+ 6694.311
+ 30557.66
+
+
+
+
+
+
+
+
+
+ - b464fccb-50e7-41bd-9789-8438db9bea9f
+ - Angle
+
+
+
+
+ - Compute the angle between two vectors.
+ - true
+ - a54869dc-a2b9-42b0-9fd0-fbc20366bd7f
+ - Angle
+ - Angle
+
+
+
+
+ -
+ 7707
+ 35611
+ 115
+ 64
+
+ -
+ 7771
+ 35643
+
+
+
+
+
+ - First vector
+ - 6fa1b43c-072f-4c66-b41a-c5e71a040ad9
+ - Vector A
+ - Vector A
+ - false
+ - 0
+
+
+
+
+ -
+ 7709
+ 35613
+ 47
+ 20
+
+ -
+ 7734
+ 35623
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 10902
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Second vector
+ - ef694e0d-a622-4b22-a818-83e78515642f
+ - Vector B
+ - Vector B
+ - false
+ - 55012827-509c-4029-8775-593cac858058
+ - 1
+
+
+
+
+ -
+ 7709
+ 35633
+ 47
+ 20
+
+ -
+ 7734
+ 35643
+
+
+
+
+
+
+
+ - Optional plane for 2D angle
+ - 568fdd98-1e13-4a9c-b063-479754747b04
+ - Plane
+ - Plane
+ - true
+ - 0
+
+
+
+
+ -
+ 7709
+ 35653
+ 47
+ 20
+
+ -
+ 7734
+ 35663
+
+
+
+
+
+
+
+ - Angle (in radians) between vectors
+ - 9d7a7dca-5669-4490-bc7b-9cdc830b0006
+ - Angle
+ - Angle
+ - false
+ - 0
+
+
+
+
+ -
+ 7786
+ 35613
+ 34
+ 30
+
+ -
+ 7804.5
+ 35628
+
+
+
+
+
+
+
+ - Reflex angle (in radians) between vectors
+ - 1099d0be-05ef-41ec-8c97-ba6e582dd527
+ - Reflex
+ - Reflex
+ - false
+ - 0
+
+
+
+
+ -
+ 7786
+ 35643
+ 34
+ 30
+
+ -
+ 7804.5
+ 35658
+
+
+
+
+
+
+
+
+
+
+
+ - 0d77c51e-584f-44e8-aed2-c2ddf4803888
+ - Degrees
+
+
+
+
+ - Convert an angle specified in radians to degrees
+ - true
+ - 680ba962-f94b-4bbf-bb90-aab4cd090959
+ - Degrees
+ - Degrees
+
+
+
+
+ -
+ 7705
+ 35563
+ 120
+ 28
+
+ -
+ 7764
+ 35577
+
+
+
+
+
+ - Angle in radians
+ - f098d8bf-eda1-4b27-9fbe-9ca283b3f40a
+ - Radians
+ - Radians
+ - false
+ - 9d7a7dca-5669-4490-bc7b-9cdc830b0006
+ - 1
+
+
+
+
+ -
+ 7707
+ 35565
+ 42
+ 24
+
+ -
+ 7729.5
+ 35577
+
+
+
+
+
+
+
+ - Angle in degrees
+ - 9a713f60-331b-41f2-b439-d2fb9aa3a7db
+ - Degrees
+ - Degrees
+ - false
+ - 0
+
+
+
+
+ -
+ 7779
+ 35565
+ 44
+ 24
+
+ -
+ 7802.5
+ 35577
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 91589087-debd-4039-82d6-81cc4856e0c1
+ - Panel
+
+ - false
+ - 0
+ - 8e7aa77d-3286-4ae4-a223-108490383a08
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 7668
+ 35422
+ 160
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7668.41
+ 35422.98
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",O)
+ - true
+ - f7d8836c-479b-4f6b-a9de-c3d679a44741
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 7668
+ 35468
+ 194
+ 28
+
+ -
+ 7768
+ 35482
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 2a9b9113-8cf5-485f-a1f0-b6c3be801c24
+ - Variable O
+ - O
+ - true
+ - 9a713f60-331b-41f2-b439-d2fb9aa3a7db
+ - 1
+
+
+
+
+ -
+ 7670
+ 35470
+ 14
+ 24
+
+ -
+ 7678.5
+ 35482
+
+
+
+
+
+
+
+ - Result of expression
+ - 8e7aa77d-3286-4ae4-a223-108490383a08
+ - Result
+ -
+ - false
+ - 0
+
+
+
+
+ -
+ 7851
+ 35470
+ 9
+ 24
+
+ -
+ 7857
+ 35482
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - a54869dc-a2b9-42b0-9fd0-fbc20366bd7f
+ - 680ba962-f94b-4bbf-bb90-aab4cd090959
+ - 91589087-debd-4039-82d6-81cc4856e0c1
+ - f7d8836c-479b-4f6b-a9de-c3d679a44741
+ - 4
+ - 1633d1d8-6976-473d-8973-00b387d975ee
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 75a76088-d302-4aef-9bb6-8195f698b08f
+ - Relay
+
+ - false
+ - d2932282-3b8f-4b13-90ff-22b832031162
+ - 1
+
+
+
+
+ -
+ 7059
+ 35365
+ 40
+ 16
+
+ -
+ 7079
+ 35373
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d2932282-3b8f-4b13-90ff-22b832031162
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.002746624747402
+
+
+
+
+ -
+ 7020
+ 35416
+ 125
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7020
+ 35416.42
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 48e93eff-1f95-4030-ac1c-8903ffd06cb8
+ - Panel
+
+ - false
+ - 0
+ - 0
+ - 0.002746624747402
+
+
+
+
+ -
+ 7020
+ 35455
+ 125
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 7020
+ 35455.06
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - f2ce799c-0b67-405e-a4be-962180bd0cad
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 7370
+ 31094
+ 154
+ 64
+
+ -
+ 7454
+ 31126
+
+
+
+
+
+ - Base geometry
+ - bdee5a8f-66da-4756-9a33-9162c735fce2
+ - Geometry
+ - Geometry
+ - true
+ - 5c8485da-d1d4-41f8-b5d2-ab8fbfcaa3c7
+ - 1
+
+
+
+
+ -
+ 7372
+ 31096
+ 67
+ 20
+
+ -
+ 7415
+ 31106
+
+
+
+
+
+
+
+ - Center of scaling
+ - 39f36ca2-3b1e-4e8b-82e6-8fa9ac96b517
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 7372
+ 31116
+ 67
+ 20
+
+ -
+ 7415
+ 31126
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - 27cff0eb-c0aa-447c-a874-ef75a99665d6
+ - 1/X
+ - Factor
+ - Factor
+ - false
+ - 0c262858-e928-4c05-8a99-ce48851cdb1a
+ - 1
+
+
+
+
+ -
+ 7372
+ 31136
+ 67
+ 20
+
+ -
+ 7415
+ 31146
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 1ba8e7ee-b08d-4f90-b869-aa1204f08d82
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 31096
+ 53
+ 30
+
+ -
+ 7497
+ 31111
+
+
+
+
+
+
+
+ - Transformation data
+ - 121d320d-f843-42e6-bf95-562a995969ab
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 31126
+ 53
+ 30
+
+ -
+ 7497
+ 31141
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - c176ac74-4a88-457a-a1f1-182f94b4ec71
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7386
+ 30855
+ 138
+ 44
+
+ -
+ 7454
+ 30877
+
+
+
+
+
+ - Base geometry
+ - 4e9d685b-665d-4874-aedc-9881e9163496
+ - Geometry
+ - Geometry
+ - true
+ - 7ab578ce-e201-40a1-b655-8882ad2088e0
+ - 1
+
+
+
+
+ -
+ 7388
+ 30857
+ 51
+ 20
+
+ -
+ 7415
+ 30867
+
+
+
+
+
+
+
+ - Mirror plane
+ - 01b3187b-ac69-41ef-97ad-42410f7f496f
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7388
+ 30877
+ 51
+ 20
+
+ -
+ 7415
+ 30887
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 5088563a-e52f-4bd5-9a61-0c4e39274463
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 30857
+ 53
+ 20
+
+ -
+ 7497
+ 30867
+
+
+
+
+
+
+
+ - Transformation data
+ - 89e3d0a6-dd68-467c-a9c2-bcafedbfdacf
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 30877
+ 53
+ 20
+
+ -
+ 7497
+ 30887
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 7efab47d-dac4-4351-8e2a-8125d5d942d3
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 7386
+ 30986
+ 138
+ 44
+
+ -
+ 7454
+ 31008
+
+
+
+
+
+ - Base geometry
+ - 64faf2b4-3214-40ba-9b33-a64e21a3f520
+ - Geometry
+ - Geometry
+ - true
+ - 1ba8e7ee-b08d-4f90-b869-aa1204f08d82
+ - 1
+
+
+
+
+ -
+ 7388
+ 30988
+ 51
+ 20
+
+ -
+ 7415
+ 30998
+
+
+
+
+
+
+
+ - Mirror plane
+ - dc3ca289-2d88-4fe3-931c-1b7e175df3d2
+ - Plane
+ - Plane
+ - false
+ - 293bbdab-0cc3-4d9d-9980-c53b79ad9587
+ - 1
+
+
+
+
+ -
+ 7388
+ 31008
+ 51
+ 20
+
+ -
+ 7415
+ 31018
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 7ab578ce-e201-40a1-b655-8882ad2088e0
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 30988
+ 53
+ 20
+
+ -
+ 7497
+ 30998
+
+
+
+
+
+
+
+ - Transformation data
+ - af1caa13-715c-4065-afc1-f3255a34006a
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 31008
+ 53
+ 20
+
+ -
+ 7497
+ 31018
+
+
+
+
+
+
+
+
+
+
+
+ - 8cc3a196-f6a0-49ea-9ed9-0cb343a3ae64
+ - XZ Plane
+
+
+
+
+ - World XZ plane.
+ - true
+ - 16b8b017-725f-4037-9b6c-80835367317d
+ - XZ Plane
+ - XZ Plane
+
+
+
+
+ -
+ 7386
+ 30922
+ 98
+ 28
+
+ -
+ 7436
+ 30936
+
+
+
+
+
+ - Origin of plane
+ - 51393e35-639c-4249-adc6-580d979238da
+ - Origin
+ - Origin
+ - false
+ - 0
+
+
+
+
+ -
+ 7388
+ 30924
+ 33
+ 24
+
+ -
+ 7406
+ 30936
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World XZ plane
+ - 293bbdab-0cc3-4d9d-9980-c53b79ad9587
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7451
+ 30924
+ 31
+ 24
+
+ -
+ 7468
+ 30936
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - dcdb41c8-2c3d-4ace-ae80-9df5ea6fd219
+ - Move
+ - Move
+
+
+
+
+ -
+ 7386
+ 30788
+ 138
+ 44
+
+ -
+ 7454
+ 30810
+
+
+
+
+
+ - Base geometry
+ - 4e2a1100-ae13-45c8-bb6b-7659a0bc5ab6
+ - Geometry
+ - Geometry
+ - true
+ - 5088563a-e52f-4bd5-9a61-0c4e39274463
+ - 1
+
+
+
+
+ -
+ 7388
+ 30790
+ 51
+ 20
+
+ -
+ 7415
+ 30800
+
+
+
+
+
+
+
+ - Translation vector
+ - 61874507-22a1-4f49-a05f-c5b34359f9ef
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 7388
+ 30810
+ 51
+ 20
+
+ -
+ 7415
+ 30820
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 1
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - d05b1acd-04c3-442f-841a-2645a00606b1
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 30790
+ 53
+ 20
+
+ -
+ 7497
+ 30800
+
+
+
+
+
+
+
+ - Transformation data
+ - 6276cd80-c975-4a05-ad7f-3802e36d0799
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 7469
+ 30810
+ 53
+ 20
+
+ -
+ 7497
+ 30820
+
+
+
+
+
+
+
+
+
+
+
+ - 0bb3d234-9097-45db-9998-621639c87d3b
+ - Bounding Box
+
+
+
+
+ - Solve oriented geometry bounding boxes.
+ - true
+ - c96965b8-1641-47c0-91bb-fe05aef91e00
+ - Bounding Box
+ - Bounding Box
+
+
+
+
+ - true
+
+
+
+
+ -
+ 7407
+ 30648
+ 100
+ 44
+
+ -
+ 7466
+ 30670
+
+
+
+
+
+ - 1
+ - Geometry to contain
+ - 23be8676-cfa0-4014-8df9-088c12137e2b
+ - Content
+ - Content
+ - false
+ - 41afeaa8-535b-49af-8480-9907183d2aa9
+ - 1
+
+
+
+
+ -
+ 7409
+ 30650
+ 42
+ 20
+
+ -
+ 7431.5
+ 30660
+
+
+
+
+
+
+
+ - BoundingBox orientation plane
+ - true
+ - 358e86da-549b-4315-9535-b33f0a9fac71
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7409
+ 30670
+ 42
+ 20
+
+ -
+ 7431.5
+ 30680
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Aligned bounding box in world coordinates
+ - 49fa287f-c05e-4600-81c1-e7d736523c02
+ - Box
+ - Box
+ - false
+ - 0
+
+
+
+
+ -
+ 7481
+ 30650
+ 24
+ 20
+
+ -
+ 7494.5
+ 30660
+
+
+
+
+
+
+
+ - Bounding box in orientation plane coordinates
+ - true
+ - c6c20a0c-50fd-4677-a0c7-95c8d77f08d8
+ - Box
+ - Box
+ - false
+ - 0
+
+
+
+
+ -
+ 7481
+ 30670
+ 24
+ 20
+
+ -
+ 7494.5
+ 30680
+
+
+
+
+
+
+
+
+
+
+
+ - db7d83b1-2898-4ef9-9be5-4e94b4e2048d
+ - Deconstruct Box
+
+
+
+
+ - Deconstruct a box into its constituent parts.
+ - true
+ - 3578bb9f-3979-4f26-a8e0-df5deba5d3f2
+ - Deconstruct Box
+ - Deconstruct Box
+
+
+
+
+ -
+ 7407
+ 30539
+ 89
+ 84
+
+ -
+ 7448
+ 30581
+
+
+
+
+
+ - Base box
+ - 91a9a08d-9645-42b0-84bf-b2073af62adb
+ - Box
+ - Box
+ - false
+ - 49fa287f-c05e-4600-81c1-e7d736523c02
+ - 1
+
+
+
+
+ -
+ 7409
+ 30541
+ 24
+ 80
+
+ -
+ 7422.5
+ 30581
+
+
+
+
+
+
+
+ - Box plane
+ - 36f9d8ed-492d-472a-ab4f-b3a9f9589c4c
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 30541
+ 31
+ 20
+
+ -
+ 7480
+ 30551
+
+
+
+
+
+
+
+ - {x} dimension of box
+ - ffb68e94-e4ec-4032-8f31-0b752e5e9876
+ - X
+ - X
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 30561
+ 31
+ 20
+
+ -
+ 7480
+ 30571
+
+
+
+
+
+
+
+ - {y} dimension of box
+ - 49f8a388-66f4-4e23-9ced-cb0fb442a047
+ - Y
+ - Y
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 30581
+ 31
+ 20
+
+ -
+ 7480
+ 30591
+
+
+
+
+
+
+
+ - {z} dimension of box
+ - 5a7022c3-5059-4e86-9616-b923523d3133
+ - Z
+ - Z
+ - false
+ - 0
+
+
+
+
+ -
+ 7463
+ 30601
+ 31
+ 20
+
+ -
+ 7480
+ 30611
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 03d40c0a-b2a0-43a7-9c6a-cec5f5dac676
+ - Curve
+ - Curve
+ - false
+ - 41afeaa8-535b-49af-8480-9907183d2aa9
+ - 1
+
+
+
+
+ -
+ 8183
+ 27575
+ 50
+ 24
+
+ -
+ 8208
+ 27587
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 41afeaa8-535b-49af-8480-9907183d2aa9
+ - Relay
+
+ - false
+ - d05b1acd-04c3-442f-841a-2645a00606b1
+ - 1
+
+
+
+
+ -
+ 7564
+ 30750
+ 40
+ 16
+
+ -
+ 7584
+ 30758
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 664578fb-55f0-4ff6-8751-ef36a4ef24e2
+ - Relay
+
+ - false
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
+ - 1
+
+
+
+
+ -
+ 3516
+ 8292
+ 40
+ 16
+
+ -
+ 3536
+ 8300
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - 6f58e960-7161-46ca-865e-579a10e71c83
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 3468
+ 8206
+ 138
+ 64
+
+ -
+ 3536
+ 8238
+
+
+
+
+
+ - Base geometry
+ - 88eb127e-bd77-4553-8d7e-4b1049628ab8
+ - Geometry
+ - Geometry
+ - true
+ - 664578fb-55f0-4ff6-8751-ef36a4ef24e2
+ - 1
+
+
+
+
+ -
+ 3470
+ 8208
+ 51
+ 20
+
+ -
+ 3497
+ 8218
+
+
+
+
+
+
+
+ - Center of scaling
+ - 19f9d4c7-314f-4e72-a165-d2ecb3f17a27
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 3470
+ 8228
+ 51
+ 20
+
+ -
+ 3497
+ 8238
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - f2145ccc-edbf-469a-98db-fab2bc6290c1
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 3470
+ 8248
+ 51
+ 20
+
+ -
+ 3497
+ 8258
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0.5
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - a3b7f54c-e51c-4ff5-9b7f-2f6cc2cb216a
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8208
+ 53
+ 30
+
+ -
+ 3579
+ 8223
+
+
+
+
+
+
+
+ - Transformation data
+ - 0a17c1d7-b110-4113-aea8-db940512b30d
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8238
+ 53
+ 30
+
+ -
+ 3579
+ 8253
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - b3f6f4bc-d281-469b-b727-3d585314aedb
+ - Relay
+
+ - false
+ - 8305eda3-df62-49b6-aceb-203b305d9abd
+ - 1
+
+
+
+
+ -
+ 3556
+ 7777
+ 40
+ 16
+
+ -
+ 3576
+ 7785
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - da33fab3-90bb-4849-bebc-108d6ef7cfd2
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3468
+ 8054
+ 138
+ 44
+
+ -
+ 3536
+ 8076
+
+
+
+
+
+ - Base geometry
+ - bf793674-73a7-44b9-9c85-0818d27ce47d
+ - Geometry
+ - Geometry
+ - true
+ - a3b7f54c-e51c-4ff5-9b7f-2f6cc2cb216a
+ - 1
+
+
+
+
+ -
+ 3470
+ 8056
+ 51
+ 20
+
+ -
+ 3497
+ 8066
+
+
+
+
+
+
+
+ - Mirror plane
+ - 2569dedd-8ed9-44d5-8bc9-8565dc89293c
+ - Plane
+ - Plane
+ - false
+ - b801dd90-70f3-4f3d-8a86-6644652417ac
+ - 1
+
+
+
+
+ -
+ 3470
+ 8076
+ 51
+ 20
+
+ -
+ 3497
+ 8086
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 2845967e-850e-42d9-b3fa-6944ecd5498c
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8056
+ 53
+ 20
+
+ -
+ 3579
+ 8066
+
+
+
+
+
+
+
+ - Transformation data
+ - f8637d28-4b81-44b1-8aa6-ee864524517b
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8076
+ 53
+ 20
+
+ -
+ 3579
+ 8086
+
+
+
+
+
+
+
+
+
+
+
+ - fbac3e32-f100-4292-8692-77240a42fd1a
+ - Point
+
+
+
+
+ - Contains a collection of three-dimensional points
+ - true
+ - 338a8590-962f-4f95-9893-1b76adebed9b
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 3511
+ 8164
+ 50
+ 24
+
+ -
+ 3536
+ 8176.926
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0.5
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - fad344bc-09b1-4855-a2e6-437ef5715fe3
+ - YZ Plane
+
+
+
+
+ - World YZ plane.
+ - true
+ - 0ed8a100-0a5c-4f79-8329-faf4173a4a37
+ - YZ Plane
+ - YZ Plane
+
+
+
+
+ -
+ 3486
+ 8122
+ 98
+ 28
+
+ -
+ 3536
+ 8136
+
+
+
+
+
+ - Origin of plane
+ - 2b16cd21-5224-41f8-8e46-8fdd6b303ee2
+ - Origin
+ - Origin
+ - false
+ - 338a8590-962f-4f95-9893-1b76adebed9b
+ - 1
+
+
+
+
+ -
+ 3488
+ 8124
+ 33
+ 24
+
+ -
+ 3506
+ 8136
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World YZ plane
+ - b801dd90-70f3-4f3d-8a86-6644652417ac
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8124
+ 31
+ 24
+
+ -
+ 3568
+ 8136
+
+
+
+
+
+
+
+
+
+
+
+ - 8cc3a196-f6a0-49ea-9ed9-0cb343a3ae64
+ - XZ Plane
+
+
+
+
+ - World XZ plane.
+ - true
+ - 5ca35d84-207e-41aa-ac8a-3763babb23aa
+ - XZ Plane
+ - XZ Plane
+
+
+
+
+ -
+ 3486
+ 8006
+ 98
+ 28
+
+ -
+ 3536
+ 8020
+
+
+
+
+
+ - Origin of plane
+ - 546d7dcb-b3f4-4c17-ae84-3c678adda0b9
+ - Origin
+ - Origin
+ - false
+ - 0
+
+
+
+
+ -
+ 3488
+ 8008
+ 33
+ 24
+
+ -
+ 3506
+ 8020
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - World XZ plane
+ - 2e976989-d438-4a11-884a-9f8e622bd940
+ - Plane
+ - Plane
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 8008
+ 31
+ 24
+
+ -
+ 3568
+ 8020
+
+
+
+
+
+
+
+
+
+
+
+ - f12daa2f-4fd5-48c1-8ac3-5dea476912ca
+ - Mirror
+
+
+
+
+ - Mirror an object.
+ - true
+ - 1276ea87-0703-4ec6-b5d3-d6cc1946d4a5
+ - Mirror
+ - Mirror
+
+
+
+
+ -
+ 3468
+ 7943
+ 138
+ 44
+
+ -
+ 3536
+ 7965
+
+
+
+
+
+ - Base geometry
+ - 27c61331-76df-4949-94ea-cadb1b9af6ba
+ - Geometry
+ - Geometry
+ - true
+ - a3b7f54c-e51c-4ff5-9b7f-2f6cc2cb216a
+ - 2845967e-850e-42d9-b3fa-6944ecd5498c
+ - 2
+
+
+
+
+ -
+ 3470
+ 7945
+ 51
+ 20
+
+ -
+ 3497
+ 7955
+
+
+
+
+
+
+
+ - Mirror plane
+ - 05ec8f28-ceac-487e-8f5d-7de13c9df9cc
+ - Plane
+ - Plane
+ - false
+ - 2e976989-d438-4a11-884a-9f8e622bd940
+ - 1
+
+
+
+
+ -
+ 3470
+ 7965
+ 51
+ 20
+
+ -
+ 3497
+ 7975
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ 0
+ 0
+ 0
+ 0
+ 1
+ 0
+ 0
+ 0
+ 1
+
+
+
+
+
+
+
+
+
+
+
+ - Mirrored geometry
+ - 9dec4b9d-327e-42ab-a8ac-645006d3c814
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 7945
+ 53
+ 20
+
+ -
+ 3579
+ 7955
+
+
+
+
+
+
+
+ - Transformation data
+ - 2641303b-b677-4986-b715-cea09dd7c0be
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 3551
+ 7965
+ 53
+ 20
+
+ -
+ 3579
+ 7975
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 8305eda3-df62-49b6-aceb-203b305d9abd
+ - Curve
+ - Curve
+ - false
+ - a3b7f54c-e51c-4ff5-9b7f-2f6cc2cb216a
+ - 2845967e-850e-42d9-b3fa-6944ecd5498c
+ - 9dec4b9d-327e-42ab-a8ac-645006d3c814
+ - 3
+
+
+
+
+ -
+ 3506
+ 7901
+ 50
+ 24
+
+ -
+ 3531.261
+ 7913.116
+
+
+
+
+
+
+
+
+
+
+
+
+
+ -
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABP+SURBVHhe7Z1ZbBXXGcdRH5r2oW/tA1KlqlWrtH1KS1SpqE8RQX2o0pQiJZVCUpqUiEpdlFBCBQaCKlGITQsFQV1DICwOiM0OZrfxjm2McVjNvu9bWIw3lv7MH51O5t47c+7cuTPjiGNpND5z5sw553++73zbOXfQoKfpCzACj56mATsCT6Yf7a8eaGn79u2NjY379u379HE6cOBARUXFnDlzSkpKFixYsHPnTvNo7969/Ev/ampquGlvb6+vr+eG1NDQ0NLS0tbWtmTJkkOHDlVVVVED5UtLS8ePH//aa6+NHj366tWry5cv5xO7Hifeam1tbW5u5uu8y7/cNDU1USe1kWpra+seJz7HPVcztDusE69Q1hcTgBvAEDLcjGBHRwfgkQAAbBg4BpGBBr+DBw/qEWUY8crKSg0gAFCM1/Wv6lm8eDElmRZTpkzZv3///PnzR40a9frrr7/55pvXrl3jX0YTkEi8C2ZCS0CCoqDlXyrXv7t37wZXruTohq/ohiuJMnqXt6iKe5Laz1c0DzQDPCbBwIaQMaWTjMWePXsYF5ECtAKW4KfxUmKMGAvNaDDjLXKcc5wxYkBPnTp148aNc+fO3b179/Lly2+88cbIkSMp2dnZSQFr+ukvaKhHAJBElzRDCHEVD+BKU2k8HxJNi9YFNjfkwyR4RBL83Gii8GjAQ8hgQVuMC11iXLjSW4aDEYS2nMnFlCjG8JlMSgppzQmRAjODYmQ6icCXs2UqoBmgOWSTnJNAtMhV1MlV9Mp1wEPI0NNVrYgsYALPdwmhAAgBlbOkGCwjZRisc8QDIxfui6mTYKBCqAWM4XZyUZiM2J3NqAkwprMpL1zJ1LQYKGngQWjAYz1AeDEwMO6SMO0h1KrjBIx7iRiWlSQB5oEEocBjJWCUAY+rkSqNnAKizhXOd4i1+DkJkfqh5qcQ+g5ddgW0+DPWIAR40B8DrRXLWRH/QkD2nJDy8GHKO+uhWnAlDRR2mnQqFHgQFpQBeBIOU8FzKs6gYs8JpUsYgROZr7K6bltlTWtbOwL+zqYm/t1eVVNV06+kZzfvoiqdXAgFHmAg1iPcA4z0BO+R4RUkFMpbjrjmB2TNTU1tXfW2rdVrPqotL20sW1pc+I+iyRPq1y2uLf94x5pl/QAmEsUkQiickDWklskwZr84UVIqs+UrgM1X+lfE2oZlc4vubfnLo/aC0g/GDP/5L3758q93FP/h0b6CM6v++FHJwrqGfo0laSlZELr0BMFgiYRrZGG8TjnFY9wNIa6v2PL+H3/7YMF3uuZ84+VhzxdMmzF+yszf/GzwoyWDzxf+8L13xlXXJpGdJgJCiZpQg/QERl/qWjDwRLIytfgyXkHLp6H4uqbdS4umdL7/5Uezn1nx1jd/NWLkd7/9rY2/e+bRvK+cnvj1jxYuqmvs5wdJSzFDKJyMniDrcy7gOeUaJoQlOxXkTS27qjZvqPrn2Jo5YyqL3pr551Hz//ZW63/+VPuv31fO+2tNNX9JlGhig1A4+eoJgae8EYUsa6B8v6JZ31DZsLuyoW1HY1vTrt2Nza0Nu/fvbD9cWd9iKR9Zfi7EYjFAKPBglTBM2JevnhC4t6ItpwnNe0WEalN5L5W47HCB25OnF/MCISsQ3gMl52ok8LLVEwL3XCwaadO4mbyrksWVt2g2JcXScR9y71L/AzcpHy+GDKEAk9tTialNjtETGNAAekLgnoMBjUHHsJFrKAxXwOPBlUV0y5Yt8s/BYMmxrCRwUwO/GDKE9ByErly5YsJQCFkgR/4E46ILLGoG6OeTRc5hCM1UyaZNm06ePEnL8fdOnjx52LBhs2bNUkcUt5HM5TA0CBkpKeMkYDMQErJADtM5Rz0hAHh6RSuiLyekDCEzePxpOREYBQUF06ZNe/HFFyFKcjZu3Pjhhx9C0IGbkb8Xw4RQ1mGxI4JWlGTr8rBq5q9vzpppmIdcI0pds2bN4cOHGREKDx8+HPzefvttKJIc1u+VK1eyOkbT2qy+EiaE9FNuGsQBpAAliQbxJgnAsPFMzZB3gvYTJXXp0qXr168XFxdPmDABOYhFgRwYqQg63o6k/XqYEHoPU7ydZ/Q9NH1pDhAZE27btm00FXJUoKImoo00FFcHQ4OQDkiCT+aar/EFp7QKBm3mkcFAeEOUSUbOtDZMCKn0ick/kQxHwJBcwIjNshY6+aQMtkmejnmBkCFgLbQ0S8bFdlyRFlrhFJDphFCs1RXiFlebvb8bJhVKrktyt4UW88w5KEaWcUGocOFkwuZsVcgQKh45mZKb6bbipkwjM+n+QKvY6oR3J2QItV8kyX2W4dQpvEjMSaU2rZEJ7w7NDhlC+R+SDKEWP21hkVwDRbpkGadomlUwVSxcN2QIk69XaJQlcCqSUftR0uoPgC2rbyzYWH40TAg1NHLuJJwQJcJAfOjysstkajD5qUKs5eBGUyxkCKVXWHpZo+lhpq+IEHnK1SNQih4ptCDe1np8PXwIte8t4VSoFVHSinYzeSOUZMd9+BAqfCH5EApFuaC9DWkixMTqiOFDqP3HAwVCVkF8hL5MUguEfZy/b4UhFggOoQmQ0e5T/YtRX/sfBgqE8HwcSUw7X0LUtvoE9isghMCmHeJ4dOWRUZiMpLuES+FOtc9scvddDqVNJtACHBBCQoMUXUGwCQdCvPTSS6DIvw8fPtROfsugsRD5SbCqZHzRXlFvClMx+51vwdoT4K2sIaQnsJ3CwkJ82bw8btw4zoSYPn36iBEjOBaCnBUrVnzyySfM1gCtifgVWdqEnKadL59MoI6YNYSsGaz/69atExUuW7aMw1mGDh06duxYhTwRKVReXp58KpTlRUZ5yZxSEz2SCDFpK33WEKq3R44c4XAWYkw4nKWoqGjSpElEnSjMJPl2YYEkduJUYcHGRqN1bimNmG2k/VzWEFILhIgUo1UBWYZzeo4fPw5pSpbRwSgMUOxRa74kZUIjhaiN8ieDgO/CGSW0thAirRAXpLR161btRYIRcU8iE40Coc4cYQScPFX4od5NWhwKYLjELjkIff2d/99Smoz4EisImXecSXb06FH4p9KxY8c464pEJixUCXLkylMyeQSnJZ05c+bEiRPkZ3UoTASzWCFPLvkl1ZWY2hItojYsN4Je8AkrCDds2NDd3U1QbFdXV29vL/c9PT38y71EGJPu379/69YtnlKGwiTE1AcPHlAADTo5Yqr4YSrBOWUcbwDQfRNizfeHEA45c+bMe/fuQU9EV0JSZ8+e5QqpQYugePfW9X31G/ZUb7h44lOKiUZVTGW44TNr165dunSpDtiKPUm2zBTm4wuPRCFfm0403fSBULMSFKXzuRKKPDln9i6sLfja+neHdHw8tKc/I30x5izU7GsEiabbWvbSmlpEoDpgw1vBkNPYV5XMd4/8qZAmMivhjQYZ4ITazL/nPp3dWDCo/N0fHyv9/u2uBzwFWlJfXx80yo0YKftLkiPRpMoyzoHWU+9QPMokJNbLB0KIBnkSWwyrmsHs/Pnz4IHwAs/s6e27dGJnc3nR3tryfZX/7u69jwhDPvILXBRlg+vp06d5t6ysbNGiRQlhpK7wbRehSMHw1RyoRFuU801n3vX7M1I6s3r1asSTVMlF5JWayDePxGxJcGPqScLmIBvdDoaRGh/sGkrK6HTXeHmpPyOl3XCVCxcufPY43b59W9ebN2+ydxADDcfocqNEJkmZXE3iEbtM4p2t5uvesoyKUcaEcnkgZKOE5LvXVhDSBzkCdVyu7IQYaOCKYiZS3rUtXZsWtC3NmeKdqs5x9JBlXCui5BqPlvNIp0nH2DsrCM3ElC4stLSe62h6WWqYkjpjWaC6zkrI92S0r5+W02BLQ7zr/OfUVZN6mM0xiqbZQQhOaOj0Hyy5yuWLskiSdUbnmrO5V7gm84gBb1nGRYi+znqx5RhdwVlASN/gGOgJTilG0srFm90rVq2hJ9w7n2KpSVrUkKW0aYAU1/VglVTInGBlsSRre25hWdIWQlqJp54jA1AQsX/KRorO0PfwYe+VEyfLC1cXfwAhIrjyUw88JUnekUUmxqUilfXJFm/ZJEHu2gyVWqc20MSi+GYBIWd68BMsKOwSR+UvRKv4rHnencJBt6r+Tl3YSNH6cRwCHjo+buHZs2fHNT3TzuK0W9G857uNzBLjllJbCCVnM3+NnmfUwe6LRy7vmHXreGuqggjYsatNqRTj2pxmw698HUwSkeyJ2+ajlmWygJAaoSfkFBxPCCyYXRBtuD/QcfTAsYsdx05ilFEOEg1XLN3oggp0i4XDZBqCANH1voQofhvLwp8dhAyKToBAr9CMk4IhFUK6hCnAUwkC+tmAhKBoYzlLi70Mpx7rulh09DqiLYROr70c93SJ5jpd+XQPMpUT3/j39fs5CfH3ipgybUXzXRH1QySZ5CAj+FgKSpZ80reYFYQ0XZzTlbBfy2svvZB7wkpdZeCuCK6yfbOiRNw9V/9FKIEd7lIBPV6PRUe0ghAnA9oCSt6dO3dwWSBzkhBVUm3fyKtYR3mqYgilOPfJ5DNJOM9EQoflmd2p0190prN10s5FMqM/P8kfQnntAQMfE5SEOojJG2qDtrj26xg3LrZvX7Fr88pzHY1dXd1ohDyiGOXlvueGz+C153i62J1NNlvRPHiX6Mx7S6n3hkVfxphtAX9nE9OKSef08bqUh7N7i+sKvlr2zo8Of/yTtF57lWdFJEo4Xu+aAu9yZOa87rENlqcRuy/8qZA2sRY6eSYslIQWT+L9s+2z6yZ9qWzc84dX/OB210OYrR5hx4GdciNGijYS75F66kjuGo4I0aMeX9k1WzrzLu8PIbIojNTptYeRSjXEqN3T03v5dFvr1v8ebKk8ULe4t+8BbBPphkfINYqSIm6Kz6xfv37hwoUxMlKJ0IFlGZf5W4GymVbEKHVEK0aKOOOMnUm1wtjk0FuWwxiNbZJlQokcFEF77METs43GOOxPhcw+RAACCdk+gVEU6yg3EOLFzycyMY0qnxsSN2yxUOI+CV77HGUZFyFC0x6EaPbchMs2U2uzgpA5JZsL72sHqNz3MtYoJp8bWWek9cOvlGlS7NYZ51a03IeVPnqf0CLjVAR+RCsITYdpFiIJzUI2UeSPfL8ARn/kHdVuGPKTEOnkbHkoskzqipgpIFiWoAh2smUHocgOxyE3NF1WN+5ZYKQt6dwg6A/8GDI9TUKSLBO6AdN3fRW7ylGNyVUidU5kWoMhTXImyjsGtv5NMMdPHzt17vjxficwwicrH/lo91xxWdD6vHbAcn5YhjxZ1uYcE49No4YQs602q/JZUKGUVvyFrt0wnYfq7h5t6bv/QFKrjpRXQn0Uj82qTfkoLN6eD3lY9O0h6FpuAQ/ca1sIgQGv/bx588AJCkPt028YsLWpu7mw+f3vzV+4ks7wlEfEXvAIlz1p7ty50cjW3kOQdita4FFzrYiyi6adqYxJ2i1UoXxaldhCSFGaiGKHqUXGF6wwMrvcbCg+WfbemfP9SoWIDzLlEXFQQEgQfj7mflZDoHHM3bSW6aPU76Hp85bvVqmsuuMqnAWEvIluJ5uZwtRkRbt97Xpn55ONhoAngCkAijg3krCDS0pOvluSiVHLDhCKVSgt0tlBqOkMY6RBzCzCLPo33bft4Qc7ydcvXnMj7UI/XpWE0xPyJMu42Kk2OmU61zR/B0RmByGNpolK5lc5QBQsWfxMH7T1Xtvv5J/LhVHk/q5E/wj4eaZTacQGgkUL+HY/awhVo8RlrG6oEJjWSkpKpk6dinUbfy8ron6nSdaQwIEOvk23L2Afvm1fZ2pJbxVCxpp86IgBIYTIOOVJ4kxpaekrr7zywgsvjBkzhn/ROvTLfzK5Kfwpl6HJ8d18yzKu5mXCSbpHPkSqIBAqspsTg6QIvvrqq6NHj544ceJzzz0nWYbwX22Agt/KAheBqdBDXMwfE3N9VIZTxXqltidP4cJBIFTjIDK58tEChwwZ8uyzz+KUl0ahfU/aE4R0ox/sjcvMLVkmMt1U625a6VfbTkOPjQ4OIUudzNyYvHXiEzeiOcPx9fs/FENYjctGozHNxyLkweEznaTgQaOB1wtbCGXqdCWdIatzn0jmX2cxQIUEMZbGtWuEoQkQvh14QCXr0eW02pR0xHCt7VlAaGRRIaS2eiRTgCkJgcJOo+elNC9w+HYuKPJuWkKkPaFvKbWCED6JqQybtY4rcV4xsykaSol/MXNzNUn5vIIfI/pQYAn60a/EEoPTbmmTjhji2uwPIeyRPWnY1YhrUnQouiBXfEncpG50UlhbasJFFf1QBtiKliPxmdeBCl6aSRQPcUupP4SQDj9sCxlh8NSZFtCZTr9Ai5dqaBLEp9B9AFO4PtHABNRQgKOfVq1axdwMa4xs6olFljENy6RFSM0Py2brDyG8G2EkNfbeidyNKxeONK3tvPUZRAm9oi+SZATnRR3+tXnz5lh+lDpiWcY5sTSB0hpOdVJIKFK6P4TwouXLl5toboiPcDTDTnFJdHf1tSydenXzT9s3TU/LQpWJuz96cSYuWcZJiGmhEiGGsqXUB0KmCTbrGTNmmFBgSArGiHUUIGGVkN2FE/tbPhhcPXFwR2uFN4QRR3PHJcs4CZFZi+SSqmBINAVFm+XAu4w/FUo3cEZzu3C6fv7QnrKxRw/s5ewLTDPIn3ILi4vqMD1eoRsRR0PR7LDCt3McaMXzSRMzSed/5a4jWkFYUVFhGCmyDAHBXJVcx7ABmDZA4bXQ1idzHimH6uPQiDIgX0tRKOHbuUAogku19Utn9T5Lw+a7n4PQgw0+fZTkERj0NH0BRuB/W0JxdkO+430AAAAASUVORK5CYII=
+
+
+
+
+
\ No newline at end of file
diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀.GHX b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀.GHX
index 43bc9848..b18d140e 100644
--- a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀.GHX
+++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/XHG.⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀.GHX
@@ -48,10 +48,10 @@
-
- -7393
- -19904
+ -3355
+ -1351
- - 0.8224911
+ - 0.816809654
@@ -95,9 +95,9 @@
- - 2226
+ - 2257
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
@@ -1171,51 +1171,6 @@
-
- - 57da07bd-ecab-415d-9d86-af36d7073abc
- - Number Slider
-
-
-
-
- - Numeric slider for single values
- - 40fce33c-72c8-4b9e-b056-d06a290937b2
- - Number Slider
- -
- - false
- - 0
-
-
-
-
- -
- 4240
- 5238
- 150
- 20
-
- -
- 4240.236
- 5238.513
-
-
-
-
-
- - 6
- - 1
- - 0
- - 2
- - 0
- - 0
- - 0.043752
-
-
-
-
-
-
-
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -1400,7 +1355,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -1630,7 +1585,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -1907,7 +1862,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -1973,7 +1928,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -2008,7 +1963,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -2044,7 +1999,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -2229,7 +2184,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -2459,7 +2414,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -2736,7 +2691,7 @@
-
+
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
@@ -2974,7 +2929,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -3062,7 +3017,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -3098,7 +3053,7 @@
-
+
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
@@ -3400,7 +3355,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -3695,7 +3650,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -3814,7 +3769,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -4109,7 +4064,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -4228,7 +4183,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -4523,7 +4478,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -4642,7 +4597,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -4937,7 +4892,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -5056,7 +5011,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -5351,7 +5306,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -5470,7 +5425,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -5655,7 +5610,7 @@
-
+
- 71b5b089-500a-4ea6-81c5-2f960441a0e8
- PolyLine
@@ -5788,7 +5743,7 @@
-
+
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
@@ -5948,7 +5903,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -5985,7 +5940,7 @@
-
+
- 6f93d366-919f-4dda-a35e-ba03dd62799b
- Sort List
@@ -6140,7 +6095,7 @@
-
+
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
@@ -6226,7 +6181,7 @@
-
+
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
@@ -6419,7 +6374,7 @@
-
+
- 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
- Dot Display
@@ -6577,7 +6532,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -6872,7 +6827,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -6992,7 +6947,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -7222,7 +7177,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -7499,7 +7454,7 @@
-
+
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
@@ -7657,7 +7612,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -7700,7 +7655,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -7736,7 +7691,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -7947,7 +7902,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -8034,14 +7989,14 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
-
+
- 1
-
255;255;255;255
@@ -8062,7 +8017,8 @@
- 40fce33c-72c8-4b9e-b056-d06a290937b2
- 47a743e6-2557-42d2-a2c1-210a6a941e82
- 476ce713-0dae-4d18-804a-2b7b11658f2a
- - 15
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
+ - 16
- e9edf9da-696f-47bd-a5e5-79c7729f8e89
- Group
@@ -8073,7 +8029,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -8109,7 +8065,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -8145,7 +8101,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -8164,13 +8120,13 @@
-
4277
- 5275
+ 5231
82
44
-
4308
- 5297
+ 5253
@@ -8198,13 +8154,13 @@
-
4279
- 5277
+ 5233
14
20
-
4287.5
- 5287
+ 5243
@@ -8217,7 +8173,7 @@
- B
- B
- true
- - 40fce33c-72c8-4b9e-b056-d06a290937b2
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
- 1
@@ -8225,13 +8181,13 @@
-
4279
- 5297
+ 5253
14
20
-
4287.5
- 5307
+ 5263
@@ -8251,13 +8207,13 @@
-
4323
- 5277
+ 5233
34
40
-
4341.5
- 5297
+ 5253
@@ -8269,7 +8225,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -8480,7 +8436,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -8567,7 +8523,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -8606,7 +8562,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -8642,7 +8598,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -8678,7 +8634,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -8802,7 +8758,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -8902,7 +8858,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -8955,7 +8911,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -8991,7 +8947,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9027,7 +8983,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -9055,7 +9011,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -9155,7 +9111,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -9208,7 +9164,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9244,7 +9200,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9280,7 +9236,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -9308,7 +9264,7 @@
-
+
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
@@ -9394,7 +9350,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -9518,7 +9474,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9554,7 +9510,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -9716,7 +9672,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9752,7 +9708,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -9790,7 +9746,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -9826,7 +9782,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -9926,7 +9882,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -9979,7 +9935,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -10015,7 +9971,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -10051,7 +10007,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -10081,7 +10037,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -10205,7 +10161,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -10241,7 +10197,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -10277,7 +10233,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -10377,7 +10333,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -10430,7 +10386,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -10466,7 +10422,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -10502,7 +10458,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -10530,7 +10486,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -10825,7 +10781,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -10945,7 +10901,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -10988,7 +10944,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11026,7 +10982,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11064,7 +11020,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11102,7 +11058,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11140,7 +11096,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11178,7 +11134,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11216,7 +11172,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -11254,7 +11210,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -11291,7 +11247,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -11327,7 +11283,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -11415,7 +11371,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11451,7 +11407,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11487,7 +11443,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11523,7 +11479,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11559,7 +11515,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11595,7 +11551,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -11780,7 +11736,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -11816,7 +11772,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -12027,7 +11983,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -12114,7 +12070,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -12150,7 +12106,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -12186,7 +12142,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -12310,7 +12266,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -12434,7 +12390,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -12470,7 +12426,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -12497,7 +12453,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -12792,7 +12748,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -12812,13 +12768,13 @@
-
4277
- 569
+ 566
82
44
-
4345
- 591
+ 588
@@ -12838,13 +12794,13 @@
-
4279
- 571
+ 568
51
20
-
4306
- 581
+ 578
@@ -12865,13 +12821,13 @@
-
4279
- 591
+ 588
51
20
-
4306
- 601
+ 598
@@ -12911,7 +12867,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -13141,7 +13097,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -13418,7 +13374,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -13713,7 +13669,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -13832,7 +13788,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -13878,7 +13834,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -13916,7 +13872,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -14004,7 +13960,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14040,7 +13996,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14076,7 +14032,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -14266,7 +14222,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14302,7 +14258,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -14513,7 +14469,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -14600,7 +14556,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -14638,7 +14594,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14674,7 +14630,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14710,7 +14666,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -14834,7 +14790,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -14958,7 +14914,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -14994,7 +14950,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -15021,7 +14977,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -15316,7 +15272,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -15435,7 +15391,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -15665,7 +15621,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -15942,7 +15898,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -16237,7 +16193,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -16356,7 +16312,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -16402,7 +16358,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -16438,7 +16394,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -16526,7 +16482,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -16562,7 +16518,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -16598,7 +16554,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -16788,7 +16744,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -16824,7 +16780,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -17035,7 +16991,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -17122,7 +17078,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -17161,7 +17117,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -17197,7 +17153,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -17233,7 +17189,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -17357,7 +17313,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -17481,7 +17437,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -17517,7 +17473,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -17544,7 +17500,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -17839,7 +17795,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -17958,7 +17914,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -18188,7 +18144,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -18465,7 +18421,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -18760,7 +18716,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -18879,7 +18835,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -18925,7 +18881,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -18961,7 +18917,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -19049,7 +19005,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -19085,7 +19041,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -19121,7 +19077,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -19311,7 +19267,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -19347,7 +19303,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -19558,7 +19514,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -19645,7 +19601,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -19684,7 +19640,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -19720,7 +19676,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -19756,7 +19712,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -19880,7 +19836,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -20004,7 +19960,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -20040,7 +19996,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -20067,7 +20023,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -20362,7 +20318,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -20481,7 +20437,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -20711,7 +20667,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -20988,7 +20944,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -21283,7 +21239,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -21402,7 +21358,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -21448,7 +21404,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -21484,7 +21440,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -21572,7 +21528,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -21608,7 +21564,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -21644,7 +21600,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -21829,7 +21785,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -21865,7 +21821,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -22076,7 +22032,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -22163,7 +22119,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -22202,7 +22158,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -22238,7 +22194,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -22274,7 +22230,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -22398,7 +22354,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -22522,7 +22478,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -22558,7 +22514,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -22585,7 +22541,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -22880,7 +22836,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -22999,7 +22955,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -23229,7 +23185,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -23506,7 +23462,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -23801,7 +23757,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -23920,7 +23876,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -23966,7 +23922,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -24003,7 +23959,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -24091,7 +24047,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -24127,7 +24083,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -24163,7 +24119,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -24348,7 +24304,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -24384,7 +24340,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -24595,7 +24551,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -24682,7 +24638,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -24720,7 +24676,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -24756,7 +24712,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -24792,7 +24748,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -24916,7 +24872,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -25040,7 +24996,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -25076,7 +25032,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -25103,7 +25059,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -25398,7 +25354,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -25517,7 +25473,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -25747,7 +25703,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -26024,7 +25980,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -26319,7 +26275,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -26438,7 +26394,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -26484,7 +26440,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -26520,7 +26476,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -26608,7 +26564,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -26644,7 +26600,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -26680,7 +26636,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -26870,7 +26826,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -26906,7 +26862,7 @@
-
+
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
@@ -27117,7 +27073,7 @@
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -27204,7 +27160,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -27243,7 +27199,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -27279,7 +27235,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -27315,7 +27271,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -27439,7 +27395,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -27563,7 +27519,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -27599,7 +27555,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -27626,7 +27582,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -27921,7 +27877,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -28040,7 +27996,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -28270,7 +28226,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -28547,7 +28503,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -28842,7 +28798,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -28961,7 +28917,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -28999,7 +28955,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29037,7 +28993,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29075,7 +29031,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29113,7 +29069,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29151,7 +29107,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29189,7 +29145,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -29227,7 +29183,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -29270,7 +29226,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -29313,7 +29269,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -29356,7 +29312,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -29414,7 +29370,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -29463,7 +29419,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -29513,7 +29469,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -29553,7 +29509,7 @@
-
+
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
@@ -29787,7 +29743,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -29993,7 +29949,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -30201,7 +30157,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -30325,7 +30281,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -30425,7 +30381,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -30478,7 +30434,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -30514,7 +30470,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -30550,7 +30506,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -30578,7 +30534,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -30616,7 +30572,7 @@
-
+
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
@@ -30781,7 +30737,7 @@
-
+
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
@@ -31015,7 +30971,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -31053,7 +31009,7 @@
-
+
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
@@ -31191,7 +31147,7 @@
-
+
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
@@ -31277,7 +31233,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -31313,7 +31269,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -31413,7 +31369,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -31466,7 +31422,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -31502,7 +31458,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -31538,7 +31494,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -31593,7 +31549,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -31629,7 +31585,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -31654,7 +31610,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -31697,7 +31653,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -31860,7 +31816,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -32085,7 +32041,7 @@
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -32285,7 +32241,7 @@
-
+
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
@@ -32373,7 +32329,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -32426,7 +32382,7 @@
-
+
- 5b850221-b527-4bd6-8c62-e94168cd6efa
- Mass Addition
@@ -32540,7 +32496,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -32575,7 +32531,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -32613,7 +32569,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -32821,7 +32777,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -32921,7 +32877,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -32974,7 +32930,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -33010,7 +32966,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -33046,7 +33002,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -33084,7 +33040,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -33120,7 +33076,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -33208,7 +33164,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -33244,7 +33200,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -33280,7 +33236,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -33308,7 +33264,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -33470,7 +33426,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -33594,7 +33550,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -33637,7 +33593,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -33800,7 +33756,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -34025,7 +33981,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -34233,7 +34189,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -34333,7 +34289,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -34386,7 +34342,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -34422,7 +34378,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -34458,7 +34414,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -34496,7 +34452,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -34584,7 +34540,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -34620,7 +34576,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -34656,7 +34612,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -34818,7 +34774,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -34942,7 +34898,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -34985,7 +34941,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -35148,7 +35104,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -35373,7 +35329,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -35422,7 +35378,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -35458,7 +35414,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -35671,7 +35627,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -35771,7 +35727,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -35824,7 +35780,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -35860,7 +35816,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -35895,7 +35851,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -35931,7 +35887,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -35969,7 +35925,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -36057,7 +36013,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -36093,7 +36049,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -36129,7 +36085,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -36291,7 +36247,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -36415,7 +36371,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -36458,7 +36414,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -36621,7 +36577,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -36846,7 +36802,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -36894,7 +36850,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -36930,7 +36886,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -37143,7 +37099,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -37243,7 +37199,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -37296,7 +37252,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -37332,7 +37288,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -37368,7 +37324,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -37406,7 +37362,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -37494,7 +37450,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -37530,7 +37486,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -37566,7 +37522,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -37728,7 +37684,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -37852,7 +37808,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -37895,7 +37851,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -38058,7 +38014,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -38283,7 +38239,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -38331,7 +38287,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -38367,7 +38323,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -38573,7 +38529,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -38786,7 +38742,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -38886,7 +38842,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -38939,7 +38895,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -38975,7 +38931,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -39011,7 +38967,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -39049,7 +39005,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -39137,7 +39093,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -39173,7 +39129,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -39209,7 +39165,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -39371,7 +39327,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -39495,7 +39451,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -39538,7 +39494,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -39701,7 +39657,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -39926,7 +39882,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -39972,7 +39928,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -40008,7 +39964,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -40221,7 +40177,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -40321,7 +40277,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -40374,7 +40330,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -40410,7 +40366,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -40446,7 +40402,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -40484,7 +40440,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -40572,7 +40528,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -40608,7 +40564,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -40644,7 +40600,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -40806,7 +40762,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -40930,7 +40886,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -40973,7 +40929,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -41136,7 +41092,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -41361,7 +41317,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -41409,7 +41365,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -41445,7 +41401,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -41658,7 +41614,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -41758,7 +41714,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -41811,7 +41767,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -41847,7 +41803,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -41883,7 +41839,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -41921,7 +41877,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -42009,7 +41965,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -42045,7 +42001,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -42081,7 +42037,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -42243,7 +42199,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -42367,7 +42323,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -42410,7 +42366,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -42573,7 +42529,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -42798,7 +42754,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -42846,7 +42802,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -42882,7 +42838,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -43177,7 +43133,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -43297,7 +43253,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -43323,7 +43279,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -43618,7 +43574,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -43738,7 +43694,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -43764,7 +43720,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -44059,7 +44015,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -44179,7 +44135,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -44205,7 +44161,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -44500,7 +44456,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -44620,7 +44576,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -44646,7 +44602,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -44941,7 +44897,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -45061,7 +45017,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -45087,7 +45043,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -45382,7 +45338,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -45502,7 +45458,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -45528,7 +45484,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -45823,7 +45779,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -45943,7 +45899,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -45969,7 +45925,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -46264,7 +46220,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -46384,7 +46340,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -46410,7 +46366,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -46623,7 +46579,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -46723,7 +46679,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -46776,7 +46732,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -46812,7 +46768,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -46848,7 +46804,7 @@
-
+
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
@@ -46886,7 +46842,7 @@
-
+
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
@@ -46974,7 +46930,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -47010,7 +46966,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -47046,7 +47002,7 @@
-
+
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
@@ -47208,7 +47164,7 @@
-
+
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
@@ -47332,7 +47288,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -47375,7 +47331,7 @@
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -47538,7 +47494,7 @@
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -47763,7 +47719,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -47811,7 +47767,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -47847,7 +47803,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -48142,7 +48098,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -48262,7 +48218,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -48288,7 +48244,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -48518,7 +48474,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -48795,7 +48751,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -49090,7 +49046,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -49210,7 +49166,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -49236,7 +49192,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -49466,7 +49422,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -49743,7 +49699,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -50038,7 +49994,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -50158,7 +50114,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -50184,7 +50140,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -50414,7 +50370,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -50691,7 +50647,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -50986,7 +50942,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -51106,7 +51062,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -51132,7 +51088,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -51362,7 +51318,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -51639,7 +51595,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -51934,7 +51890,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -52054,7 +52010,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -52080,7 +52036,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -52310,7 +52266,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -52587,7 +52543,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -52882,7 +52838,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -53002,7 +52958,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -53028,7 +52984,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -53057,7 +53013,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -53287,7 +53243,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -53564,7 +53520,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -53859,7 +53815,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -53979,7 +53935,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -54005,7 +53961,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -54235,7 +54191,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -54512,7 +54468,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -54807,7 +54763,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -54927,7 +54883,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -54953,7 +54909,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -55183,7 +55139,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -55460,7 +55416,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -55755,7 +55711,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -55875,7 +55831,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -55901,7 +55857,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -56131,7 +56087,7 @@
-
+
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
@@ -56408,7 +56364,7 @@
-
+
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
@@ -56703,7 +56659,7 @@
-
+
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
@@ -56823,7 +56779,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -56849,7 +56805,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -56892,7 +56848,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -56914,7 +56870,7 @@
-
- 2
- - 0.0291666666
+ - 0.0246093750
@@ -56931,7 +56887,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -56953,7 +56909,7 @@
-
- 1
- - 0.03708160000
+ - 0.03281250000
@@ -56970,7 +56926,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -57009,7 +56965,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -57048,7 +57004,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -57074,7 +57030,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -57109,7 +57065,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57145,7 +57101,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57181,7 +57137,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57217,7 +57173,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57253,7 +57209,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57289,7 +57245,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57325,7 +57281,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57361,7 +57317,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57397,7 +57353,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -57433,7 +57389,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -57463,7 +57419,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -57549,7 +57505,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -57574,7 +57530,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -57611,7 +57567,7 @@
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -57813,7 +57769,7 @@
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -58011,7 +57967,7 @@
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -58047,7 +58003,7 @@
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -58227,7 +58183,7 @@
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -58313,7 +58269,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -58356,7 +58312,7 @@
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -58641,7 +58597,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -58678,7 +58634,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -58908,7 +58864,7 @@
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -59077,7 +59033,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -59260,7 +59216,7 @@
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -59395,7 +59351,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -59625,7 +59581,7 @@
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -59841,7 +59797,7 @@
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -59976,7 +59932,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -60009,7 +59965,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -60062,7 +60018,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -60098,7 +60054,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -60123,7 +60079,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -60175,7 +60131,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -60405,7 +60361,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -60502,7 +60458,7 @@
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -60640,7 +60596,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -60693,7 +60649,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -60790,7 +60746,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -60843,7 +60799,7 @@
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -60956,7 +60912,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -61009,7 +60965,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -61106,7 +61062,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -61142,7 +61098,7 @@
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -61266,7 +61222,7 @@
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -61399,7 +61355,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -61496,7 +61452,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -61549,7 +61505,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -61602,7 +61558,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -61699,7 +61655,7 @@
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -61910,7 +61866,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -61946,7 +61902,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -62043,7 +61999,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -62096,7 +62052,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -62326,7 +62282,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -62423,7 +62379,7 @@
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -62561,7 +62517,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -62614,7 +62570,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -62711,7 +62667,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -62764,7 +62720,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -62861,7 +62817,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -62914,7 +62870,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -62967,7 +62923,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -63020,7 +62976,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -63117,7 +63073,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -63152,7 +63108,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -63177,7 +63133,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -63274,7 +63230,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -63327,7 +63283,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -63363,7 +63319,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -63399,7 +63355,7 @@
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -63511,7 +63467,7 @@
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -63802,7 +63758,7 @@
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -63940,7 +63896,7 @@
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -64052,7 +64008,7 @@
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -64164,7 +64120,7 @@
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -64474,7 +64430,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -64506,7 +64462,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -64542,7 +64498,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -64578,7 +64534,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -64630,7 +64586,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -64682,7 +64638,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -64734,7 +64690,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -64769,7 +64725,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -64805,7 +64761,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -64841,7 +64797,7 @@
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -65052,7 +65008,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -65095,7 +65051,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65121,7 +65077,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -65218,7 +65174,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65325,7 +65281,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65428,7 +65384,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65453,7 +65409,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65478,7 +65434,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65503,7 +65459,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65528,7 +65484,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65553,7 +65509,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65578,7 +65534,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65603,7 +65559,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -65662,7 +65618,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65687,7 +65643,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65712,7 +65668,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -65756,7 +65712,7 @@
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -65958,7 +65914,7 @@
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -66156,7 +66112,7 @@
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -66336,7 +66292,7 @@
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -66381,7 +66337,7 @@
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -66467,7 +66423,7 @@
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -66510,7 +66466,7 @@
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -66795,7 +66751,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -66833,7 +66789,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -67063,7 +67019,7 @@
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -67232,7 +67188,7 @@
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -67415,7 +67371,7 @@
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -67550,7 +67506,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -67780,7 +67736,7 @@
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -67996,7 +67952,7 @@
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -68131,7 +68087,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -68170,7 +68126,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -68223,7 +68179,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -68259,7 +68215,7 @@
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -68284,7 +68240,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -68336,7 +68292,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -68566,7 +68522,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -68663,7 +68619,7 @@
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -68801,7 +68757,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -68854,7 +68810,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -68951,7 +68907,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -69004,7 +68960,7 @@
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -69117,7 +69073,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -69170,7 +69126,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -69267,7 +69223,7 @@
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -69303,7 +69259,7 @@
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -69427,7 +69383,7 @@
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -69560,7 +69516,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -69657,7 +69613,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -69710,7 +69666,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -69763,7 +69719,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -69860,7 +69816,7 @@
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -70071,7 +70027,7 @@
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -70107,7 +70063,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -70204,7 +70160,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -70257,7 +70213,7 @@
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -70487,7 +70443,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -70584,7 +70540,7 @@
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -70722,7 +70678,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -70775,7 +70731,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -70872,7 +70828,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -70925,7 +70881,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -71022,7 +70978,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -71075,7 +71031,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -71129,7 +71085,7 @@
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -71182,7 +71138,7 @@
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -71279,7 +71235,7 @@
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -71314,7 +71270,7 @@
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -71980,7 +71936,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -72092,7 +72048,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -72383,7 +72339,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -72650,7 +72606,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -72828,7 +72784,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -72873,7 +72829,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -72926,7 +72882,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -73013,7 +72969,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -73113,7 +73069,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -73210,7 +73166,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -73263,7 +73219,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -73288,7 +73244,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -73499,7 +73455,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -73535,7 +73491,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -73708,7 +73664,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -73745,7 +73701,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -73781,7 +73737,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -73817,7 +73773,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -73853,7 +73809,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -74064,7 +74020,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -74099,7 +74055,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -74261,7 +74217,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -74304,7 +74260,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -74356,7 +74312,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -74415,7 +74371,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -74474,7 +74430,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -74526,7 +74482,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -74638,7 +74594,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -74929,7 +74885,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -75067,7 +75023,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -75179,7 +75135,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -75291,7 +75247,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -75601,7 +75557,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -75635,7 +75591,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -75671,7 +75627,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -75707,7 +75663,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -75869,7 +75825,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -75906,7 +75862,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -75959,7 +75915,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -76002,7 +75958,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -76054,7 +76010,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -76151,7 +76107,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -76313,7 +76269,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -76350,7 +76306,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -76393,7 +76349,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -76429,7 +76385,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -76465,7 +76421,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -76501,7 +76457,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -76712,7 +76668,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -76755,7 +76711,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -76780,7 +76736,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -76942,7 +76898,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -76979,7 +76935,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77009,7 +76965,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77118,7 +77074,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77221,7 +77177,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77246,7 +77202,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77271,7 +77227,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77296,7 +77252,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77321,7 +77277,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77346,7 +77302,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77371,7 +77327,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77396,7 +77352,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -77455,7 +77411,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77480,7 +77436,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77505,7 +77461,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -77549,7 +77505,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -77751,7 +77707,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -77949,7 +77905,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -78129,7 +78085,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -78174,7 +78130,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -78260,7 +78216,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -78303,7 +78259,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -78588,7 +78544,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -78626,7 +78582,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -78856,7 +78812,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -79025,7 +78981,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -79208,7 +79164,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -79343,7 +79299,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -79573,7 +79529,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -79789,7 +79745,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -79924,7 +79880,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -79963,7 +79919,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -80016,7 +79972,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -80052,7 +80008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -80077,7 +80033,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -80129,7 +80085,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -80359,7 +80315,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -80456,7 +80412,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -80594,7 +80550,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -80647,7 +80603,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -80744,7 +80700,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -80797,7 +80753,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -80910,7 +80866,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -80963,7 +80919,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -81060,7 +81016,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -81096,7 +81052,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -81220,7 +81176,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -81353,7 +81309,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -81450,7 +81406,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -81503,7 +81459,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -81556,7 +81512,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -81653,7 +81609,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -81864,7 +81820,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -81900,7 +81856,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -81997,7 +81953,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82050,7 +82006,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -82280,7 +82236,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -82377,7 +82333,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -82515,7 +82471,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82568,7 +82524,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -82665,7 +82621,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82718,7 +82674,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -82815,7 +82771,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82868,7 +82824,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82922,7 +82878,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -82975,7 +82931,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -83072,7 +83028,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -83107,7 +83063,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -83773,7 +83729,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -83885,7 +83841,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -84176,7 +84132,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -84443,7 +84399,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -84621,7 +84577,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -84666,7 +84622,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -84719,7 +84675,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -84806,7 +84762,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -84906,7 +84862,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -85003,7 +84959,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -85056,7 +85012,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -85081,7 +85037,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -85292,7 +85248,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -85328,7 +85284,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -85501,7 +85457,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -85537,7 +85493,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -85573,7 +85529,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -85609,7 +85565,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -85645,7 +85601,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -85856,7 +85812,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -85889,7 +85845,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -86052,7 +86008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -86095,7 +86051,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -86147,7 +86103,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -86206,7 +86162,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -86265,7 +86221,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -86317,7 +86273,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -86371,7 +86327,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -86414,7 +86370,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -86466,7 +86422,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -86563,7 +86519,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -86599,7 +86555,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -86635,7 +86591,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -86671,7 +86627,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -86882,7 +86838,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -86925,7 +86881,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -86950,7 +86906,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -86993,7 +86949,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -87045,7 +87001,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -87081,7 +87037,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -87117,7 +87073,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -87170,7 +87126,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -87213,7 +87169,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -87256,7 +87212,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -87299,7 +87255,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
@@ -87547,7 +87503,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
@@ -87566,13 +87522,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
3780
- 7624
+ 7614
97
44
-
3826
- 7646
+ 7636
@@ -87602,13 +87558,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
3782
- 7626
+ 7616
29
20
-
3798
- 7636
+ 7626
@@ -87631,13 +87587,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
3782
- 7646
+ 7636
29
20
-
3798
- 7656
+ 7646
@@ -87657,13 +87613,13 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
3841
- 7626
+ 7616
34
40
-
3859.5
- 7646
+ 7636
@@ -87675,7 +87631,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
@@ -88013,7 +87969,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
@@ -88351,7 +88307,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c9785b8e-2f30-4f90-8ee3-cca710f82402
- Entwine
@@ -88480,7 +88436,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88510,7 +88466,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88617,7 +88573,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88720,7 +88676,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88745,7 +88701,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88770,7 +88726,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88795,7 +88751,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88820,7 +88776,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88845,7 +88801,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88870,7 +88826,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88895,7 +88851,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -88954,7 +88910,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -88979,7 +88935,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -89004,7 +88960,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -89048,7 +89004,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -89250,7 +89206,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -89448,7 +89404,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -89628,7 +89584,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -89673,7 +89629,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -89759,7 +89715,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -89802,7 +89758,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -90087,7 +90043,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -90125,7 +90081,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -90355,7 +90311,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -90524,7 +90480,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -90707,7 +90663,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -90842,7 +90798,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -91072,7 +91028,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -91288,7 +91244,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -91423,7 +91379,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -91462,7 +91418,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -91515,7 +91471,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -91551,7 +91507,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -91576,7 +91532,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -91628,7 +91584,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -91858,7 +91814,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -91955,7 +91911,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -92093,7 +92049,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -92146,7 +92102,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -92243,7 +92199,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -92296,7 +92252,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -92409,7 +92365,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -92462,7 +92418,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -92559,7 +92515,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -92595,7 +92551,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -92719,7 +92675,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -92852,7 +92808,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -92949,7 +92905,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -93002,7 +92958,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -93055,7 +93011,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -93152,7 +93108,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -93363,7 +93319,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -93399,7 +93355,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -93496,7 +93452,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -93549,7 +93505,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -93779,7 +93735,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -93876,7 +93832,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -94014,7 +93970,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -94067,7 +94023,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -94164,7 +94120,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -94217,7 +94173,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -94314,7 +94270,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -94367,7 +94323,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -94421,7 +94377,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -94474,7 +94430,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -94571,7 +94527,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -94606,7 +94562,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -95272,7 +95228,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -95384,7 +95340,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -95675,7 +95631,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -95942,7 +95898,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -96120,7 +96076,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -96165,7 +96121,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -96218,7 +96174,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -96305,7 +96261,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -96405,7 +96361,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -96502,7 +96458,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -96555,7 +96511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -96580,7 +96536,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -96791,7 +96747,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -96827,7 +96783,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -97000,7 +96956,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -97037,7 +96993,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -97073,7 +97029,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -97109,7 +97065,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -97145,7 +97101,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -97356,7 +97312,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -97391,7 +97347,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -97553,7 +97509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -97596,7 +97552,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -97648,7 +97604,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -97707,7 +97663,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -97766,7 +97722,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -97818,7 +97774,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -97930,7 +97886,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -98221,7 +98177,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -98359,7 +98315,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -98471,7 +98427,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -98583,7 +98539,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -98893,7 +98849,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -98929,7 +98885,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -98965,7 +98921,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -99001,7 +98957,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -99164,7 +99120,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -99201,7 +99157,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -99254,7 +99210,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -99297,7 +99253,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -99349,7 +99305,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -99446,7 +99402,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -99482,7 +99438,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -99518,7 +99474,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -99554,7 +99510,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -99765,7 +99721,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -99808,7 +99764,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -99833,7 +99789,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -99869,7 +99825,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -99922,7 +99878,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -99965,7 +99921,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a50fcd4a-cf42-4c3f-8616-022761e6cc93
- Deconstruct Vector
@@ -100103,7 +100059,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -100330,7 +100286,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -100553,7 +100509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100583,7 +100539,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100690,7 +100646,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100793,7 +100749,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100818,7 +100774,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100843,7 +100799,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100868,7 +100824,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100893,7 +100849,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100918,7 +100874,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100943,7 +100899,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -100968,7 +100924,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -101027,7 +100983,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -101052,7 +101008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -101077,7 +101033,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -101121,7 +101077,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -101323,7 +101279,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -101521,7 +101477,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -101701,7 +101657,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -101746,7 +101702,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -101832,7 +101788,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -101875,7 +101831,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -102160,7 +102116,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -102198,7 +102154,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -102428,7 +102384,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -102597,7 +102553,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -102780,7 +102736,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -102915,7 +102871,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -103145,7 +103101,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -103361,7 +103317,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -103496,7 +103452,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -103535,7 +103491,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -103588,7 +103544,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -103624,7 +103580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -103649,7 +103605,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -103701,7 +103657,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -103931,7 +103887,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -104028,7 +103984,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -104166,7 +104122,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -104219,7 +104175,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -104316,7 +104272,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -104369,7 +104325,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -104482,7 +104438,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -104535,7 +104491,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -104632,7 +104588,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -104668,7 +104624,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -104792,7 +104748,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -104925,7 +104881,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -105022,7 +104978,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -105075,7 +105031,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -105128,7 +105084,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -105225,7 +105181,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -105436,7 +105392,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -105472,7 +105428,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -105569,7 +105525,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -105622,7 +105578,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -105852,7 +105808,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -105949,7 +105905,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -106087,7 +106043,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -106140,7 +106096,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -106237,7 +106193,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -106290,7 +106246,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -106387,7 +106343,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -106440,7 +106396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -106494,7 +106450,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -106547,7 +106503,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -106644,7 +106600,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -106679,7 +106635,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -107345,7 +107301,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -107457,7 +107413,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -107748,7 +107704,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -108015,7 +107971,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -108193,7 +108149,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -108238,7 +108194,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -108291,7 +108247,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -108378,7 +108334,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -108478,7 +108434,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -108575,7 +108531,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -108628,7 +108584,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -108653,7 +108609,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -108864,7 +108820,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -108900,7 +108856,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -109073,7 +109029,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -109110,7 +109066,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -109146,7 +109102,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -109182,7 +109138,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -109218,7 +109174,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -109429,7 +109385,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -109464,7 +109420,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -109626,7 +109582,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -109669,7 +109625,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -109721,7 +109677,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -109780,7 +109736,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -109839,7 +109795,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -109891,7 +109847,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -110003,7 +109959,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -110294,7 +110250,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -110432,7 +110388,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -110544,7 +110500,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -110656,7 +110612,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -110966,7 +110922,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -111002,7 +110958,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -111038,7 +110994,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -111074,7 +111030,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -111237,7 +111193,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -111274,7 +111230,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -111327,7 +111283,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -111370,7 +111326,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -111422,7 +111378,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -111519,7 +111475,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -111555,7 +111511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -111591,7 +111547,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -111627,7 +111583,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -111838,7 +111794,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -111881,7 +111837,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -111906,7 +111862,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -111942,7 +111898,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -111995,7 +111951,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -112038,7 +111994,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -112261,7 +112217,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -112296,7 +112252,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -112339,7 +112295,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -112372,7 +112328,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -112408,7 +112364,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -112444,7 +112400,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -112480,7 +112436,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -112516,7 +112472,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -112694,7 +112650,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -112739,7 +112695,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -112917,7 +112873,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -113095,7 +113051,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -113273,7 +113229,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113303,7 +113259,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113410,7 +113366,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113513,7 +113469,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113538,7 +113494,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113563,7 +113519,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113588,7 +113544,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113613,7 +113569,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113638,7 +113594,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113663,7 +113619,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113688,7 +113644,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -113747,7 +113703,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113772,7 +113728,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113797,7 +113753,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -113841,7 +113797,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -114043,7 +113999,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -114241,7 +114197,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -114421,7 +114377,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -114466,7 +114422,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -114552,7 +114508,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -114595,7 +114551,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -114880,7 +114836,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -114918,7 +114874,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -115148,7 +115104,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -115317,7 +115273,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -115500,7 +115456,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -115635,7 +115591,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -115865,7 +115821,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -116081,7 +116037,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -116216,7 +116172,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -116255,7 +116211,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -116308,7 +116264,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -116344,7 +116300,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -116369,7 +116325,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -116421,7 +116377,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -116651,7 +116607,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -116748,7 +116704,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -116886,7 +116842,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -116939,7 +116895,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -117036,7 +116992,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -117089,7 +117045,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -117202,7 +117158,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -117255,7 +117211,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -117352,7 +117308,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -117388,7 +117344,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -117512,7 +117468,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -117645,7 +117601,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -117742,7 +117698,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -117795,7 +117751,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -117848,7 +117804,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -117945,7 +117901,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -118156,7 +118112,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -118192,7 +118148,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -118289,7 +118245,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -118342,7 +118298,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -118572,7 +118528,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -118669,7 +118625,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -118807,7 +118763,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -118860,7 +118816,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -118957,7 +118913,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -119010,7 +118966,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -119107,7 +119063,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -119160,7 +119116,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -119214,7 +119170,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -119267,7 +119223,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -119364,7 +119320,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -119399,7 +119355,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -120065,7 +120021,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -120177,7 +120133,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -120468,7 +120424,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -120735,7 +120691,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -120913,7 +120869,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -120958,7 +120914,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -121011,7 +120967,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -121098,7 +121054,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -121198,7 +121154,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -121295,7 +121251,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -121348,7 +121304,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -121373,7 +121329,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -121584,7 +121540,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -121620,7 +121576,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -121793,7 +121749,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -121829,7 +121785,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -121865,7 +121821,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -121901,7 +121857,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -121937,7 +121893,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -122148,7 +122104,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -122183,7 +122139,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -122345,7 +122301,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -122388,7 +122344,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -122440,7 +122396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -122499,7 +122455,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -122558,7 +122514,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -122610,7 +122566,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -122722,7 +122678,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -123013,7 +122969,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -123151,7 +123107,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -123263,7 +123219,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -123375,7 +123331,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -123685,7 +123641,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -123721,7 +123677,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -123757,7 +123713,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -123793,7 +123749,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -123956,7 +123912,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -123992,7 +123948,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -124045,7 +124001,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -124088,7 +124044,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -124140,7 +124096,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -124237,7 +124193,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -124273,7 +124229,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -124309,7 +124265,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -124345,7 +124301,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -124556,7 +124512,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -124599,7 +124555,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -124624,7 +124580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -124660,7 +124616,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -124713,7 +124669,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -124756,7 +124712,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -124979,7 +124935,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -125015,7 +124971,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -125193,7 +125149,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -125236,7 +125192,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -125272,7 +125228,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -125307,7 +125263,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125334,7 +125290,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125364,7 +125320,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125471,7 +125427,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125574,7 +125530,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125599,7 +125555,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125624,7 +125580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125649,7 +125605,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125674,7 +125630,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125699,7 +125655,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125724,7 +125680,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125749,7 +125705,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -125808,7 +125764,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125833,7 +125789,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125858,7 +125814,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -125902,7 +125858,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -126104,7 +126060,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -126302,7 +126258,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -126482,7 +126438,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -126527,7 +126483,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -126613,7 +126569,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -126656,7 +126612,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -126941,7 +126897,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -126979,7 +126935,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -127209,7 +127165,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -127378,7 +127334,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -127561,7 +127517,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -127696,7 +127652,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -127926,7 +127882,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -128142,7 +128098,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -128277,7 +128233,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -128316,7 +128272,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -128369,7 +128325,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -128405,7 +128361,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -128430,7 +128386,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -128482,7 +128438,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -128712,7 +128668,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -128809,7 +128765,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -128947,7 +128903,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -129000,7 +128956,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -129097,7 +129053,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -129150,7 +129106,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -129263,7 +129219,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -129316,7 +129272,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -129413,7 +129369,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -129449,7 +129405,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -129573,7 +129529,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -129706,7 +129662,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -129803,7 +129759,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -129856,7 +129812,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -129909,7 +129865,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -130006,7 +129962,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -130217,7 +130173,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -130253,7 +130209,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -130350,7 +130306,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -130403,7 +130359,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -130633,7 +130589,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -130730,7 +130686,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -130868,7 +130824,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -130921,7 +130877,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -131018,7 +130974,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -131071,7 +131027,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -131168,7 +131124,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -131221,7 +131177,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -131275,7 +131231,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -131328,7 +131284,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -131425,7 +131381,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -131460,7 +131416,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -132126,7 +132082,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -132238,7 +132194,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -132529,7 +132485,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -132803,7 +132759,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -132981,7 +132937,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -133026,7 +132982,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -133079,7 +133035,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -133166,7 +133122,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -133266,7 +133222,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -133363,7 +133319,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -133416,7 +133372,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -133441,7 +133397,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -133652,7 +133608,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -133688,7 +133644,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -133861,7 +133817,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -133897,7 +133853,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -133933,7 +133889,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -133969,7 +133925,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -134005,7 +133961,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -134216,7 +134172,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -134251,7 +134207,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -134413,7 +134369,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -134456,7 +134412,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -134508,7 +134464,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -134567,7 +134523,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -134626,7 +134582,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -134678,7 +134634,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -134790,7 +134746,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -135081,7 +135037,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -135219,7 +135175,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -135331,7 +135287,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -135443,7 +135399,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -135753,7 +135709,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -135789,7 +135745,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -135825,7 +135781,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -135861,7 +135817,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -136024,7 +135980,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -136060,7 +136016,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -136113,7 +136069,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -136156,7 +136112,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -136208,7 +136164,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -136305,7 +136261,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -136341,7 +136297,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -136377,7 +136333,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -136413,7 +136369,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -136624,7 +136580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -136667,7 +136623,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -136692,7 +136648,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -136728,7 +136684,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -136781,7 +136737,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -136824,7 +136780,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -137047,7 +137003,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -137083,7 +137039,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -137261,7 +137217,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -137306,7 +137262,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -137342,7 +137298,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -137378,7 +137334,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137404,7 +137360,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -137440,7 +137396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -137476,7 +137432,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137506,7 +137462,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137613,7 +137569,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137716,7 +137672,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137741,7 +137697,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137766,7 +137722,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137791,7 +137747,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137816,7 +137772,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137841,7 +137797,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137866,7 +137822,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137891,7 +137847,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -137950,7 +137906,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -137975,7 +137931,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -138000,7 +137956,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -138044,7 +138000,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -138246,7 +138202,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -138444,7 +138400,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -138624,7 +138580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -138669,7 +138625,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -138755,7 +138711,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -138798,7 +138754,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -139083,7 +139039,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -139121,7 +139077,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -139351,7 +139307,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -139520,7 +139476,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -139703,7 +139659,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -139838,7 +139794,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -140068,7 +140024,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -140284,7 +140240,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -140419,7 +140375,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -140458,7 +140414,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -140511,7 +140467,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -140547,7 +140503,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -140572,7 +140528,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -140624,7 +140580,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -140854,7 +140810,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -140951,7 +140907,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -141089,7 +141045,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -141142,7 +141098,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -141239,7 +141195,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -141292,7 +141248,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -141405,7 +141361,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -141458,7 +141414,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -141555,7 +141511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -141591,7 +141547,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -141715,7 +141671,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -141848,7 +141804,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -141945,7 +141901,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -141998,7 +141954,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -142051,7 +142007,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -142148,7 +142104,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -142359,7 +142315,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -142395,7 +142351,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -142492,7 +142448,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -142545,7 +142501,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -142775,7 +142731,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -142872,7 +142828,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -143010,7 +142966,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -143063,7 +143019,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -143160,7 +143116,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -143213,7 +143169,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -143310,7 +143266,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -143363,7 +143319,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -143417,7 +143373,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -143470,7 +143426,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -143567,7 +143523,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -143602,7 +143558,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -144268,7 +144224,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -144380,7 +144336,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -144671,7 +144627,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -144938,7 +144894,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -145116,7 +145072,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -145161,7 +145117,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -145214,7 +145170,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -145301,7 +145257,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -145401,7 +145357,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -145498,7 +145454,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -145551,7 +145507,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -145576,7 +145532,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -145787,7 +145743,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -145823,7 +145779,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -145996,7 +145952,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -146032,7 +145988,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -146068,7 +146024,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -146104,7 +146060,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -146140,7 +146096,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -146351,7 +146307,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -146386,7 +146342,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -146548,7 +146504,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -146591,7 +146547,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -146643,7 +146599,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -146702,7 +146658,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -146761,7 +146717,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -146813,7 +146769,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -146925,7 +146881,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -147216,7 +147172,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -147354,7 +147310,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -147466,7 +147422,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -147578,7 +147534,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -147888,7 +147844,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -147924,7 +147880,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -147960,7 +147916,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -147996,7 +147952,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -148159,7 +148115,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -148195,7 +148151,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -148248,7 +148204,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -148291,7 +148247,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -148343,7 +148299,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -148440,7 +148396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -148476,7 +148432,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -148512,7 +148468,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -148548,7 +148504,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -148759,7 +148715,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -148802,7 +148758,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -148827,7 +148783,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -148863,7 +148819,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -148916,7 +148872,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -148959,7 +148915,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -149182,7 +149138,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -149218,7 +149174,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -149396,7 +149352,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149426,7 +149382,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149533,7 +149489,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149636,7 +149592,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149661,7 +149617,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149686,7 +149642,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149711,7 +149667,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149736,7 +149692,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149761,7 +149717,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149786,7 +149742,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149811,7 +149767,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -149870,7 +149826,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149895,7 +149851,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149920,7 +149876,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -149964,7 +149920,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -150166,7 +150122,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -150364,7 +150320,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -150544,7 +150500,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -150589,7 +150545,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -150675,7 +150631,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -150718,7 +150674,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -151003,7 +150959,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -151041,7 +150997,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -151271,7 +151227,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -151440,7 +151396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -151623,7 +151579,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -151758,7 +151714,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -151988,7 +151944,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -152204,7 +152160,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -152339,7 +152295,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -152378,7 +152334,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -152431,7 +152387,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -152467,7 +152423,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -152492,7 +152448,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -152544,7 +152500,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -152774,7 +152730,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -152871,7 +152827,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -153009,7 +152965,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -153062,7 +153018,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -153159,7 +153115,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -153212,7 +153168,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -153325,7 +153281,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -153378,7 +153334,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -153475,7 +153431,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -153511,7 +153467,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -153635,7 +153591,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -153768,7 +153724,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -153865,7 +153821,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -153918,7 +153874,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -153971,7 +153927,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -154068,7 +154024,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -154279,7 +154235,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -154315,7 +154271,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -154412,7 +154368,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -154465,7 +154421,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -154695,7 +154651,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -154792,7 +154748,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -154930,7 +154886,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -154983,7 +154939,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -155080,7 +155036,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -155133,7 +155089,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -155230,7 +155186,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -155283,7 +155239,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -155337,7 +155293,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -155390,7 +155346,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -155487,7 +155443,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -155522,7 +155478,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -156188,7 +156144,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -156300,7 +156256,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -156591,7 +156547,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -156858,7 +156814,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -157036,7 +156992,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -157081,7 +157037,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -157134,7 +157090,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -157221,7 +157177,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -157321,7 +157277,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -157418,7 +157374,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -157471,7 +157427,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -157496,7 +157452,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -157707,7 +157663,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -157743,7 +157699,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -157916,7 +157872,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -157952,7 +157908,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -157988,7 +157944,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -158024,7 +157980,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -158060,7 +158016,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -158271,7 +158227,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -158306,7 +158262,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -158468,7 +158424,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -158511,7 +158467,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -158563,7 +158519,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -158622,7 +158578,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -158681,7 +158637,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -158733,7 +158689,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -158845,7 +158801,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -159136,7 +159092,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e5c33a79-53d5-4f2b-9a97-d3d45c780edc
- Deconstuct Rectangle
@@ -159274,7 +159230,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -159386,7 +159342,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
@@ -159498,7 +159454,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
@@ -159808,7 +159764,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -159844,7 +159800,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -159880,7 +159836,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -159916,7 +159872,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -160079,7 +160035,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -160115,7 +160071,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -160168,7 +160124,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -160211,7 +160167,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -160263,7 +160219,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -160360,7 +160316,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -160396,7 +160352,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -160432,7 +160388,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -160468,7 +160424,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -160679,7 +160635,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -160722,7 +160678,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -160747,7 +160703,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -160783,7 +160739,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -160836,7 +160792,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -160879,7 +160835,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -161102,7 +161058,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -161138,7 +161094,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -161316,7 +161272,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -161359,7 +161315,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -161395,7 +161351,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161421,7 +161377,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -161457,7 +161413,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -161510,7 +161466,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -161553,7 +161509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161581,7 +161537,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161611,7 +161567,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161720,7 +161676,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161823,7 +161779,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161848,7 +161804,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161873,7 +161829,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161898,7 +161854,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161923,7 +161879,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161948,7 +161904,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161973,7 +161929,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -161998,7 +161954,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -162057,7 +162013,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -162082,7 +162038,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -162107,7 +162063,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -162151,7 +162107,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -162353,7 +162309,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -162551,7 +162507,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -162731,7 +162687,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -162776,7 +162732,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -162862,7 +162818,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -162905,7 +162861,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -163190,7 +163146,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -163228,7 +163184,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -163458,7 +163414,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -163627,7 +163583,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -163810,7 +163766,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -163945,7 +163901,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -164175,7 +164131,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -164391,7 +164347,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -164526,7 +164482,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -164565,7 +164521,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -164618,7 +164574,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -164654,7 +164610,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -164679,7 +164635,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -164731,7 +164687,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -164961,7 +164917,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -165058,7 +165014,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -165196,7 +165152,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -165249,7 +165205,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -165346,7 +165302,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -165399,7 +165355,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -165512,7 +165468,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -165565,7 +165521,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -165662,7 +165618,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -165698,7 +165654,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -165822,7 +165778,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -165955,7 +165911,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -166052,7 +166008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -166105,7 +166061,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -166158,7 +166114,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -166255,7 +166211,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -166466,7 +166422,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -166502,7 +166458,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -166599,7 +166555,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -166652,7 +166608,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -166882,7 +166838,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -166979,7 +166935,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -167117,7 +167073,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -167170,7 +167126,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -167267,7 +167223,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -167320,7 +167276,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -167417,7 +167373,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -167470,7 +167426,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -167524,7 +167480,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -167577,7 +167533,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -167674,7 +167630,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -167709,7 +167665,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -168375,7 +168331,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -168487,7 +168443,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -168778,7 +168734,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -169052,7 +169008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -169230,7 +169186,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -169275,7 +169231,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -169328,7 +169284,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -169415,7 +169371,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -169515,7 +169471,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -169612,7 +169568,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -169665,7 +169621,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -169690,7 +169646,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -169901,7 +169857,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -169937,7 +169893,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -170110,7 +170066,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -170145,7 +170101,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -170181,7 +170137,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -170217,7 +170173,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -170253,7 +170209,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -170464,7 +170420,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -170498,7 +170454,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -170661,7 +170617,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -170704,7 +170660,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -170756,7 +170712,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -170815,7 +170771,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -170874,7 +170830,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -170926,7 +170882,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -170980,7 +170936,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -171023,7 +170979,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -171075,7 +171031,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -171172,7 +171128,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -171208,7 +171164,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -171244,7 +171200,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -171280,7 +171236,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -171491,7 +171447,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -171534,7 +171490,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -171559,7 +171515,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -171602,7 +171558,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -171645,7 +171601,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -171868,7 +171824,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -172046,7 +172002,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -172082,7 +172038,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172112,7 +172068,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172221,7 +172177,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172324,7 +172280,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172349,7 +172305,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172374,7 +172330,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172399,7 +172355,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172424,7 +172380,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172449,7 +172405,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172474,7 +172430,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172499,7 +172455,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -172558,7 +172514,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172583,7 +172539,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172608,7 +172564,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -172652,7 +172608,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -172854,7 +172810,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -173052,7 +173008,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -173232,7 +173188,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -173277,7 +173233,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -173363,7 +173319,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -173406,7 +173362,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -173691,7 +173647,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -173729,7 +173685,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -173959,7 +173915,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -174128,7 +174084,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -174311,7 +174267,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -174446,7 +174402,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -174676,7 +174632,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -174892,7 +174848,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -175027,7 +174983,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -175066,7 +175022,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -175119,7 +175075,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -175155,7 +175111,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -175180,7 +175136,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -175232,7 +175188,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -175462,7 +175418,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -175559,7 +175515,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -175697,7 +175653,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -175750,7 +175706,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -175847,7 +175803,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -175900,7 +175856,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -176013,7 +175969,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -176066,7 +176022,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -176163,7 +176119,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -176199,7 +176155,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -176323,7 +176279,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -176456,7 +176412,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -176553,7 +176509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -176606,7 +176562,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -176659,7 +176615,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -176756,7 +176712,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -176967,7 +176923,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -177003,7 +176959,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -177100,7 +177056,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -177153,7 +177109,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -177383,7 +177339,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -177480,7 +177436,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -177618,7 +177574,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -177671,7 +177627,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -177768,7 +177724,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -177821,7 +177777,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -177918,7 +177874,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -177971,7 +177927,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -178025,7 +177981,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -178078,7 +178034,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -178175,7 +178131,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -178210,7 +178166,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -178876,7 +178832,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -178988,7 +178944,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -179279,7 +179235,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -179553,7 +179509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -179731,7 +179687,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -179776,7 +179732,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -179829,7 +179785,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -179916,7 +179872,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -180016,7 +179972,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -180113,7 +180069,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -180166,7 +180122,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -180191,7 +180147,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -180402,7 +180358,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -180438,7 +180394,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -180611,7 +180567,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -180646,7 +180602,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -180682,7 +180638,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -180718,7 +180674,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -180754,7 +180710,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -180965,7 +180921,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -180999,7 +180955,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -181162,7 +181118,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -181205,7 +181161,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -181257,7 +181213,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -181316,7 +181272,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -181375,7 +181331,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -181427,7 +181383,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -181481,7 +181437,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -181524,7 +181480,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -181576,7 +181532,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -181673,7 +181629,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -181709,7 +181665,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -181745,7 +181701,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -181781,7 +181737,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -181992,7 +181948,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -182035,7 +181991,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182060,7 +182016,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -182103,7 +182059,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -182146,7 +182102,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -182369,7 +182325,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -182547,7 +182503,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -182583,7 +182539,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182613,7 +182569,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182722,7 +182678,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182825,7 +182781,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182850,7 +182806,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182875,7 +182831,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182900,7 +182856,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182925,7 +182881,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182950,7 +182906,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -182975,7 +182931,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -183000,7 +182956,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -183059,7 +183015,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -183084,7 +183040,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -183109,7 +183065,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -183153,7 +183109,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -183355,7 +183311,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -183553,7 +183509,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -183733,7 +183689,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -183778,7 +183734,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -183864,7 +183820,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -183907,7 +183863,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -184192,7 +184148,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -184230,7 +184186,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -184460,7 +184416,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -184629,7 +184585,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -184812,7 +184768,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -184947,7 +184903,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -185177,7 +185133,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -185393,7 +185349,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -185528,7 +185484,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -185567,7 +185523,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -185620,7 +185576,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -185656,7 +185612,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -185681,7 +185637,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -185733,7 +185689,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -185963,7 +185919,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -186060,7 +186016,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -186198,7 +186154,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -186251,7 +186207,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -186348,7 +186304,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -186401,7 +186357,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -186514,7 +186470,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -186567,7 +186523,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -186664,7 +186620,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -186700,7 +186656,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -186824,7 +186780,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -186957,7 +186913,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -187054,7 +187010,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -187107,7 +187063,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -187160,7 +187116,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -187257,7 +187213,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -187468,7 +187424,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -187504,7 +187460,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -187601,7 +187557,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -187654,7 +187610,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -187884,7 +187840,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -187981,7 +187937,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -188119,7 +188075,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -188172,7 +188128,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -188269,7 +188225,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -188322,7 +188278,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -188419,7 +188375,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -188472,7 +188428,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -188526,7 +188482,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -188579,7 +188535,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -188676,7 +188632,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -188711,7 +188667,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -189377,7 +189333,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -189489,7 +189445,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -189780,7 +189736,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -190054,7 +190010,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -190232,7 +190188,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -190277,7 +190233,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -190330,7 +190286,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -190417,7 +190373,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -190517,7 +190473,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -190614,7 +190570,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -190667,7 +190623,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -190692,7 +190648,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -190903,7 +190859,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -190939,7 +190895,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -191112,7 +191068,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -191147,7 +191103,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -191183,7 +191139,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -191219,7 +191175,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -191255,7 +191211,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -191466,7 +191422,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -191500,7 +191456,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -191663,7 +191619,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -191706,7 +191662,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -191758,7 +191714,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -191817,7 +191773,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -191876,7 +191832,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -191928,7 +191884,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -191982,7 +191938,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -192025,7 +191981,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -192077,7 +192033,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -192174,7 +192130,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -192210,7 +192166,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -192246,7 +192202,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -192282,7 +192238,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -192493,7 +192449,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -192536,7 +192492,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -192561,7 +192517,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -192604,7 +192560,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -192647,7 +192603,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -192870,7 +192826,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -193048,7 +193004,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -193084,7 +193040,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193114,7 +193070,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193223,7 +193179,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193326,7 +193282,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193351,7 +193307,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193376,7 +193332,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193401,7 +193357,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193426,7 +193382,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193451,7 +193407,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193476,7 +193432,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193501,7 +193457,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -193560,7 +193516,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193585,7 +193541,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193610,7 +193566,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -193654,7 +193610,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -193856,7 +193812,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -194054,7 +194010,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -194234,7 +194190,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -194279,7 +194235,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -194365,7 +194321,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -194408,7 +194364,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -194693,7 +194649,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -194731,7 +194687,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -194961,7 +194917,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -195130,7 +195086,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -195313,7 +195269,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -195448,7 +195404,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -195678,7 +195634,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -195894,7 +195850,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -196029,7 +195985,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -196068,7 +196024,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -196121,7 +196077,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -196157,7 +196113,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -196182,7 +196138,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -196234,7 +196190,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -196464,7 +196420,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -196561,7 +196517,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -196699,7 +196655,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -196752,7 +196708,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -196849,7 +196805,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -196902,7 +196858,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -197015,7 +196971,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -197068,7 +197024,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -197165,7 +197121,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -197201,7 +197157,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -197325,7 +197281,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -197458,7 +197414,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -197555,7 +197511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -197608,7 +197564,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -197661,7 +197617,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -197758,7 +197714,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -197969,7 +197925,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -198005,7 +197961,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -198102,7 +198058,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -198155,7 +198111,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -198385,7 +198341,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -198482,7 +198438,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -198620,7 +198576,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -198673,7 +198629,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -198770,7 +198726,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -198823,7 +198779,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -198920,7 +198876,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -198973,7 +198929,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -199027,7 +198983,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -199080,7 +199036,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -199177,7 +199133,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -199212,7 +199168,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -199878,7 +199834,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -199990,7 +199946,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -200281,7 +200237,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -200555,7 +200511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -200733,7 +200689,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -200778,7 +200734,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -200831,7 +200787,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -200918,7 +200874,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -201018,7 +200974,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -201115,7 +201071,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -201168,7 +201124,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -201193,7 +201149,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -201404,7 +201360,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -201440,7 +201396,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -201613,7 +201569,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -201648,7 +201604,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -201684,7 +201640,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -201720,7 +201676,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -201756,7 +201712,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -201967,7 +201923,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -202001,7 +201957,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -202164,7 +202120,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -202207,7 +202163,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -202259,7 +202215,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -202318,7 +202274,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -202377,7 +202333,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -202429,7 +202385,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -202483,7 +202439,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -202526,7 +202482,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -202578,7 +202534,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -202675,7 +202631,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -202711,7 +202667,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -202747,7 +202703,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -202783,7 +202739,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -202994,7 +202950,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -203037,7 +202993,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203062,7 +203018,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -203105,7 +203061,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -203148,7 +203104,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -203371,7 +203327,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -203549,7 +203505,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -203585,7 +203541,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203615,7 +203571,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203724,7 +203680,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203827,7 +203783,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203852,7 +203808,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203877,7 +203833,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203902,7 +203858,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203927,7 +203883,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203952,7 +203908,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -203977,7 +203933,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -204002,7 +203958,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -204061,7 +204017,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -204086,7 +204042,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -204111,7 +204067,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -204155,7 +204111,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
@@ -204357,7 +204313,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
@@ -204555,7 +204511,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
@@ -204735,7 +204691,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -204780,7 +204736,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
@@ -204866,7 +204822,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -204909,7 +204865,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
@@ -205194,7 +205150,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -205232,7 +205188,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -205462,7 +205418,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -205631,7 +205587,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
@@ -205814,7 +205770,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -205949,7 +205905,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -206179,7 +206135,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
@@ -206395,7 +206351,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
@@ -206530,7 +206486,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -206569,7 +206525,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -206622,7 +206578,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -206658,7 +206614,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -206683,7 +206639,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -206735,7 +206691,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -206965,7 +206921,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -207062,7 +207018,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -207200,7 +207156,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -207253,7 +207209,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -207350,7 +207306,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -207403,7 +207359,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -207516,7 +207472,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -207569,7 +207525,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -207666,7 +207622,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -207702,7 +207658,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
@@ -207826,7 +207782,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
@@ -207959,7 +207915,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -208056,7 +208012,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -208109,7 +208065,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -208162,7 +208118,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -208259,7 +208215,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -208470,7 +208426,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -208506,7 +208462,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -208603,7 +208559,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -208656,7 +208612,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -208886,7 +208842,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -208983,7 +208939,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
@@ -209121,7 +209077,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -209174,7 +209130,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -209271,7 +209227,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -209324,7 +209280,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -209421,7 +209377,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -209474,7 +209430,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -209528,7 +209484,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -209581,7 +209537,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -209678,7 +209634,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
@@ -209713,7 +209669,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
@@ -210379,7 +210335,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
@@ -210491,7 +210447,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
@@ -210782,7 +210738,7 @@ False for input values on the X Axis which do not intersect a graph curve
-
+
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
@@ -211049,7 +211005,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -211227,7 +211183,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
@@ -211272,7 +211228,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -211325,7 +211281,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
@@ -211412,7 +211368,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -211512,7 +211468,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -211609,7 +211565,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -211662,7 +211618,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -211687,7 +211643,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -211898,7 +211854,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -211934,7 +211890,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
@@ -212107,7 +212063,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -212142,7 +212098,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -212178,7 +212134,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -212214,7 +212170,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -212250,7 +212206,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -212461,7 +212417,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -212495,7 +212451,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
@@ -212658,7 +212614,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -212701,7 +212657,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -212753,7 +212709,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -212812,7 +212768,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -212871,7 +212827,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -212923,7 +212879,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -212977,7 +212933,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -213020,7 +212976,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -213072,7 +213028,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
@@ -213169,7 +213125,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
@@ -213205,7 +213161,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -213241,7 +213197,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -213277,7 +213233,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
@@ -213488,7 +213444,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -213531,7 +213487,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -213556,7 +213512,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -213599,7 +213555,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
@@ -213642,7 +213598,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 56b92eab-d121-43f7-94d3-6cd8f0ddead8
- Vector XYZ
@@ -213865,7 +213821,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
@@ -214043,7 +213999,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
@@ -214079,7 +214035,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -214098,14 +214054,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5452
- 4797
+ 4793
+ 4780
144
64
-
- 5526
- 4829
+ 4867
+ 4812
@@ -214124,14 +214080,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 4799
+ 4795
+ 4782
57
20
-
- 5484
- 4809
+ 4825
+ 4792
@@ -214151,14 +214107,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 4819
+ 4795
+ 4802
57
20
-
- 5484
- 4829
+ 4825
+ 4812
@@ -214203,14 +214159,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 4839
+ 4795
+ 4822
57
20
-
- 5484
- 4849
+ 4825
+ 4832
@@ -214250,14 +214206,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 4799
+ 4882
+ 4782
53
20
-
- 5569
- 4809
+ 4910
+ 4792
@@ -214277,14 +214233,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 4819
+ 4882
+ 4802
53
20
-
- 5569
- 4829
+ 4910
+ 4812
@@ -214304,14 +214260,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 4839
+ 4882
+ 4822
53
20
-
- 5569
- 4849
+ 4910
+ 4832
@@ -214321,7 +214277,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -214336,21 +214292,21 @@ if omitted, it would be 0-1 in "Normalize" mode by default
- Curve
- Curve
- false
- - c1394789-448d-4011-a7a5-a9c725907596
+ - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
- 1
-
- 5499
- 4751
+ 4840
+ 4737
50
24
-
- 5524.142
- 4763.927
+ 4865.946
+ 4749.307
@@ -214358,15 +214314,16 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 50b204ef-d3de-41bb-a006-02fba2d3f709
- Circle TanTan
-
+
- Create a circle tangent to two curves.
+ - true
- 27b179cc-34ee-440e-a769-dff3af94186f
- true
- Circle TanTan
@@ -214376,14 +214333,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5469
- 4668
+ 4810
+ 4651
110
64
-
- 5530
- 4700
+ 4871
+ 4683
@@ -214402,14 +214359,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 4670
+ 4812
+ 4653
44
20
-
- 5494.5
- 4680
+ 4835.5
+ 4663
@@ -214430,14 +214387,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 4690
+ 4812
+ 4673
44
20
-
- 5494.5
- 4700
+ 4835.5
+ 4683
@@ -214458,14 +214415,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 4710
+ 4812
+ 4693
44
20
-
- 5494.5
- 4720
+ 4835.5
+ 4703
@@ -214485,14 +214442,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5545
- 4670
+ 4886
+ 4653
32
60
-
- 5562.5
- 4700
+ 4903.5
+ 4683
@@ -214502,35 +214459,36 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
-
+
- Contains a collection of generic curves
+ - true
- d83ebbab-2a2c-4827-8f4a-d8944e735e7f
- true
- Curve
- Curve
- false
- - 93b915bb-0b04-40c0-b5d7-ab8ee7db0f17
+ - c1394789-448d-4011-a7a5-a9c725907596
- 1
-
- 5499
- 4884
+ 4841
+ 4869
50
24
-
- 5524.374
- 4896.23
+ 4866.178
+ 4881.61
@@ -214538,7 +214496,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -214566,7 +214524,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
@@ -214585,14 +214543,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5452
- 1812
+ 4793
+ 1834
144
64
-
- 5526
- 1844
+ 4867
+ 1866
@@ -214611,14 +214569,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 1814
+ 4795
+ 1836
57
20
-
- 5484
- 1824
+ 4825
+ 1846
@@ -214638,14 +214596,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 1834
+ 4795
+ 1856
57
20
-
- 5484
- 1844
+ 4825
+ 1866
@@ -214700,14 +214658,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5454
- 1854
+ 4795
+ 1876
57
20
-
- 5484
- 1864
+ 4825
+ 1886
@@ -214747,14 +214705,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 1814
+ 4882
+ 1836
53
20
-
- 5569
- 1824
+ 4910
+ 1846
@@ -214774,14 +214732,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 1834
+ 4882
+ 1856
53
20
-
- 5569
- 1844
+ 4910
+ 1866
@@ -214801,14 +214759,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5541
- 1854
+ 4882
+ 1876
53
20
-
- 5569
- 1864
+ 4910
+ 1886
@@ -214818,7 +214776,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -214840,14 +214798,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5499
- 1770
+ 4840
+ 1793
50
24
-
- 5524.541
- 1782.958
+ 4865.942
+ 1805.2
@@ -214855,7 +214813,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 50b204ef-d3de-41bb-a006-02fba2d3f709
- Circle TanTan
@@ -214873,14 +214831,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5469
- 1683
+ 4810
+ 1705
110
64
-
- 5530
- 1715
+ 4871
+ 1737
@@ -214899,14 +214857,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 1685
+ 4812
+ 1707
44
20
-
- 5494.5
- 1695
+ 4835.5
+ 1717
@@ -214927,14 +214885,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 1705
+ 4812
+ 1727
44
20
-
- 5494.5
- 1715
+ 4835.5
+ 1737
@@ -214955,14 +214913,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5471
- 1725
+ 4812
+ 1747
44
20
-
- 5494.5
- 1735
+ 4835.5
+ 1757
@@ -214982,14 +214940,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5545
- 1685
+ 4886
+ 1707
32
60
-
- 5562.5
- 1715
+ 4903.5
+ 1737
@@ -214999,7 +214957,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -215020,14 +214978,14 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- 5499
- 1903
+ 4841
+ 1925
50
24
-
- 5524.773
- 1915.26
+ 4866.174
+ 1937.502
@@ -215035,7 +214993,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -215063,7 +215021,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -215122,17 +215080,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
-
+
- Divide a curve into equal length segments
- true
- 6f5ccfd4-8dcc-4da6-8c58-ec4cfa131a83
+ - true
- Divide Curve
- Divide Curve
@@ -215152,9 +215111,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to divide
- 5775d2e6-8867-428a-a33f-300c521ca40f
+ - true
- Curve
- Curve
- false
@@ -215179,10 +215139,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of segments
- bfa8e3d6-972e-4656-9c98-194bea652b12
- X/2
+ - true
- Count
- Count
- false
@@ -215227,9 +215188,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Split segments at kinks
- ee1008f5-110c-4c81-98f0-9c71fce61994
+ - true
- Kinks
- Kinks
- false
@@ -215273,10 +215235,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Division points
- ec22aaa1-91f3-436f-992d-9793dbd0829c
+ - true
- Points
- Points
- false
@@ -215300,10 +215263,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Tangent vectors at division points
- 55445ab0-c508-414a-b3fd-8da992ff2e0e
+ - true
- Tangents
- Tangents
- false
@@ -215327,10 +215291,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Parameter values at division points
- e92db23c-2238-481a-ac95-536e04e8244f
+ - true
- Parameters
- Parameters
- false
@@ -215357,17 +215322,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
-
+
- Create a line segment defined by start point, tangent and length.}
- true
- 76219d2c-a796-4d1d-8236-63f5e832f6ef
+ - true
- Line SDL
- Line SDL
@@ -215387,9 +215353,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line start point
- 6d24916a-023d-4e52-9f50-43ba060e99d6
+ - true
- Start
- Start
- false
@@ -215438,9 +215405,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line tangent (direction)
- f764c62e-c930-4ec3-a9a1-553e298b108e
+ - true
- Direction
- Direction
- false
@@ -215488,10 +215456,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line length
- de4da49f-25f1-487c-925c-51e6fd73e37c
- X/2
+ - true
- Length
- Length
- false
@@ -215535,9 +215504,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line segment
- da8d0ba5-6c5a-492f-8951-4179f7e097d6
+ - true
- Line
- Line
- false
@@ -215564,17 +215534,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
-
+
- Create a line segment defined by start point, tangent and length.}
- true
- 068d9ddb-da71-48db-aefb-aef7beb59557
+ - true
- Line SDL
- Line SDL
@@ -215594,9 +215565,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line start point
- 1f32f464-b573-4d7c-9a66-9a4dfda50cde
+ - true
- Start
- Start
- false
@@ -215646,9 +215618,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line tangent (direction)
- 53130629-d335-4c98-9cc8-e3b74022cedd
+ - true
- Direction
- Direction
- false
@@ -215696,9 +215669,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line length
- 0e2288b3-b722-40ed-a616-d3d5c375a9b4
+ - true
- Length
- Length
- false
@@ -215742,9 +215716,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Line segment
- 43239747-5011-4f84-82c8-9838b5a52246
+ - true
- Line
- Line
- false
@@ -215771,16 +215746,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- b24c9513-1e7d-4d2e-a986-354e8f5a9ae3
+ - true
- Panel
- false
@@ -215825,17 +215801,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
-
+
- Deconstruct a point into its component parts.
- true
- 71708354-403b-4e3a-bbe5-2dc4643bbe9c
+ - true
- Deconstruct
- Deconstruct
@@ -215855,9 +215832,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Input point
- 4efd78a2-7e6d-47c1-8ca4-9dfd643f7355
+ - true
- Point
- Point
- false
@@ -215882,9 +215860,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {x} component
- 37df28d9-8586-4c7b-a27d-45da18678ae7
+ - true
- 2
- X component
- X component
@@ -215909,9 +215888,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {y} component
- 94347c95-768a-47fd-8559-3a3d676c08c0
+ - true
- 2
- Y component
- Y component
@@ -215936,9 +215916,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {z} component
- d2ab3e3e-5cf1-4338-a2de-92f08ea76a61
+ - true
- Z component
- Z component
- false
@@ -215965,17 +215946,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
-
+
- A VB.NET scriptable component
- true
- 52cef7aa-5821-4b1f-9b5a-7c19c5aee6f3
+ - true
- VB Script
- TxtWriter
- true
@@ -216037,10 +216019,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable filePath
- eeff5738-3482-4de7-955e-a389e7914aa9
+ - true
- filePath
- filePath
- true
@@ -216068,11 +216051,12 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- true
- Script Variable data
- 5b402d51-384d-4a10-8428-deda114a56e6
+ - true
- 1
- data
- data
@@ -216101,10 +216085,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable append
- a26a48dc-fe87-4578-8c8b-d56a771284b0
+ - true
- append
- append
- true
@@ -216131,10 +216116,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable activate
- 03d28d7d-51cb-4315-91d6-47dc9518eb86
+ - true
- activate
- activate
- true
@@ -216162,10 +216148,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable clearFile
- eae95419-3b18-41fd-a9b7-5f80a49eb70e
+ - true
- clearFile
- clearFile
- true
@@ -216192,9 +216179,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Print, Reflect and Error streams
- ec4aaa9f-29c7-47d0-a52f-d320db00eb29
+ - true
- out
- out
- false
@@ -216218,9 +216206,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Output parameter A
- 5bcc2175-7d09-4612-8d8d-639ff06b7b04
+ - true
- A
- A
- false
@@ -216249,18 +216238,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
-
+
- Contains a collection of file paths
- false
- All files|*.*
- fde6343a-f9d7-4c21-80dc-47b9338936e3
+ - true
- File Path
- File Path
- false
@@ -216306,18 +216296,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
-
+
- Button object with two values
- False
- True
- 2984718d-063a-4632-92c4-4aeee62839b7
+ - true
- Button
- false
@@ -216338,17 +216329,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
-
+
- Contains a collection of generic curves
- true
- 521ed613-25c1-489c-b2c8-a04049f666a7
+ - true
- Curve
- Curve
- false
@@ -216374,17 +216366,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
-
+
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 5852cf2b-5c75-4d2e-88bf-7551693f5b70
+ - true
- Evaluate Length
- Evaluate Length
@@ -216404,9 +216397,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to evaluate
- 350118a9-96e7-4469-a619-1f7ed75378b1
+ - true
- Curve
- Curve
- false
@@ -216431,9 +216425,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Length factor for curve evaluation
- 9e0429d4-965b-4f03-b9b0-6d23587b2259
+ - true
- 1
- Length
- Length
@@ -216478,9 +216473,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 29ab7d26-4edd-4e96-a08c-064d6ceb2feb
+ - true
- Normalized
- Normalized
- false
@@ -216524,9 +216520,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point at the specified length
- 3d372719-a185-4a67-981a-e138021e5cf5
+ - true
- Point
- Point
- false
@@ -216550,9 +216547,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Tangent vector at the specified length
- 6c06032c-d4b6-4dbb-98b9-42c861c606be
+ - true
- Tangent
- Tangent
- false
@@ -216576,9 +216574,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve parameter at the specified length
- 62fba0cd-3499-4c4f-92e9-989df1d888d8
+ - true
- Parameter
- Parameter
- false
@@ -216605,17 +216604,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- fad344bc-09b1-4855-a2e6-437ef5715fe3
- YZ Plane
-
+
- World YZ plane.
- true
- 64c31320-fe0c-4d9d-9435-c30addf1e792
+ - true
- YZ Plane
- YZ Plane
@@ -216635,9 +216635,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Origin of plane
- ee99e0ab-f6fd-4e5b-91a2-a98ef8f58eea
+ - true
- Origin
- Origin
- false
@@ -216687,9 +216688,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- World YZ plane
- 5a9ab425-4a63-488e-857d-137a5c535e43
+ - true
- Plane
- Plane
- false
@@ -216716,17 +216718,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
-
+
- Mirror an object.
- true
- 2615fdb0-3475-497f-baf7-10291ca370d9
+ - true
- Mirror
- Mirror
@@ -216746,9 +216749,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 5d5fd96f-000c-4dc2-96d2-b4d9a36dea43
+ - true
- Geometry
- Geometry
- true
@@ -216773,9 +216777,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Mirror plane
- 445ffcbd-d5eb-4719-b746-bc9a7202ab94
+ - true
- Plane
- Plane
- false
@@ -216830,9 +216835,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Mirrored geometry
- 78ee7afd-dcc5-4181-b1f8-8efb0eae7d14
+ - true
- Geometry
- Geometry
- false
@@ -216856,9 +216862,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 96433806-a59c-43aa-a65d-fb5a1b7c075c
+ - true
- Transform
- Transform
- false
@@ -216885,17 +216892,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
-
+
- Join as many curves as possible
- true
- 76834849-4407-4202-8ec6-cfcf435a188d
+ - true
- Join Curves
- Join Curves
@@ -216915,10 +216923,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Curves to join
- 7d4ab061-6904-44af-9180-2992d2ce469b
+ - true
- Curves
- Curves
- false
@@ -216944,9 +216953,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Preserve direction of input curves
- 486ce916-8479-44a5-a0ad-2250fd954007
+ - true
- Preserve
- Preserve
- false
@@ -216990,10 +217000,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Joined curves and individual curves that could not be joined.
- de3c585c-be6c-469f-a4f3-50738ad24f54
+ - true
- Curves
- Curves
- false
@@ -217020,17 +217031,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e87db220-a0a0-4d67-a405-f97fd14b2d7a
- Linear Array
-
+
- Create a linear array of geometry.
- true
- 82cf0086-86e1-4c25-8cff-5c29a7f3a40d
+ - true
- Linear Array
- Linear Array
@@ -217050,9 +217062,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 83c5d037-8530-433b-a896-246d46866d4d
+ - true
- Geometry
- Geometry
- true
@@ -217077,9 +217090,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Linear array direction and interval
- fa00b316-4c23-4a0e-a3f7-f74891c91860
+ - true
- Direction
- Direction
- false
@@ -217127,9 +217141,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of elements in array.
- 602b0e39-126d-422b-9a7a-6149fb9d6ba5
+ - true
- Count
- Count
- false
@@ -217173,10 +217188,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Arrayed geometry
- 74758d7c-8ee9-4e91-9164-cadd36352223
+ - true
- Geometry
- Geometry
- false
@@ -217200,10 +217216,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Transformation data
- 9869dd3a-93fc-4b30-a9a3-2fe3fdf59dc7
+ - true
- Transform
- Transform
- false
@@ -217230,17 +217247,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
-
+
- Join as many curves as possible
- true
- ffc2651e-9382-4020-842b-5002f1e0045a
+ - true
- Join Curves
- Join Curves
@@ -217260,10 +217278,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Curves to join
- c1896f1b-da7c-4c94-8db8-ae893b2c1982
+ - true
- Curves
- Curves
- false
@@ -217288,9 +217307,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Preserve direction of input curves
- e7d24873-a86e-4061-a8e4-734daaafc0c8
+ - true
- Preserve
- Preserve
- false
@@ -217334,10 +217354,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Joined curves and individual curves that could not be joined.
- 76b2a5e6-be01-4e1b-a790-d5e42bb7344e
+ - true
- Curves
- Curves
- false
@@ -217364,17 +217385,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- ccfd6ba8-ecb1-44df-a47e-08126a653c51
- Curve Domain
-
+
- Measure and set the curve domain
- true
- 0bd835d5-26e4-428e-be22-9ef0ffc2e4ca
+ - true
- Curve Domain
- Curve Domain
@@ -217394,9 +217416,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to measure/modify
- 52d7dad0-bac5-4a9d-aef0-316e1c287209
+ - true
- Curve
- Curve
- false
@@ -217421,9 +217444,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Optional domain, if omitted the curve will not be modified.
- 320dea18-932b-493f-9fe3-7a50c967a357
+ - true
- Domain
- Domain
- true
@@ -217447,9 +217471,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve with new domain.
- 88f64854-a384-40af-b29a-4f3364f4910d
+ - true
- Curve
- Curve
- false
@@ -217473,9 +217498,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Domain of original curve.
- 756db84f-bd10-43b7-8193-dee8cdb550de
+ - true
- Domain
- Domain
- false
@@ -217502,17 +217528,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 429cbba9-55ee-4e84-98ea-876c44db879a
- Sub Curve
-
+
- Construct a curve from the sub-domain of a base curve.
- true
- 1f736d75-0acd-466e-8c54-66d20f4ffd67
+ - true
- Sub Curve
- Sub Curve
@@ -217532,9 +217559,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base curve
- 68723e9f-bfbc-4799-8ced-a8e2a68133fd
+ - true
- Base curve
- Base curve
- false
@@ -217559,9 +217587,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Sub-domain to extract
- 7939a992-4cc8-4bd6-8873-b334b2fb0d8a
+ - true
- Domain
- Domain
- false
@@ -217586,9 +217615,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Resulting sub curve
- c9c103d7-fb88-449d-93cf-d1899c09bec0
+ - true
- Curve
- Curve
- false
@@ -217615,17 +217645,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
-
+
- Deconstruct a numeric domain into its component parts.
- true
- 0dc1bfc1-94ff-4758-85c5-25571a1b551b
+ - true
- Deconstruct Domain
- Deconstruct Domain
@@ -217645,9 +217676,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base domain
- f951cd1c-c3f0-46e8-9f98-a7c5eee1c2c2
+ - true
- Domain
- Domain
- false
@@ -217672,9 +217704,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Start of domain
- 9ce20640-5ead-4c66-93bc-555bde8f78c3
+ - true
- Start
- Start
- false
@@ -217698,9 +217731,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- End of domain
- 09315b7b-102d-424d-8c9a-5fc7ab44daa0
+ - true
- End
- End
- false
@@ -217727,17 +217761,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
-
+
- Create a numeric domain from two numeric extremes.
- true
- 4fae7aa9-72e4-4f8b-a302-b56a28c8b49d
+ - true
- Construct Domain
- Construct Domain
@@ -217757,10 +217792,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Start value of numeric domain
- b16a2af5-768e-47ad-bd21-7b54a2dbc500
- X/8
+ - true
- Domain start
- Domain start
- false
@@ -217805,10 +217841,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- End value of numeric domain
- fbfc9604-7ad5-4110-af41-85a7ea9d90f4
- X*5/8
+ - true
- Domain end
- Domain end
- false
@@ -217853,9 +217890,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Numeric domain between {A} and {B}
- 908b894d-2aa3-4855-a382-c35e6fa8d476
+ - true
- Domain
- Domain
- false
@@ -217882,17 +217920,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
-
+
- Translate (move) an object along a vector.
- true
- 44ef6f9a-caa0-4214-b3a9-6f37c25b0823
+ - true
- Move
- Move
@@ -217912,9 +217951,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 9b38c8ee-3d30-46b0-ac04-ac9e0c742685
+ - true
- Geometry
- Geometry
- true
@@ -217939,9 +217979,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Translation vector
- c5e81cc2-eea8-40db-9d4b-4da9d7797bb7
+ - true
- Motion
- Motion
- false
@@ -217989,9 +218030,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Translated geometry
- d634efec-eaa1-4552-8955-f0d045284f56
+ - true
- Geometry
- Geometry
- false
@@ -218015,9 +218057,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 98a49866-211f-40c8-bf40-105850266ef3
+ - true
- Transform
- Transform
- false
@@ -218044,17 +218087,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
-
+
- Scale an object uniformly in all directions.
- true
- 982f2772-3928-4af2-ae57-35526ea29850
+ - true
- Scale
- Scale
@@ -218074,9 +218118,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 303c1e54-74d2-4af8-95df-a5361440bcd8
+ - true
- Geometry
- Geometry
- true
@@ -218101,9 +218146,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Center of scaling
- a5bd51ed-0621-4c8d-a682-e49c19e5ccbf
+ - true
- Center
- Center
- false
@@ -218152,9 +218198,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaling factor
- 5db464c3-f05f-4067-812f-415571d5b5ef
+ - true
- Factor
- Factor
- false
@@ -218198,9 +218245,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaled geometry
- 183bf7f6-6caa-4074-a0c1-0c307d940f3a
+ - true
- Geometry
- Geometry
- false
@@ -218224,9 +218272,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 29d0b158-ad16-44f9-8681-6c40c32a5d43
+ - true
- Transform
- Transform
- false
@@ -218253,17 +218302,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
-
+
- Deconstruct a point into its component parts.
- true
- 73634064-05a9-4fc8-ba5f-22e55d8d56d1
+ - true
- Deconstruct
- Deconstruct
@@ -218283,9 +218333,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Input point
- 3bec8505-11f2-4a56-9e14-3c8c5d1c2bf1
+ - true
- Point
- Point
- false
@@ -218310,9 +218361,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {x} component
- 0427502f-e4fb-4055-b28a-7e8fe719f15f
+ - true
- 2
- X component
- X component
@@ -218338,9 +218390,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {y} component
- 992764c3-f6b3-45d3-9c45-26e7db379886
+ - true
- 2
- Y component
- Y component
@@ -218366,9 +218419,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {z} component
- b65d734b-c031-4d11-976e-4f397b7a47db
+ - true
- Z component
- Z component
- false
@@ -218395,17 +218449,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
-
+
- Divide a curve into equal length segments
- true
- 8d17de15-607e-4072-bd70-5cc9a8efe9b5
+ - true
- Divide Curve
- Divide Curve
@@ -218425,9 +218480,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to divide
- 2002b3d7-e1f5-4df8-88c4-81e0e4d777e7
+ - true
- Curve
- Curve
- false
@@ -218452,9 +218508,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of segments
- 8f47a2c1-a405-40c8-a043-8a0e8d26dd59
+ - true
- Count
- Count
- false
@@ -218499,9 +218556,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Split segments at kinks
- 94411214-c6d1-4b3f-8727-a44534e50c6b
+ - true
- Kinks
- Kinks
- false
@@ -218545,10 +218603,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Division points
- 5d4eaaaa-2379-427e-9e98-d2854ab8a9c3
+ - true
- Points
- Points
- false
@@ -218572,10 +218631,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Tangent vectors at division points
- b2ace906-f709-4456-9c75-f4ad21c35094
+ - true
- Tangents
- Tangents
- false
@@ -218599,10 +218659,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Parameter values at division points
- af193919-20c9-43d8-a541-1fe341359435
+ - true
- Parameters
- Parameters
- false
@@ -218629,16 +218690,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- c6b21630-e8a3-484d-af01-6b1a3aafce9a
+ - true
- Panel
- false
@@ -218683,16 +218745,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- d31db527-8d05-4ca4-b457-0c32d0442454
+ - true
- Panel
- false
@@ -218737,17 +218800,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2013e425-8713-42e2-a661-b57e78840337
- Concatenate
-
+
- Concatenate some fragments of text
- true
- a6b71e17-e3eb-46c7-86d2-56cb9c1333dc
+ - true
- Concatenate
- Concatenate
@@ -218777,9 +218841,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- First text fragment
- ff2d7c96-a5a8-41f1-8f54-d1d8845114ae
+ - true
- Fragment A
- true
@@ -218804,9 +218869,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Second text fragment
- 0a362411-1989-46a9-a3d2-4507f9986a1c
+ - true
- Fragment B
- true
@@ -218831,9 +218897,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Third text fragment
- 3613c947-9cf9-410f-af3b-74f7c2f6a29f
+ - true
- Fragment A
- true
@@ -218858,9 +218925,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Resulting text consisting of all the fragments
- d0a7a802-a1a4-44f8-a73b-eb852d249de6
+ - true
- 1
- Result
- Result
@@ -218890,16 +218958,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- e17c6f8e-a5ea-4bd3-aaea-da70d3cd87dd
+ - true
- Panel
- false
@@ -218944,17 +219013,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
-
+
- Measure the length of a list.
- true
- 0d4f8053-3e7b-4f88-88d6-7142b1117d85
+ - true
- List Length
- List Length
@@ -218974,10 +219044,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Base list
- 087f872a-468e-480e-8086-eb98510478b3
+ - true
- List
- List
- false
@@ -219002,9 +219073,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of items in L
- 4a91602b-182e-41ea-8bff-57bf58381ba3
+ - true
- Length
- Length
- false
@@ -219031,17 +219103,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
-
+
- Duplicate data a predefined number of times.
- true
- c5733280-28ac-45ba-9b0b-986f2cb9d166
+ - true
- Duplicate Data
- Duplicate Data
@@ -219061,10 +219134,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Data to duplicate
- 93bbcc9c-1452-41a2-9792-6280d50325e6
+ - true
- Data
- Data
- false
@@ -219110,9 +219184,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of duplicates
- 22d090b6-8a92-4e42-a3a8-3352903392a9
+ - true
- Number
- Number
- false
@@ -219157,9 +219232,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Retain list order
- f3dbe681-3a37-4539-ab8f-aa8e442721ca
+ - true
- Order
- Order
- false
@@ -219203,10 +219279,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Duplicated data
- 540a8309-6668-4cbd-a644-b3fd3216f063
+ - true
- 2
- Data
- Data
@@ -219235,18 +219312,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",X)
- true
- d16e27a4-b51d-40be-89ac-16f5ff38ce04
+ - true
- Expression
- Expression
@@ -219274,9 +219352,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- e7bc85b5-c2d1-4b36-8350-bba76b9a0b51
+ - true
- Variable X
- X
- true
@@ -219301,9 +219380,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- 738da52b-fc5b-4876-ac30-3f6113c3fbcc
+ - true
- Result
- Result
- false
@@ -219332,18 +219412,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",Y)
- true
- 4a1ec727-d361-4e33-84b4-50690e5b2491
+ - true
- Expression
- Expression
@@ -219371,9 +219452,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 4b6ad4c2-ad41-4801-ab26-6bd8da6840dd
+ - true
- Variable Y
- Y
- true
@@ -219398,9 +219480,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- db245e23-4539-4216-8d09-ee1aab1bd46d
+ - true
- Result
- Result
- false
@@ -219429,16 +219512,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- ed5abe26-f015-40f1-92fd-ac2f1564cada
+ - true
- Panel
- false
@@ -219483,7 +219567,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -219538,17 +219622,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
-
+
- Contains a collection of generic curves
- true
- e35db844-8c35-45e3-a4ba-d7a4a402c621
+ - true
- Curve
- Curve
- false
@@ -219574,17 +219659,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
-
+
- Deconstruct a point into its component parts.
- true
- 68563a7d-e7c8-4869-bd73-a9480e1c1d00
+ - true
- Deconstruct
- Deconstruct
@@ -219604,9 +219690,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Input point
- 2d7a5ddf-c6d4-453e-8cb5-69af6f993b0a
+ - true
- Point
- Point
- false
@@ -219631,9 +219718,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {x} component
- 29a9aaab-a1e8-4621-8fa9-ab9577de3e21
+ - true
- 2
- X component
- X component
@@ -219658,9 +219746,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {y} component
- 66983311-dc16-4275-bf06-bf946c994bad
+ - true
- 2
- Y component
- Y component
@@ -219685,9 +219774,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {z} component
- 46f78897-2d93-4004-af97-57b4f74d60aa
+ - true
- Z component
- Z component
- false
@@ -219714,17 +219804,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
-
+
- Divide a curve into equal length segments
- true
- 6750f4a4-517f-4231-93d7-803c432fd1f5
+ - true
- Divide Curve
- Divide Curve
@@ -219744,9 +219835,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to divide
- 461ef49d-af9c-493d-96cf-0496ad7274a2
+ - true
- Curve
- Curve
- false
@@ -219771,9 +219863,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of segments
- e3f0218e-9316-4163-b9d7-6e5eafbaebd4
+ - true
- Count
- Count
- false
@@ -219818,9 +219911,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Split segments at kinks
- 42de9b05-e61c-49e3-9388-02a0aa4d4b63
+ - true
- Kinks
- Kinks
- false
@@ -219864,10 +219958,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Division points
- e827364b-59cf-4b41-9df6-15a17e582142
+ - true
- Points
- Points
- false
@@ -219891,10 +219986,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Tangent vectors at division points
- 6ab080ba-5cb5-440f-bf02-f8d982dd5c9b
+ - true
- Tangents
- Tangents
- false
@@ -219918,10 +220014,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Parameter values at division points
- 45c5e056-b796-4c62-aa6b-a64baad9575d
+ - true
- Parameters
- Parameters
- false
@@ -219948,16 +220045,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- 3d076723-8242-4d06-9c81-6683dadc72ed
+ - true
- Panel
- false
@@ -220002,16 +220100,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- f2a19e5a-e845-4b70-95ad-388661779f63
+ - true
- Panel
- false
@@ -220056,17 +220155,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2013e425-8713-42e2-a661-b57e78840337
- Concatenate
-
+
- Concatenate some fragments of text
- true
- 979aa3c1-0767-4752-981f-ebf6fa1c0d3e
+ - true
- Concatenate
- Concatenate
@@ -220096,9 +220196,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- First text fragment
- 577f08d9-3728-4a92-906a-0d5f4903f2e1
+ - true
- Fragment A
- true
@@ -220123,9 +220224,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Second text fragment
- ff9f3e5a-fd4a-49e2-b449-7aa9646236ca
+ - true
- Fragment B
- true
@@ -220150,9 +220252,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Third text fragment
- 642eff7e-cce8-4ce2-a46c-c2c127a34d74
+ - true
- Fragment A
- true
@@ -220177,9 +220280,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Resulting text consisting of all the fragments
- 210a47f3-23f3-4646-81b7-00603ef6a14c
+ - true
- 1
- Result
- Result
@@ -220209,16 +220313,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- 6f400b56-fbec-4804-8341-38f4dc23db47
+ - true
- Panel
- false
@@ -220263,17 +220368,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
-
+
- Measure the length of a list.
- true
- e578b74b-6b00-4b8d-9c5f-8b7d1c941f80
+ - true
- List Length
- List Length
@@ -220293,10 +220399,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Base list
- 2b921f88-7d49-42da-8e15-0ce85692c30d
+ - true
- List
- List
- false
@@ -220321,9 +220428,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of items in L
- c0870b76-eb87-437c-a261-fdb68d270d18
+ - true
- Length
- Length
- false
@@ -220350,17 +220458,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
-
+
- Duplicate data a predefined number of times.
- true
- 7ada70a1-45d5-4461-9dce-7a9de5f1418e
+ - true
- Duplicate Data
- Duplicate Data
@@ -220380,10 +220489,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Data to duplicate
- 58ea242d-e525-4589-8038-b0db9066ad77
+ - true
- Data
- Data
- false
@@ -220429,9 +220539,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of duplicates
- a81285de-3f33-4584-a9ae-f2c2685b83be
+ - true
- Number
- Number
- false
@@ -220476,9 +220587,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Retain list order
- 4b9305b5-e4e6-4cdd-89a9-e5ee150152dc
+ - true
- Order
- Order
- false
@@ -220522,10 +220634,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Duplicated data
- e7fb7d7c-744a-4366-bb2b-53a622a4a578
+ - true
- 2
- Data
- Data
@@ -220554,18 +220667,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",X)
- true
- 4acbad9d-cf40-4ac0-92e9-0914ed2635af
+ - true
- Expression
- Expression
@@ -220593,9 +220707,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 178950b6-0d18-4b18-a8da-3c225a385d14
+ - true
- Variable X
- X
- true
@@ -220620,9 +220735,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- 6a7bfbe9-c1aa-461f-873f-dd4d928a0d47
+ - true
- Result
- Result
- false
@@ -220652,18 +220768,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",Y)
- true
- 99e82a43-4f64-4b1d-817d-e7e88986f446
+ - true
- Expression
- Expression
@@ -220691,9 +220808,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 20c89eb5-328d-407c-acef-6c8aed5c11a3
+ - true
- Variable Y
- Y
- true
@@ -220718,9 +220836,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- b540ade3-ed4e-42b1-8d73-2846148de82f
+ - true
- Result
- Result
- false
@@ -220750,16 +220869,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- 66e7c159-71a5-4f2c-adbb-dd82d3beb2d6
+ - true
- Panel
- false
@@ -220804,7 +220924,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -220858,17 +220978,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
-
+
- A VB.NET scriptable component
- true
- 777f6c59-7a80-4cfa-be6f-1d8eb59552ff
+ - true
- VB Script
- TxtWriter
- true
@@ -220930,10 +221051,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable filePath
- 660e4bc9-1658-4394-9667-13d80711e8e6
+ - true
- filePath
- filePath
- true
@@ -220961,11 +221083,12 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- true
- Script Variable data
- 4cf1b389-ac52-4ddd-8d38-1dcd3e60fab2
+ - true
- 1
- data
- data
@@ -220994,10 +221117,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable append
- de1499dc-b59e-4511-9293-0b42f78675fe
+ - true
- append
- append
- true
@@ -221024,10 +221148,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable activate
- 830a96d0-ff09-4403-a6ef-301e589981e9
+ - true
- activate
- activate
- true
@@ -221055,10 +221180,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable clearFile
- 0c00b769-5f96-4ed3-a5f4-5ce8b921e823
+ - true
- clearFile
- clearFile
- true
@@ -221085,9 +221211,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Print, Reflect and Error streams
- b791209b-077d-4078-b7a9-43b252cb06f4
+ - true
- out
- out
- false
@@ -221111,9 +221238,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Output parameter A
- d0f9ad89-d013-4548-a46f-57d6b65f61fe
+ - true
- A
- A
- false
@@ -221142,18 +221270,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
-
+
- Contains a collection of file paths
- false
- All files|*.*
- 8ae4527b-5550-4a76-bb40-bf8a243cd842
+ - true
- File Path
- File Path
- false
@@ -221199,18 +221328,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
-
+
- Button object with two values
- False
- True
- ebbd6d2f-c490-4677-b77d-c25c6942e622
+ - true
- Button
- false
@@ -221231,17 +221361,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
-
+
- A VB.NET scriptable component
- true
- cab813f7-791c-4922-be06-8c67e55c94ca
+ - true
- VB Script
- TxtWriter
- true
@@ -221303,10 +221434,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable filePath
- 8743b31d-c40d-4368-bb85-e0ec58c656f4
+ - true
- filePath
- filePath
- true
@@ -221334,11 +221466,12 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- true
- Script Variable data
- d630bc3c-1a92-4f1c-a88f-70c989ce4475
+ - true
- 1
- data
- data
@@ -221367,10 +221500,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable append
- b1c93177-8b35-447e-8f30-47d58103f603
+ - true
- append
- append
- true
@@ -221397,10 +221531,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable activate
- 4da56cd5-bed4-40c4-840a-4d1d216ad88b
+ - true
- activate
- activate
- true
@@ -221428,10 +221563,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- true
- Script Variable clearFile
- 1068cd7c-aac2-4352-a3ac-146a1de3b166
+ - true
- clearFile
- clearFile
- true
@@ -221458,9 +221594,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Print, Reflect and Error streams
- c74f25fe-befe-495f-862b-42d5739f5edc
+ - true
- out
- out
- false
@@ -221484,9 +221621,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Output parameter A
- 1fd63a93-e4fb-4d8a-b24b-a0051b8402c4
+ - true
- A
- A
- false
@@ -221515,18 +221653,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
-
+
- Contains a collection of file paths
- false
- All files|*.*
- 2b25da2e-7e50-4fef-8021-89e37730bacf
+ - true
- File Path
- File Path
- false
@@ -221572,18 +221711,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
-
+
- Button object with two values
- False
- True
- 0d3a8ff7-6367-4449-b2bb-7d0133a495f9
+ - true
- Button
- false
@@ -221604,16 +221744,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- 8bec9f0b-acb3-4318-b690-7f524d24faa3
+ - true
- Panel
- false
@@ -221658,17 +221799,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
-
+
- Contains a collection of floating point numbers
- f2ae82af-893f-4877-be23-51a1c9ac4592
- X*4
+ - true
- Number
- Number
- false
@@ -221694,17 +221836,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
-
+
- Contains a collection of floating point numbers
- 949b3dc2-93e7-4b6b-94f6-42008f1ca88b
- X*4
+ - true
- Number
- Number
- false
@@ -221730,17 +221873,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
-
+
- Contains a collection of floating point numbers
- c4219dab-2b45-451a-9f35-b150c1719680
- X*4
+ - true
- Number
- Number
- false
@@ -221766,17 +221910,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
-
+
- Contains a collection of generic curves
- true
- c0c5cf9e-a76c-48c0-8409-578eb6c6bd0b
+ - true
- Curve
- Curve
- false
@@ -221802,18 +221947,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 52abf5f7-6725-4187-9689-0f84a0e7c3ce
+ - true
- Expression
- Expression
@@ -221841,9 +221987,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 782220e2-f954-44c4-b826-078c251b8367
+ - true
- Variable O
- O
- true
@@ -221868,9 +222015,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- 72f0e32d-be37-4f0a-bbc7-be9b276d4b10
+ - true
- Result
-
- false
@@ -221899,18 +222047,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 5c3f9e81-3d49-45aa-b872-ea80a910db14
+ - true
- Expression
- Expression
@@ -221938,9 +222087,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 85ddd55b-42bb-456d-bac6-f734b7e309ad
+ - true
- Variable O
- O
- true
@@ -221965,9 +222115,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- efcca8ec-2d30-438f-91cd-ec16d996422c
+ - true
- Result
-
- false
@@ -221996,18 +222147,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:0.0000000000}",O)
- true
- 173d3877-9b54-4d39-bc8a-a9d714d53b98
+ - true
- Expression
- Expression
@@ -222035,9 +222187,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- 03653019-0e81-4e2c-b044-69aec5002780
+ - true
- Variable O
- O
- true
@@ -222062,9 +222215,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- afcf22ba-d1d3-46ed-99ae-25ef2b8c08b2
+ - true
- Result
-
- false
@@ -222093,18 +222247,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:0.00000000000000}",O)
- true
- e3ad63ac-cab3-425e-bc6e-77ef52eae732
+ - true
- Expression
- Expression
@@ -222132,9 +222287,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- fafbc7da-03fa-4b0a-be17-928136a8e8a0
+ - true
- Variable O
- O
- true
@@ -222159,9 +222315,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- 9a626f9b-35e2-4fb5-b530-6aa0f18281b3
+ - true
- Result
-
- false
@@ -222190,17 +222347,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Data
-
+
- Contains a collection of generic data
- true
- c36c35db-46d3-471e-bf13-99083fb06848
+ - true
- Data
- Data
- false
@@ -222226,17 +222384,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Data
-
+
- Contains a collection of generic data
- true
- b7826491-b185-412e-9d32-92b7cbe0cbaf
+ - true
- Data
- Data
- false
@@ -222262,17 +222421,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
-
+
- Scale an object uniformly in all directions.
- true
- 9c8e42ec-afbe-4493-a857-2910b3a3d5d1
+ - true
- Scale
- Scale
@@ -222292,9 +222452,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 3847a3dc-7c92-40d1-8b7b-bb3e547e5944
+ - true
- Geometry
- Geometry
- true
@@ -222319,9 +222480,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Center of scaling
- fcaacee8-0396-4fda-a648-d9371b71b857
+ - true
- Center
- Center
- false
@@ -222370,10 +222532,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaling factor
- 69f241da-74c1-4332-85a4-86fd1ff85dde
- 2^X
+ - true
- Factor
- Factor
- false
@@ -222418,9 +222581,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaled geometry
- 9eb06eeb-44df-4f76-a253-e3e979a8c409
+ - true
- Geometry
- Geometry
- false
@@ -222444,9 +222608,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 50c4c37f-0547-4e81-9732-d9fff228a884
+ - true
- Transform
- Transform
- false
@@ -222473,17 +222638,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
-
+
- Scale an object uniformly in all directions.
- true
- dda26e08-664b-4b02-8304-34bddc8ec9d8
+ - true
- Scale
- Scale
@@ -222503,9 +222669,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 5fcbe13d-12ef-471c-9321-38c909d62e55
+ - true
- Geometry
- Geometry
- true
@@ -222530,9 +222697,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Center of scaling
- a4e572d9-5a64-4914-8660-0374d389941d
+ - true
- Center
- Center
- false
@@ -222581,10 +222749,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaling factor
- a4edf956-f052-482c-8046-5c76b702b153
- 2^X
+ - true
- Factor
- Factor
- false
@@ -222629,9 +222798,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaled geometry
- b925096e-42ca-48e1-864c-148562f35cc8
+ - true
- Geometry
- Geometry
- false
@@ -222655,9 +222825,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 6ef435be-c9eb-4f96-9131-2dbdb6eb27c8
+ - true
- Transform
- Transform
- false
@@ -222684,17 +222855,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
-
+
- Scale an object uniformly in all directions.
- true
- cd4aaa78-bb6c-43bd-ae4e-037d66f67954
+ - true
- Scale
- Scale
@@ -222714,9 +222886,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 7dcc7c56-2990-4356-a903-1d9b61b4b816
+ - true
- Geometry
- Geometry
- true
@@ -222741,9 +222914,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Center of scaling
- 8a44dcdb-3d64-4b11-b401-0db1b5ee2dbd
+ - true
- Center
- Center
- false
@@ -222792,10 +222966,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaling factor
- 1d036fb0-b50c-4552-af8f-5163ae45e385
- 1/2^X
+ - true
- Factor
- Factor
- false
@@ -222840,9 +223015,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Scaled geometry
- decde381-1034-4ed6-b96f-3a09ec3ed8a9
+ - true
- Geometry
- Geometry
- false
@@ -222866,9 +223042,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- 04ffc2cf-8e67-45f0-b395-a675c7b0e610
+ - true
- Transform
- Transform
- false
@@ -222895,17 +223072,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
-
+
- 2
- A wire relay object
- 6bdecbe7-bc2a-4446-a1b4-7daa96fe6b7b
+ - true
- Relay
- false
@@ -222931,16 +223109,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
-
+
- Numeric scroller for single numbers
- 304e5ccb-5a35-4e0c-8b92-206985fc9cf3
+ - true
- Digit Scroller
- Digit Scroller
- false
@@ -222974,17 +223153,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 84627490-0fb2-4498-8138-ad134ee4cb36
- Curve | Curve
-
+
- Solve intersection events for two curves.
- true
- 25493dac-1f0f-4b75-8b92-6eec422efc11
+ - true
- Curve | Curve
- Curve | Curve
@@ -223004,9 +223184,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- First curve
- c154949d-13a1-4de2-85ea-38b734e9424f
+ - true
- Curve A
- Curve A
- false
@@ -223031,9 +223212,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Second curve
- 039a2f18-cf5c-461b-be77-ab9798fd34f2
+ - true
- Curve B
- Curve B
- false
@@ -223058,10 +223240,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Intersection events
- 4540e1d9-0aa8-45ba-b2e6-c402a16ccd98
+ - true
- 1
- Points
- Points
@@ -223086,10 +223269,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Parameters on first curve
- a146daca-813a-45b0-a027-20dcb746cf60
+ - true
- Params A
- Params A
- false
@@ -223113,10 +223297,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Parameters on second curve
- 1fce959b-2d31-4cda-8868-0ad2b2b42d7e
+ - true
- Params B
- Params B
- false
@@ -223143,17 +223328,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
-
+
- Deconstruct a point into its component parts.
- true
- 6dd5f4ed-a71f-43b5-9556-d3ab2e83be7a
+ - true
- Deconstruct
- Deconstruct
@@ -223173,9 +223359,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Input point
- d4306bac-3039-4cdb-98c4-e48499c1fd57
+ - true
- Point
- Point
- false
@@ -223200,10 +223387,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {x} component
- 08fe9886-fede-4488-90f0-870c2ef5d207
- ABS(X)
+ - true
- 2
- X component
- X component
@@ -223228,10 +223416,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {y} component
- 662c3174-f77d-4ffa-bec9-f9cd4fd2e6c0
- ABS(X)
+ - true
- 2
- Y component
- Y component
@@ -223256,10 +223445,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point {z} component
- 22ab65a9-fdf7-4462-96d1-da310167ac92
- ABS(X)
+ - true
- 2
- Z component
- Z component
@@ -223287,17 +223477,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
-
+
- Measure the length of a list.
- true
- ed78892a-320b-476c-8c93-6a7fa7e08ddd
+ - true
- List Length
- List Length
@@ -223317,10 +223508,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Base list
- 61d82b8f-c27e-42c0-9bff-242aca4a8ba5
+ - true
- List
- List
- false
@@ -223345,9 +223537,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of items in L
- 9f0a55bc-be29-46c8-92f5-19cf8f55bb4f
+ - true
- Length
- Length
- false
@@ -223374,16 +223567,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
-
+
- A panel for custom notes and text values
- 67028c15-5934-458f-ab2a-9f38d9cd0ed5
+ - true
- Panel
- false
@@ -223427,17 +223621,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9445ca40-cc73-4861-a455-146308676855
- Range
-
+
- Create a range of numbers.
- true
- e6d66e97-4999-47ab-aafa-1244fd466ec2
+ - true
- Range
- Range
@@ -223457,9 +223652,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Domain of numeric range
- 9017495a-bad7-47d0-9a30-80301583303f
+ - true
- Domain
- Domain
- false
@@ -223507,10 +223703,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Number of steps
- 98ded187-e65c-4902-9208-3f83d4358b44
- X-2
+ - true
- Steps
- Steps
- false
@@ -223555,10 +223752,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Range of numbers
- 47f14d51-300b-482b-8dce-d227d4d36a41
+ - true
- Range
- Range
- false
@@ -223585,17 +223783,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
-
+
- Create a numeric domain from two numeric extremes.
- true
- 9ac4b811-e818-4cae-b5a8-1125c38df8ce
+ - true
- Construct Domain
- Construct Domain
@@ -223615,9 +223814,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Start value of numeric domain
- 5de9b5e3-05b5-4d96-a127-d797480cf6e4
+ - true
- Domain start
- Domain start
- false
@@ -223661,10 +223861,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- End value of numeric domain
- cd414644-3cdd-49c2-a949-93d34363cefc
- X-2
+ - true
- Domain end
- Domain end
- false
@@ -223709,9 +223910,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Numeric domain between {A} and {B}
- f5633d88-5c8d-4738-9ca4-78f1f3b10604
+ - true
- Domain
- Domain
- false
@@ -223738,18 +223940,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
-
+
- 0
- Retrieve a specific item from a list.
- true
- 26626c04-163a-4a20-980f-a24b2f442126
+ - true
- List Item
- List Item
@@ -223779,10 +223982,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 1
- Base list
- f6f764a0-a6d4-4a7b-b3db-bf3cc6ffe82a
+ - true
- 1
- List
- List
@@ -223808,9 +224012,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Item index
- e9ce2f59-3303-4a53-ba0d-15261a26e9ff
+ - true
- Index
- Index
- false
@@ -223855,9 +224060,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Wrap index to list bounds
- 478b03d0-58e3-42d1-a713-e7fca9401b60
+ - true
- Wrap
- Wrap
- false
@@ -223901,9 +224107,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Item at {i'}
- 8518e1e8-f491-41ba-8c28-753b8dee029c
+ - true
- 1
- false
- Item
@@ -223934,17 +224141,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
-
+
- Construct a point from {xyz} coordinates.
- true
- e7098bff-3c56-4289-ab1d-5e2df2dc2cfb
+ - true
- Construct Point
- Construct Point
@@ -223964,9 +224172,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {x} coordinate
- a56a7dcb-f55d-49c6-9d98-72ac0015e769
+ - true
- X coordinate
- X coordinate
- false
@@ -224010,9 +224219,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {y} coordinate
- 90bab88d-fe52-467e-8783-893ea04b7c4b
+ - true
- Y coordinate
- Y coordinate
- false
@@ -224056,9 +224266,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {z} coordinate
- cc7e0a61-59ef-46a6-9518-54fffcbceb17
+ - true
- Z coordinate
- Z coordinate
- false
@@ -224102,9 +224313,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point coordinate
- ccfc0a63-d660-4276-b4c9-ac309204b3cd
+ - true
- 1
- Point
- Point
@@ -224132,17 +224344,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
-
+
- Rotate an object in a plane.
- true
- 8429a1af-d262-4516-8ba6-4819d9bce080
+ - true
- Rotate
- Rotate
@@ -224162,9 +224375,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Base geometry
- 2354448f-84ae-4964-ae1e-4c8be9e4cc1d
+ - true
- Geometry
- Geometry
- true
@@ -224189,9 +224403,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Rotation angle in radians
- fb8b0864-fea6-4081-b308-2eb08c6eca8d
+ - true
- Angle
- Angle
- false
@@ -224236,9 +224451,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Rotation plane
- 22341cb1-b6d4-4f32-a6b9-aa0a2002592a
+ - true
- Plane
- Plane
- false
@@ -224293,9 +224509,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Rotated geometry
- 418b0f69-82c4-44ab-9c99-33ec6ccaf813
+ - true
- 1
- Geometry
- Geometry
@@ -224321,9 +224538,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Transformation data
- f1e959a8-313a-4c1d-967f-a14d1ad0a983
+ - true
- Transform
- Transform
- false
@@ -224350,17 +224568,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
-
+
- Construct a point from {xyz} coordinates.
- true
- 23015bee-c083-4af1-a5dc-e173dadaafa5
+ - true
- Construct Point
- Construct Point
@@ -224380,9 +224599,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {x} coordinate
- 0214d13f-f5e0-4573-b5ff-7754e7ab348d
+ - true
- X coordinate
- X coordinate
- false
@@ -224427,9 +224647,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {y} coordinate
- 0b90d6cf-3608-4931-a60e-11be5a299728
+ - true
- Y coordinate
- Y coordinate
- false
@@ -224474,9 +224695,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- {z} coordinate
- 39310936-b23e-42ac-bd00-360d4ededdfe
+ - true
- Z coordinate
- Z coordinate
- false
@@ -224521,9 +224743,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Point coordinate
- 834ee95c-4eac-4530-8a3c-29c57058ad84
+ - true
- Point
- Point
- false
@@ -224550,17 +224773,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
-
+
- Merge a bunch of data streams
- true
- 1107e188-eef7-4c19-ae98-e31de26131c5
+ - true
- Merge
- Merge
@@ -224591,10 +224815,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 1
- c83d69f4-9208-4076-96bf-b57d34d098a1
+ - true
- false
- Data 1
- D1
@@ -224620,10 +224845,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 2
- f9ab74c4-5174-4db4-8d00-6d5d809f3da7
+ - true
- false
- Data 2
- D2
@@ -224649,10 +224875,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 3
- 0aae4231-b0eb-4301-9c22-cb3314c1e15e
+ - true
- false
- Data 3
- D3
@@ -224678,10 +224905,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Data stream 4
- bb807ba9-d448-44dd-85ab-b311f681290e
+ - true
- false
- Data 4
- D4
@@ -224706,10 +224934,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Result of merge
- b54f308e-40d5-49cf-9603-04608ca6bb66
+ - true
- Result
- Result
- false
@@ -224738,16 +224967,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
-
+
- Contains a collection of floating point numbers
- 0d5480fd-b809-4f0b-985d-ac75960fc64f
+ - true
- Number
- Number
- false
@@ -224793,7 +225023,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
@@ -224818,21 +225048,22 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
-
+
- 2
- A wire relay object
- e67debd2-544c-4a62-830a-f5782ec6d95b
+ - true
- Relay
- false
- - 442e6075-dae1-49d8-bd6c-8df4b2e5e279
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
- 1
@@ -224854,18 +225085,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",ROUND(X, 15))
- true
- ec56aa9b-bf0e-43f9-a278-6ef141612b48
+ - true
- Expression
- Expression
@@ -224893,9 +225125,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- a9b4973d-6e2e-4c25-90a7-e65f57c6ce56
+ - true
- Variable X
- X
- true
@@ -224920,9 +225153,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- d2ecb03c-5a84-47f8-afac-17ae45bc6a9a
+ - true
- Result
- Result
- false
@@ -224952,18 +225186,19 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
-
+
- Evaluate an expression
- FORMAT("{0:R}",ROUND(Y, 15))
- true
- 372c9713-8b48-4080-bca3-e19d37da43ba
+ - true
- Expression
- Expression
@@ -224991,9 +225226,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Expression variable
- d9894b40-483e-47a3-beb8-5c0e8978e30d
+ - true
- Variable Y
- Y
- true
@@ -225018,9 +225254,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Result of expression
- ad59754d-108e-4cfa-9319-1b92867cb4a7
+ - true
- Result
- Result
- false
@@ -225050,17 +225287,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
-
+
- Flip a curve using an optional guide curve.
- true
- cf3fd21c-3ff1-405f-8188-7c3e36e89091
+ - true
- Flip Curve
- Flip Curve
@@ -225080,9 +225318,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Curve to flip
- b593cb0c-3850-43cb-ab64-fb084a2ca7e3
+ - true
- Curve
- Curve
- false
@@ -225107,9 +225346,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Optional guide curve
- a253bdd5-f900-4077-99d2-697a4d89362c
+ - true
- Guide
- Guide
- true
@@ -225133,9 +225373,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Flipped curve
- e8f53765-0f87-4d4c-8084-d0da5bf9ce22
+ - true
- Curve
- Curve
- false
@@ -225159,9 +225400,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Flip action
- c43c0669-746a-411a-938a-c9ae8295f8b2
+ - true
- Flag
- Flag
- false
@@ -225188,17 +225430,18 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
-
+
- Filters a collection of input streams
- true
- f9dc0f84-f005-4def-9a32-1595c75a315b
+ - true
- Stream Filter
- Stream Filter
@@ -225228,9 +225471,10 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- Index of Gate stream
- 882b4266-a91e-46f7-86d2-b4f193520620
+ - true
- Gate
- Gate
- false
@@ -225275,10 +225519,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Input stream at index 0
- b6e0d67c-e5f8-423f-a932-7b958de629c9
+ - true
- false
- Stream 0
- 0
@@ -225304,10 +225549,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Input stream at index 1
- 85e8f5a0-9c99-4451-a993-addcc86813fb
+ - true
- false
- Stream 1
- 1
@@ -225333,10 +225579,11 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 2
- Filtered stream
- 6909d3f9-3b76-40d3-9d12-d3bb72e99f02
+ - true
- false
- Stream
- S(0)
@@ -225366,16 +225613,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
-
+
- Numeric slider for single values
- 68fed558-dddc-4bde-84cf-30a1dc52175b
+ - true
- Number Slider
-
- false
@@ -225411,7 +225659,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -225463,7 +225711,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
@@ -225515,7 +225763,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
@@ -225551,16 +225799,17 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
+
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
-
+
- Contains a collection of floating point numbers
- 314ba323-fca5-451e-b5c9-1e0cee8c9c84
+ - true
- Number
- Number
- false
@@ -225586,6 +225835,3010 @@ if omitted, it would be 0-1 in "Normalize" mode by default
+
+
+ - 6b021f56-b194-4210-b9a1-6cef3b7d0848
+ - Evaluate Length
+
+
+
+
+ - Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
+ - true
+ - 8dcb8ac5-af0b-497e-9f9f-5a59c21d7739
+ - true
+ - Evaluate Length
+ - Evaluate Length
+
+
+
+
+ -
+ 4793
+ 517
+ 144
+ 64
+
+ -
+ 4867
+ 549
+
+
+
+
+
+ - Curve to evaluate
+ - 860d2d67-c77d-41f0-b314-755a6c77da1f
+ - true
+ - Curve
+ - Curve
+ - false
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 1
+
+
+
+
+ -
+ 4795
+ 519
+ 57
+ 20
+
+ -
+ 4825
+ 529
+
+
+
+
+
+
+
+ - Length factor for curve evaluation
+ - c6ae725e-4c9d-4aac-b254-3740de47ffb9
+ - true
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 539
+ 57
+ 20
+
+ -
+ 4825
+ 549
+
+
+
+
+
+ - 1
+
+
+
+
+ - 8
+ - {0}
+
+
+
+
+ - 0.0625
+
+
+
+
+ - 0.1875
+
+
+
+
+ - 0.3125
+
+
+
+
+ - 0.4375
+
+
+
+
+ - 0.5625
+
+
+
+
+ - 0.6875
+
+
+
+
+ - 0.8125
+
+
+
+
+ - 0.9375
+
+
+
+
+
+
+
+
+
+
+ - If True, the Length factor is normalized (0.0 ~ 1.0)
+ - 47a809dc-657a-4cba-a5fd-7f8ace0ab7a3
+ - true
+ - Normalized
+ - Normalized
+ - false
+ - 0
+
+
+
+
+ -
+ 4795
+ 559
+ 57
+ 20
+
+ -
+ 4825
+ 569
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - Point at the specified length
+ - e0c83f5e-8e11-4367-8a1c-374721201adf
+ - true
+ - Point
+ - Point
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 519
+ 53
+ 20
+
+ -
+ 4910
+ 529
+
+
+
+
+
+
+
+ - Tangent vector at the specified length
+ - 3d4b1ebe-c143-4653-92e5-c0752a0ab481
+ - true
+ - Tangent
+ - Tangent
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 539
+ 53
+ 20
+
+ -
+ 4910
+ 549
+
+
+
+
+
+
+
+ - Curve parameter at the specified length
+ - 090c1148-8402-4d9b-90cb-d43e3d382ea6
+ - true
+ - Parameter
+ - Parameter
+ - false
+ - 0
+
+
+
+
+ -
+ 4882
+ 559
+ 53
+ 20
+
+ -
+ 4910
+ 569
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - true
+ - Curve
+ - Curve
+ - false
+ - 2f741b85-28a7-40bc-a56a-d8c6b82e5b30
+ - 1
+
+
+
+
+ -
+ 4840
+ 478
+ 50
+ 24
+
+ -
+ 4865.667
+ 490.4783
+
+
+
+
+
+
+
+
+
+ - 50b204ef-d3de-41bb-a006-02fba2d3f709
+ - Circle TanTan
+
+
+
+
+ - Create a circle tangent to two curves.
+ - 3db8404e-2571-4eff-9bdf-8e6e83dd76c6
+ - true
+ - Circle TanTan
+ - Circle TanTan
+
+
+
+
+ -
+ 4810
+ 388
+ 110
+ 64
+
+ -
+ 4871
+ 420
+
+
+
+
+
+ - First curve for tangency constraint
+ - f18dc38d-eb33-49b6-b9a4-37e4953b3a73
+ - true
+ - Curve A
+ - Curve A
+ - false
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 1
+
+
+
+
+ -
+ 4812
+ 390
+ 44
+ 20
+
+ -
+ 4835.5
+ 400
+
+
+
+
+
+
+
+ - Second curve for tangency constraint
+ - e3e79cc0-4f7f-40e8-a81c-9aa9fd6bb224
+ - true
+ - Curve B
+ - Curve B
+ - false
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - 1
+
+
+
+
+ -
+ 4812
+ 410
+ 44
+ 20
+
+ -
+ 4835.5
+ 420
+
+
+
+
+
+
+
+ - Circle center point guide
+ - d2756187-a685-4afc-946d-2850c8a167d4
+ - true
+ - Point
+ - Point
+ - false
+ - e0c83f5e-8e11-4367-8a1c-374721201adf
+ - 1
+
+
+
+
+ -
+ 4812
+ 430
+ 44
+ 20
+
+ -
+ 4835.5
+ 440
+
+
+
+
+
+
+
+ - Resulting circle
+ - 4fef126c-5d5b-41b7-bbef-ae38bb6da4ff
+ - true
+ - Circle
+ - Circle
+ - false
+ - 0
+
+
+
+
+ -
+ 4886
+ 390
+ 32
+ 60
+
+ -
+ 4903.5
+ 420
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - true
+ - Curve
+ - Curve
+ - false
+ - 4846b0cb-e124-42d2-aeb5-eea1f2b86f7c
+ - 1
+
+
+
+
+ -
+ 4840
+ 610
+ 50
+ 24
+
+ -
+ 4865.899
+ 622.7803
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 8dcb8ac5-af0b-497e-9f9f-5a59c21d7739
+ - 7e4a3e15-e107-44d4-949a-9c8b693467de
+ - 3db8404e-2571-4eff-9bdf-8e6e83dd76c6
+ - bce9593a-6c88-44fe-866b-f0d44901cbff
+ - 4
+ - 67e87bed-97bd-4fe6-a495-b4bf8cba66a7
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 10a885e1-c62c-4884-aac2-5a603349ad8c
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4557
+ 5076
+ 166
+ 44
+
+ -
+ 4622
+ 5098
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - c5e45e48-13ff-409f-b940-20d2c289996b
+ - Keys
+ - Keys
+ - false
+ - 97db0094-b0e0-490b-aee3-b5ad1a35b7ce
+ - 1
+
+
+
+
+ -
+ 4559
+ 5078
+ 48
+ 20
+
+ -
+ 4584.5
+ 5088
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - d25ba8d2-c317-4ee0-9a38-3456853c33e3
+ - Values A
+ - Values A
+ - true
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 1
+
+
+
+
+ -
+ 4559
+ 5098
+ 48
+ 20
+
+ -
+ 4584.5
+ 5108
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 991955a3-8008-4e57-8dbb-7ba03cd9f567
+ - 1
+ - Keys
+ - Keys
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4637
+ 5078
+ 84
+ 20
+
+ -
+ 4662.5
+ 5088
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in A
+ - 069a4f8e-92dd-4b26-85d9-3bf73f839545
+ - 1
+ - Values A
+ - Values A
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4637
+ 5098
+ 84
+ 20
+
+ -
+ 4662.5
+ 5108
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 5d5e6fe9-12d4-4847-aedd-a0138f3348ac
+ - Length
+ - Length
+
+
+
+
+ -
+ 4588
+ 5138
+ 104
+ 28
+
+ -
+ 4638
+ 5152
+
+
+
+
+
+ - Curve to measure
+ - a9b71273-d374-4bb6-9799-ec2437c44412
+ - Curve
+ - Curve
+ - false
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 1
+
+
+
+
+ -
+ 4590
+ 5140
+ 33
+ 24
+
+ -
+ 4608
+ 5152
+
+
+
+
+
+
+
+ - Curve length
+ - 97db0094-b0e0-490b-aee3-b5ad1a35b7ce
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4653
+ 5140
+ 37
+ 24
+
+ -
+ 4673
+ 5152
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 1a9fea67-24bb-4a73-b097-d1198a77d87c
+ - Panel
+
+ - false
+ - 0
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4578
+ 4953
+ 124
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4578.951
+ 4953.517
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 336373ee-9098-4a65-a9fc-245b1728e183
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4594
+ 4993
+ 92
+ 64
+
+ -
+ 4642
+ 5025
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - ace7a9cf-0d93-4dd2-92e7-78d2e22247b1
+ - List
+ - List
+ - false
+ - 991955a3-8008-4e57-8dbb-7ba03cd9f567
+ - 1
+
+
+
+
+ -
+ 4596
+ 4995
+ 31
+ 20
+
+ -
+ 4613
+ 5005
+
+
+
+
+
+
+
+ - Item index
+ - 1600e066-8870-495b-97d9-3c995d4970a7
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4596
+ 5015
+ 31
+ 20
+
+ -
+ 4613
+ 5025
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 62143c9f-d88e-4125-b9a3-15097957e834
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4596
+ 5035
+ 31
+ 20
+
+ -
+ 4613
+ 5045
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - false
+ - Item
+ - Item
+ - false
+ - 0
+
+
+
+
+ -
+ 4657
+ 4995
+ 27
+ 60
+
+ -
+ 4672
+ 5025
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 10a885e1-c62c-4884-aac2-5a603349ad8c
+ - 5d5e6fe9-12d4-4847-aedd-a0138f3348ac
+ - 1a9fea67-24bb-4a73-b097-d1198a77d87c
+ - 336373ee-9098-4a65-a9fc-245b1728e183
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - 5
+ - d471759a-2aac-4cde-99fb-c4eeef356581
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 0e94c4e7-ee71-4c40-aa99-84d17a235c6f
+ - Relay
+
+ - false
+ - 76eb6709-1b5d-4393-a09b-053dd6f6870c
+ - 1
+
+
+
+
+ -
+ 4618
+ 5184
+ 40
+ 16
+
+ -
+ 4638
+ 5192
+
+
+
+
+
+
+
+
+
+ - 6f93d366-919f-4dda-a35e-ba03dd62799b
+ - Sort List
+
+
+
+
+ - Sort a list of numeric keys.
+ - true
+ - 68082c19-68a1-4f98-8cf1-6a223a630ca2
+ - Sort List
+ - Sort List
+
+
+
+
+ -
+ 4808
+ 1046
+ 166
+ 44
+
+ -
+ 4873
+ 1068
+
+
+
+
+
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2
+ - 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - List of sortable keys
+ - 77df0001-99a0-4e30-b846-5ad09fec4152
+ - Keys
+ - Keys
+ - false
+ - e17faae2-0363-4357-93c9-bd2d227f6f95
+ - 1
+
+
+
+
+ -
+ 4810
+ 1048
+ 48
+ 20
+
+ -
+ 4835.5
+ 1058
+
+
+
+
+
+
+
+ - 1
+ - Optional list of values to sort synchronously
+ - 77b4169b-7957-4219-a516-fd1c01fc17a8
+ - Values Values A
+ - Values A
+ - true
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 1
+
+
+
+
+ -
+ 4810
+ 1068
+ 48
+ 20
+
+ -
+ 4835.5
+ 1078
+
+
+
+
+
+
+
+ - 1
+ - Sorted keys
+ - 141ac252-7681-4aae-ad37-2fdcb02e31d6
+ - 1
+ - Keys
+ - Keys
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4888
+ 1048
+ 84
+ 20
+
+ -
+ 4913.5
+ 1058
+
+
+
+
+
+
+
+ - 1
+ - Synchronous values in Values A
+ - 95f460fb-fea2-4898-9b96-c6614fd6a480
+ - 1
+ - Values Values A
+ - Values A
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4888
+ 1068
+ 84
+ 20
+
+ -
+ 4913.5
+ 1078
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c75b62fa-0a33-4da7-a5bd-03fd0068fd93
+ - Length
+
+
+
+
+ - Measure the length of a curve.
+ - true
+ - 586b67fb-8013-4a19-afbe-58c6fb976d98
+ - Length
+ - Length
+
+
+
+
+ -
+ 4839
+ 1108
+ 104
+ 28
+
+ -
+ 4889
+ 1122
+
+
+
+
+
+ - Curve to measure
+ - 221f67e4-8fca-45c2-a2a5-6ea91c10ab7e
+ - Curve
+ - Curve
+ - false
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 1
+
+
+
+
+ -
+ 4841
+ 1110
+ 33
+ 24
+
+ -
+ 4859
+ 1122
+
+
+
+
+
+
+
+ - Curve length
+ - e17faae2-0363-4357-93c9-bd2d227f6f95
+ - Length
+ - Length
+ - false
+ - 0
+
+
+
+
+ -
+ 4904
+ 1110
+ 37
+ 24
+
+ -
+ 4924
+ 1122
+
+
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - 4cdc7d62-de0e-4133-8e9f-dcf36557e740
+ - Panel
+
+ - false
+ - 0
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4831
+ 884
+ 124
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4831.305
+ 884.7397
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 59daf374-bc21-4a5e-8282-5504fb7ae9ae
+ - List Item
+
+
+
+
+ - 0
+ - Retrieve a specific item from a list.
+ - true
+ - 2dae60c8-92c8-445a-8e3a-e4e4ecca8654
+ - List Item
+ - List Item
+
+
+
+
+ -
+ 4854
+ 963
+ 74
+ 64
+
+ -
+ 4902
+ 995
+
+
+
+
+
+ - 3
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+ - 2e3ab970-8545-46bb-836c-1c11e5610bce
+ - cb95db89-6165-43b6-9c41-5702bc5bf137
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - 1
+ - Base list
+ - 304addc7-7081-4df9-9b59-ec9e5daf6fb1
+ - List
+ - List
+ - false
+ - 141ac252-7681-4aae-ad37-2fdcb02e31d6
+ - 1
+
+
+
+
+ -
+ 4856
+ 965
+ 31
+ 20
+
+ -
+ 4873
+ 975
+
+
+
+
+
+
+
+ - Item index
+ - 026c004f-2d7f-41db-9d3b-f75ede8f2ecb
+ - Index
+ - Index
+ - false
+ - 0
+
+
+
+
+ -
+ 4856
+ 985
+ 31
+ 20
+
+ -
+ 4873
+ 995
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Wrap index to list bounds
+ - 33de4a30-e606-4c37-baab-a5e45944b6bd
+ - Wrap
+ - Wrap
+ - false
+ - 0
+
+
+
+
+ -
+ 4856
+ 1005
+ 31
+ 20
+
+ -
+ 4873
+ 1015
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - false
+
+
+
+
+
+
+
+
+
+
+ - Item at {i'}
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - false
+ - Item
+ - i
+ - false
+ - 0
+
+
+
+
+ -
+ 4917
+ 965
+ 9
+ 60
+
+ -
+ 4923
+ 995
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 68082c19-68a1-4f98-8cf1-6a223a630ca2
+ - 586b67fb-8013-4a19-afbe-58c6fb976d98
+ - 4cdc7d62-de0e-4133-8e9f-dcf36557e740
+ - 2dae60c8-92c8-445a-8e3a-e4e4ecca8654
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - 93132e8b-ab93-41d0-b5e4-ef3b610ae451
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - d18c37a3-8870-4d84-837d-a09e2feff9b4
+ - a7a02c85-5134-4dc0-892c-7aca3ec86465
+ - 9
+ - 7d18f7f1-21bd-43ec-9f05-0ac476eaa41b
+ - Group
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - fa57ee60-3e1a-493e-b919-cde396c0d34e
+ - Relay
+
+ - false
+ - c6a38d5c-cd10-4ce8-b30c-aadaf81095a0
+ - 1
+
+
+
+
+ -
+ 4871
+ 1154
+ 40
+ 16
+
+ -
+ 4891
+ 1162
+
+
+
+
+
+
+
+
+
+ - 9c85271f-89fa-4e9f-9f4a-d75802120ccc
+ - Division
+
+
+
+
+ - Mathematical division
+ - true
+ - 93132e8b-ab93-41d0-b5e4-ef3b610ae451
+ - Division
+ - Division
+
+
+
+
+ -
+ 4850
+ 810
+ 82
+ 44
+
+ -
+ 4881
+ 832
+
+
+
+
+
+ - Item to divide (dividend)
+ - a1b9f6dc-a89a-4131-b7cd-1eb7dea7c26a
+ - A
+ - A
+ - false
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - 1
+
+
+
+
+ -
+ 4852
+ 812
+ 14
+ 20
+
+ -
+ 4860.5
+ 822
+
+
+
+
+
+
+
+ - Item to divide with (divisor)
+ - 95dcf4c4-435e-4079-b9c9-002dc7e6b904
+ - B
+ - B
+ - false
+ - 2deb309b-4bbf-42a4-b1f0-3c49cf248f07
+ - 1
+
+
+
+
+ -
+ 4852
+ 832
+ 14
+ 20
+
+ -
+ 4860.5
+ 842
+
+
+
+
+
+
+
+ - The result of the Division
+ - 8e2db5fd-f520-4350-b05e-147b54bdc6e1
+ - Result
+ - Result
+ - false
+ - 0
+
+
+
+
+ -
+ 4896
+ 812
+ 34
+ 40
+
+ -
+ 4914.5
+ 832
+
+
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 70967217-7c70-4101-a43c-def289a8f2ba
+ - Relay
+
+ - false
+ - 291db62f-2a0f-4e4f-95e0-a6e5c4e4b7b5
+ - 1
+
+
+
+
+ -
+ 4871
+ 926
+ 40
+ 16
+
+ -
+ 4891
+ 934
+
+
+
+
+
+
+
+
+
+ - 59e0b89a-e487-49f8-bab8-b5bab16be14c
+ - Panel
+
+
+
+
+ - A panel for custom notes and text values
+ - d18c37a3-8870-4d84-837d-a09e2feff9b4
+ - Panel
+
+ - false
+ - 0
+ - 0f7b6154-1db3-4b52-938e-66ae1f49d020
+ - 1
+ - Double click to edit panel content…
+
+
+
+
+ -
+ 4824
+ 718
+ 138
+ 20
+
+ - 0
+ - 0
+ - 0
+ -
+ 4824.362
+ 718.1323
+
+
+
+
+
+ -
+ 255;255;255;255
+
+ - false
+ - false
+ - true
+ - false
+ - false
+ - true
+
+
+
+
+
+
+
+
+ - 9df5e896-552d-4c8c-b9ca-4fc147ffa022
+ - Expression
+
+
+
+
+ - Evaluate an expression
+ - FORMAT("{0:R}",X)
+ - true
+ - a7a02c85-5134-4dc0-892c-7aca3ec86465
+ - Expression
+ - Expression
+
+
+
+
+ -
+ 4774
+ 756
+ 235
+ 28
+
+ -
+ 4874
+ 770
+
+
+
+
+
+ - 1
+ - ba80fd98-91a1-4958-b6a7-a94e40e52bdb
+ - 1
+ - 8ec86459-bf01-4409-baee-174d0d2b13d0
+
+
+
+
+ - Expression variable
+ - 692bab05-e1ee-4fd8-a3e1-268c6f6e54c5
+ - Variable X
+ - X
+ - true
+ - 8e2db5fd-f520-4350-b05e-147b54bdc6e1
+ - 1
+
+
+
+
+ -
+ 4776
+ 758
+ 14
+ 24
+
+ -
+ 4784.5
+ 770
+
+
+
+
+
+
+
+ - Result of expression
+ - 0f7b6154-1db3-4b52-938e-66ae1f49d020
+ - Result
+ - Result
+ - false
+ - true
+ - 0
+
+
+
+
+ -
+ 4957
+ 758
+ 50
+ 24
+
+ -
+ 4975.5
+ 770
+
+
+
+
+
+
+
+
+
+
+
+
+
+ - 33bcf975-a0b2-4b54-99fd-585c893b9e88
+ - Digit Scroller
+
+
+
+
+ - Numeric scroller for single numbers
+ - d8c67dd0-43fb-43d1-9d5a-230f2f0d1341
+ - Digit Scroller
+ -
+ - false
+ - 0
+
+
+
+
+ - 12
+ -
+ - 1
+
+ - 0.04375000000
+
+
+
+
+ -
+ 4185
+ 5295
+ 250
+ 20
+
+ -
+ 4185.428
+ 5295.365
+
+
+
+
+
+
+
+
+
+ - b6236720-8d88-4289-93c3-ac4c99f9b97b
+ - Relay
+
+
+
+
+ - 2
+ - A wire relay object
+ - 6b23f605-1533-4de6-9a99-7e5d71630123
+ - Relay
+
+ - false
+ - 442e6075-dae1-49d8-bd6c-8df4b2e5e279
+ - 1
+
+
+
+
+ -
+ 8193
+ 27355
+ 40
+ 16
+
+ -
+ 8213
+ 27363
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - Curve
+ - Curve
+ - false
+ - 6b23f605-1533-4de6-9a99-7e5d71630123
+ - 1
+
+
+
+
+ -
+ 8472
+ 27896
+ 50
+ 24
+
+ -
+ 8497.052
+ 27908.87
+
+
+
+
+
+
+
+
+
+ - ccfd6ba8-ecb1-44df-a47e-08126a653c51
+ - Curve Domain
+
+
+
+
+ - Measure and set the curve domain
+ - true
+ - 27269ca2-746d-493e-bd7f-1659cea6783b
+ - Curve Domain
+ - Curve Domain
+
+
+
+
+ -
+ 8438
+ 27834
+ 116
+ 44
+
+ -
+ 8496
+ 27856
+
+
+
+
+
+ - Curve to measure/modify
+ - c14647d7-1e8a-44b0-9699-0889411af5aa
+ - Curve
+ - Curve
+ - false
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - 1
+
+
+
+
+ -
+ 8440
+ 27836
+ 41
+ 20
+
+ -
+ 8462
+ 27846
+
+
+
+
+
+
+
+ - Optional domain, if omitted the curve will not be modified.
+ - ecea4d9b-9629-44bd-adc3-eb6ca5e8c856
+ - Domain
+ - Domain
+ - true
+ - 0
+
+
+
+
+ -
+ 8440
+ 27856
+ 41
+ 20
+
+ -
+ 8462
+ 27866
+
+
+
+
+
+
+
+ - Curve with new domain.
+ - cbbcf946-4aec-4d46-b72b-a606f7a104bf
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8511
+ 27836
+ 41
+ 20
+
+ -
+ 8533
+ 27846
+
+
+
+
+
+
+
+ - Domain of original curve.
+ - 1c3d95c6-f7c9-4c5d-8b42-e0ca74be1f81
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 8511
+ 27856
+ 41
+ 20
+
+ -
+ 8533
+ 27866
+
+
+
+
+
+
+
+
+
+
+
+ - 429cbba9-55ee-4e84-98ea-876c44db879a
+ - Sub Curve
+
+
+
+
+ - Construct a curve from the sub-domain of a base curve.
+ - true
+ - f4b20cd0-ad6e-4694-a5db-9f4fb1e8a455
+ - Sub Curve
+ - Sub Curve
+
+
+
+
+ -
+ 8434
+ 27647
+ 124
+ 44
+
+ -
+ 8508
+ 27669
+
+
+
+
+
+ - Base curve
+ - b2054661-b9be-4a99-80b8-0940f81794fc
+ - Base curve
+ - Base curve
+ - false
+ - cbbcf946-4aec-4d46-b72b-a606f7a104bf
+ - 1
+
+
+
+
+ -
+ 8436
+ 27649
+ 57
+ 20
+
+ -
+ 8466
+ 27659
+
+
+
+
+
+
+
+ - Sub-domain to extract
+ - a00cd4a1-6e37-4826-88fd-51d54410a69a
+ - Domain
+ - Domain
+ - false
+ - 9334ae67-07c7-4834-8b06-7a33f4821639
+ - 1
+
+
+
+
+ -
+ 8436
+ 27669
+ 57
+ 20
+
+ -
+ 8466
+ 27679
+
+
+
+
+
+
+
+ - Resulting sub curve
+ - 28ffb627-e1d3-4ada-af3e-d72a32b969c3
+ - Curve
+ - Curve
+ - false
+ - 0
+
+
+
+
+ -
+ 8523
+ 27649
+ 33
+ 40
+
+ -
+ 8541
+ 27669
+
+
+
+
+
+
+
+
+
+
+
+ - 825ea536-aebb-41e9-af32-8baeb2ecb590
+ - Deconstruct Domain
+
+
+
+
+ - Deconstruct a numeric domain into its component parts.
+ - true
+ - b1869d86-deda-4a0d-9417-d722ff5a6f76
+ - Deconstruct Domain
+ - Deconstruct Domain
+
+
+
+
+ -
+ 8444
+ 27772
+ 104
+ 44
+
+ -
+ 8502
+ 27794
+
+
+
+
+
+ - Base domain
+ - a2c803c9-f57f-499b-9b73-ba3c6b2d2ab7
+ - Domain
+ - Domain
+ - false
+ - 1c3d95c6-f7c9-4c5d-8b42-e0ca74be1f81
+ - 1
+
+
+
+
+ -
+ 8446
+ 27774
+ 41
+ 40
+
+ -
+ 8468
+ 27794
+
+
+
+
+
+
+
+ - Start of domain
+ - 31ee45b7-0163-43d0-be13-20bb206e237a
+ - Start
+ - Start
+ - false
+ - 0
+
+
+
+
+ -
+ 8517
+ 27774
+ 29
+ 20
+
+ -
+ 8533
+ 27784
+
+
+
+
+
+
+
+ - End of domain
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - End
+ - End
+ - false
+ - 0
+
+
+
+
+ -
+ 8517
+ 27794
+ 29
+ 20
+
+ -
+ 8533
+ 27804
+
+
+
+
+
+
+
+
+
+
+
+ - d1a28e95-cf96-4936-bf34-8bf142d731bf
+ - Construct Domain
+
+
+
+
+ - Create a numeric domain from two numeric extremes.
+ - true
+ - 055cc576-c38c-4518-a0b7-02351a6ac391
+ - Construct Domain
+ - Construct Domain
+
+
+
+
+ -
+ 8418
+ 27709
+ 156
+ 44
+
+ -
+ 8516
+ 27731
+
+
+
+
+
+ - Start value of numeric domain
+ - b7629d1e-f2a9-4510-81c4-bb8df98eeaea
+ - X/2
+ - Domain start
+ - Domain start
+ - false
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - 1
+
+
+
+
+ -
+ 8420
+ 27711
+ 81
+ 20
+
+ -
+ 8470
+ 27721
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - End value of numeric domain
+ - fa41cdac-411c-4290-8d64-738b3324437b
+ - Domain end
+ - Domain end
+ - false
+ - dee37b89-9305-4a36-9179-6d97ca46646d
+ - 1
+
+
+
+
+ -
+ 8420
+ 27731
+ 81
+ 20
+
+ -
+ 8470
+ 27741
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Numeric domain between {A} and {B}
+ - 9334ae67-07c7-4834-8b06-7a33f4821639
+ - Domain
+ - Domain
+ - false
+ - 0
+
+
+
+
+ -
+ 8531
+ 27711
+ 41
+ 40
+
+ -
+ 8553
+ 27731
+
+
+
+
+
+
+
+
+
+
+
+ - e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
+ - Move
+
+
+
+
+ - Translate (move) an object along a vector.
+ - true
+ - 450d1836-007e-42fe-9e6e-fe593816a576
+ - Move
+ - Move
+
+
+
+
+ -
+ 8420
+ 27575
+ 138
+ 44
+
+ -
+ 8488
+ 27597
+
+
+
+
+
+ - Base geometry
+ - 68453121-dd05-471b-a271-3b0e6e0e6681
+ - Geometry
+ - Geometry
+ - true
+ - 28ffb627-e1d3-4ada-af3e-d72a32b969c3
+ - 1
+
+
+
+
+ -
+ 8422
+ 27577
+ 51
+ 20
+
+ -
+ 8449
+ 27587
+
+
+
+
+
+
+
+ - Translation vector
+ - e88170f6-4ac7-4245-a6a9-6b3334fc6328
+ - Motion
+ - Motion
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27597
+ 51
+ 20
+
+ -
+ 8449
+ 27607
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ -
+ -0.5
+ -0.5
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Translated geometry
+ - 44ac77be-fbeb-466e-bddb-7f1328440517
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27577
+ 53
+ 20
+
+ -
+ 8531
+ 27587
+
+
+
+
+
+
+
+ - Transformation data
+ - df6843f5-81ac-4924-88f4-bf5656d3e788
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27597
+ 53
+ 20
+
+ -
+ 8531
+ 27607
+
+
+
+
+
+
+
+
+
+
+
+ - 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
+ - Scale
+
+
+
+
+ - Scale an object uniformly in all directions.
+ - true
+ - c29714be-f7d1-4db0-91e2-ed8c9ccfa8c6
+ - Scale
+ - Scale
+
+
+
+
+ -
+ 8420
+ 27488
+ 138
+ 64
+
+ -
+ 8488
+ 27520
+
+
+
+
+
+ - Base geometry
+ - 4d9bfc44-2c61-4e4f-bb88-4b8e0e181ef0
+ - Geometry
+ - Geometry
+ - true
+ - 44ac77be-fbeb-466e-bddb-7f1328440517
+ - 1
+
+
+
+
+ -
+ 8422
+ 27490
+ 51
+ 20
+
+ -
+ 8449
+ 27500
+
+
+
+
+
+
+
+ - Center of scaling
+ - aedb4df6-b9b1-4980-9b64-4f53b9963a22
+ - Center
+ - Center
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27510
+ 51
+ 20
+
+ -
+ 8449
+ 27520
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+
+ -
+ 0
+ 0
+ 0
+
+
+
+
+
+
+
+
+
+
+
+ - Scaling factor
+ - eea675a8-779d-4d23-82f1-8d86d1584a87
+ - Factor
+ - Factor
+ - false
+ - 0
+
+
+
+
+ -
+ 8422
+ 27530
+ 51
+ 20
+
+ -
+ 8449
+ 27540
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 2
+
+
+
+
+
+
+
+
+
+
+ - Scaled geometry
+ - 7dcd6b2d-8a1b-43b9-a02b-7edb3c6aca31
+ - Geometry
+ - Geometry
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27490
+ 53
+ 30
+
+ -
+ 8531
+ 27505
+
+
+
+
+
+
+
+ - Transformation data
+ - a359d01a-11cf-4ae0-abbb-97ed147383af
+ - Transform
+ - Transform
+ - false
+ - 0
+
+
+
+
+ -
+ 8503
+ 27520
+ 53
+ 30
+
+ -
+ 8531
+ 27535
+
+
+
+
+
+
+
+
+
+
+
+ - d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
+ - Curve
+
+
+
+
+ - Contains a collection of generic curves
+ - true
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
+ - Curve
+ - Curve
+ - false
+ - 7dcd6b2d-8a1b-43b9-a02b-7edb3c6aca31
+ - 1
+
+
+
+
+ -
+ 8463
+ 27443
+ 50
+ 24
+
+ -
+ 8488.357
+ 27455.06
+
+
+
+
+
+
+
+
+
+ - c552a431-af5b-46a9-a8a4-0fcbc27ef596
+ - Group
+
+
+
+
+ - 1
+ -
+ 255;255;255;255
+
+ - A group of Grasshopper objects
+ - 9d0d1d25-33a3-42a0-a9f9-e43449abed81
+ - 27269ca2-746d-493e-bd7f-1659cea6783b
+ - f4b20cd0-ad6e-4694-a5db-9f4fb1e8a455
+ - b1869d86-deda-4a0d-9417-d722ff5a6f76
+ - 055cc576-c38c-4518-a0b7-02351a6ac391
+ - 450d1836-007e-42fe-9e6e-fe593816a576
+ - c29714be-f7d1-4db0-91e2-ed8c9ccfa8c6
+ - 145da25a-2a67-48d1-8b10-c024ec21e886
+ - 8
+ - 63aabaa5-28e3-4fc1-b4ee-df782655ab68
+ - Group
+
+
+
+
+
+
+
+
@@ -225593,7 +228846,7 @@ if omitted, it would be 0-1 in "Normalize" mode by default
-
- iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJJSURBVHhe7d03sy1Fd8ZxvolevoQCIiIFZATUW6UqCgUkSsiUiogqClEQkVCKIFAiEuwVVnjvnYT33nsv/Yq/aEbbnXO57HNmn3s7mOrp6em9dz+9Vj/LzOzTTjtVjsAM/M+psrMz8H/Lz/f/z1NlB2cAcKcg3EHcJl/5FIS7jZ9vfwrCUxDu/Azs/A84JYWnIDy8GbjjjjtuvfXW/5iUm2+++fbbbz+8b3Q4n7yTUgg8wDk++uijL7300ltvvfXOO++8/vrrzzzzzD333ANI0B7OdB7Gp+4ehLfccgvwIPftt98u2+I///zz+++//+CDD4bxYUzpQX/mjkFIwh555JFvvvlmT0fKK6+8AuyTQa/uEoQE69lnn90TvNHhgw8+uO222448ijsDIfl74okn9o9fPd977z03HrRqO9jP2w0ICROe8tNPPx0vhPq/+OKLxPdgZ/VAP203ICRJn3zyyRS/77//Hp358ssv/+vX8t+/leeff/7ll1+e9vzll1/uv//+I8xRdwBC+C1sgWgnRuP4wgsvXHjhhZdeeum//FYuueSSiy66iLEBuQHkp59+eoTV6dwhZBgo33333VSwgFcL+Tv77LP/OinnnHPO+eeff8UVV3z88cfTW55++umjiuLcITx27BibfWELTAp/+OEH1uG555573nnn/cNvxekFF1xg/1tAndZFTY8kO501hOSGSlxJYVAbEC4THPrTrrnScOTEsSAOlGkcyIfNF0KGORry448/7p+Fkk7bHqaz7pYjyU5nCiErwgpedqFpqRBBUI0jtanxww8//OKLLyKrlWU4n3rqqSO2Kc4UQrP80UcfTYUJSG+++SbNSdSUzz//HFp05ldffaVeOy2q1KEScZ2Oo+e9997bEjkaZY4Qwo95t6AMuUavv/760cjtwhTEdBSkZp3yJKbLSpWypaWPBn5zTLxAGu+8887lLZCRgI/sf1+sJwFdie5zzz13ZFw2s5NCM7tsRfiWkGAFshFhPAwGla+//tqeNzXkdaaEX331VZfsfDfeeOMy8G7M4jwCsjgvCM3pXXfdtdIXyrq4+uqrL7vssosvvtguGCrUKZK5HDskxHC1CxLclQsit8DREMR5QWhOQbJSWxIsIUBOFmWlpfH119/98D0L5He/mnE2eMbJ6NEgNfOCkDMaw1wJofbXXnttXMpyyJb49ZZfrr/+4b/+/SX/fstL33z/OwXVYYGRTgd/7LHHjgCvmRGE8HvooYfWERae7ptuumnKSLFWcvnGG2+A9ueffnjz9Q/+9sx//pu/+9c7H/ndIbcZQhk3R0CXzghCs7kQJ1qw50ThNzPSR598/R//6arX3nhvdNsMIVE+AqRmRhDSaSy2dSC9++67QktTRcpsVyhSu9o6bbmnf+7hhx/e9VDiXCDcwEWDzb513XXXVWdC0J+cNQrCSZ0uuOLIa3uqS5vTbbDZXdelc4GQKPC/bNaT7PTNHcbVEayQWcqO3HAXorvrLtO5QEgUOMw2zDVtSeaGFBIyLQoMmInrFOme6YpHwMafEYT44QYIydMNN9xQBzvc22+/TUkCVeKvykKAd7plLjhulj/igQce2GkDcS4Q4jKb9SQjncABT0UpKDHgKUDRpWlZjlQsQ2hx7LQunQWEuMxK1/bydJM2lsBCAW2lAOEoOu/JSH0EUd5pRjMLCDcb9XtSGPIn2CuUsX++Mx1TJuNO2xWzgHBPLrMnipQnQ0KBx56dlzvI8Njd7XAuEG4w6vcPCQjFLlY+8bR5EMYl792OBp4OH8IeVto/TtOeebpJHsNfgBB5gSKNeryp+9iQ77CjO+IhQ4iI3n333Xtab8sA56ABIcJy5ZVXnnHGGWeeeWZmiYj8H4jvG8c62EUUDxNC8mcT+gN6z5cmfFdddZXUGI6Ys846SwbwX/7yl2uvvdala665xrL4Y2K9iwkZhwYh+fMs7sr0pH3OPp0Jfjrz8ssvP/3002Xmc9PEa+C6kAC3zzF14yTaLVk8HAhL8z0R/IKECUgcjcNZw+VGGQ43jR1x4WGo/aMoErlDKB4ChOi7BJl1LrH9T/SePf+wpWjkJ598cldcNgcNYW8ayQYfOdfbqJSTQTo/++yzPcdPlMsNV89FtytPJR40hBRUdJGIcE5SWRVJTaP+J1akqWEoew6oj40ZCSJ8opL504VBduJhqAOFkGoyRylALjF1KCqiso8//rhj9RoPslhAnLRMe0H8f/u19CUJ8fw3xYODsGf7Rm41d4y0JbZd+UuyZrhISvus8YCLj670TcZGa23NPMvt4CAcKrTZGXSGkxpadixAco9Z+HvylG13wGxHDJnbAf+ac973AUGIwoisTqd+ZNHzsxQeinTsJzy0bQgX8t5mnl9zQBASQZvfdOqRhfLPHJnhrnKPOcpUw1dpM2E8QklA1V3SnmoVo1dXyKuSNqYA+UiJckT0BAun6zTWb1XZKWf7kPdBQLgyHMgSN1OOCgygBapSe3tSAjYKYLBKCMGMNMDVJYiGWW/PU9yrWAoWRIujzJqFMtqXK32TijW0kK7hi82W1xwEhH48VBa0n8kdj+maUBPHLLPetauXZh8A1UejbgMnc12kXotjfdxCHK2PUTjeNDrtwVKVOjgdPYdpaHydFyCcc9Lw1iGkf9hbyxlmw7vtEn1oZkmYabXeSRjIYzcpTy1OmZL8n7rJCZb1ROuii0RQu6sGUUd0ySuJjBmV36YzeS3pVGfim3ynh3V2y9TbB7DlL8zamae/ZusQEsFpFvaQxTzUPU6dW4QIjjJ93rrg30h5KgOqcdSniU/q44ntntuum0oj19KlwZvyxYxnu13qwbYFtTHb9w9tHcJ1qWnpxvYtAtFeyDFtqyOIWnhM1K19gsK9YkfUoYezbYra9cFykyHthFU7gVNxb2/06vVeeqob1tElA7bpWluu+hQadbp9Etzl1EUt99133wxJzXYh9IP97JWZnFM6QyXSeGY/PamSLo15VtGYXtUn+tqjvNpV4jsKPZna7Ni9jeZYZgb9qWIXNE4ZN1bSeM7NF1sJoZma51Ol24Vw5YsPUlBWfSrR0RbotKeu4Q0GqoxkwCbG4UiPRUCKP2gksubaqUmnh9W7K3YDHrfUQWXcpdK9OoRiJg3InfaV1mWf6jbD7XC7EK7kokE4DdYTF6emsgpxGRSGUGY8EB31RErP5FUjyYi2KKDSM+xpSyoXKlry4TltHHX3Rpc0RoWoVpUUxko6Uzsf4dw8NduFkGuKYC3wgmUpRGeIoOnLrnDMNicQo6VgUMRnWCMJXHxEfdq/PrnKxr2RmsGe6jMduaE25IB7iHVu6YpbhNBG6D2w6x5YaS8EMF2HYtBRBIJIES8RDC2iB2wGREZWUhGMHrTHPuImURV7bVxGZ3RGnagRXKeKFwm7EW2RoObtF243lMEHtfFZXsSgm6Ecx1da9yTGDE2LLUK4+XmzKSNtq9PShudor1JxVO8U0lVC3S0tgra6tjeNlTq0ZbaVTi/lFeojGqRuvUuKCK6jMyaLsp2bm2aLENr5LfmVWrS9MPuM4rJ1hR/N1i5olyqLycxGR111VG8X1IHgErsoDyAhoQOA2xGVckq7S//ccjFblzTmn9NoqLRFj9qstAv7Ie49iSD0U03xBgjHJThZ+8EQRVTPu5YMOUIazFMCCWBYRiwTJvU8nBkesdDgT1hbBwqQEuthV0y/p5W0TpHO8OVfW5RCEE5fM7KApUnMLZk9kE5zmlZME7YzQTdFl88zwApxZJLnRDVaRy1ZKRkhXVUPs1ZGH6el0bQPHym+o3EdC3PjSURnQDiey12Wxey5SrY2kaWm6F6UJD8n3qFoHykwKAmCU7sK76tK0QzdyuN2I9qijnroH/epf41K2TTuKuFDe+i2F+ZDWJkj6SqaNiu7YrtSuC4EjwR6rWG7TuJodY+AQ2ZD7pIiFaPe84WJZt0qydY0WNiNuk1LHxFOiWx9tI8QI40NeOkzK7m0bnN7z8l2IVz5bAPkLP/xIooSL2g8kmc2M+EztAsmKDqQWntk7KO3ImY5qNgUdbarNY6tLsdbgeI8rkr2foMXH9ZfN40Lj9G4a90WcNJBuO4Vdpa/uU67JotDEBOI5CxJqh59rVHdjpVhoMM0grggu0lnopb53+7bIMOQX9DzG5I/3Hhy7YXW+zpGGjCpL6KQ/UCd5rAuA2O4uZ2SxU7zcSuJUbaHdptZj4g6zWzIoujGrIjqxFEfLU6HK3zoVd/HIOsYqZU3t4S2LSrSDT5unxpLdIQlrQU5fMT8Yhn5X/Kq5ILRol1jVyMvKuP/C51iMVoK/Nat91waZwSe0Bb3+hSK1PLqr2Vc1S1qWoHTOghn6OneIoRW64Y/yop9FJ0YZkDOUi3xjiGmCWs6VmM3jru6pcZ4UDcOjjNOq6SN+9zRMiVHUFwH4QzfrbBFCO0ZHkvY07QnEOTGwjc7JrR4bP5SUtifhFJ6RKqUi3KFCztwn6qTjIhPoQla1F0GSc6oTX3KpzImfUvy9Dda+XAKlTvln+Bc59r1BeYWb9oihJFv07ESRdIQQyE0EQ0kIlGIrRS6G1O5cJUM1TJyL0hwN454RRWfXrAi/tLpNNli0NG8a5sdbBbN3F6PsUUIhdYs2IX/Thpwtgs6Di8lMSIi7VsJoq2LxLQLJnxVHDM5GHDdrmcxPxLptI1QaYtttFwEnZaNUepi8Y0cPenYdW5u2HMmzC33YrsQbnjFaHRGKZeXqjTLAEi/wSMXaPafFhxES0BqLyMNutl2I9Etp3Y5qAWHneppJal0b4gattiyeil0e9KZGdLRrf/JAZ2z7k+XrPdirYNrmEFqkBDkGi1DovBTTlS6V0X/MipMaHahzjk5jRAPyjsat8xz1nLpdseRTTqI6CR97sfM0GX9D+y5hSm2DiGds+6N96a+OSIH5VsQIDNOMpyW3pkIxnfKEUVVCFYpTLphvEmwzjlxQNKL9RLu8i0UfTIkhhyDv5yM0i+mFHQdneF6nZtRuHUIfQBeShqWV3TuktKfshY6raX0iNEy2sulMJoWkx4hKugY9+nYvUn5qIxsqxGnbBwlSjVSSaNay995hlkXBwGhZbvytQVtPJQbNpFJUDYpt6dgBe4eE5EYUemJUe26jZwMj+aWX0ocIz4Ei6gV7lDcaBCsp0yO8jbKxhhPpxoh52rG4jo6Y6HII5kblzkICJFSSmx5RQeh+SrsXo6F40ikaEsbiRftiwUR9ankXbOxlVRYrNGxvMKSLRpBZXQYn6JSfYC3AUJC7PmmWYWZeuPYdhlpdoXNaRnClBX1VTg3iSzcGiQ5M5VyDEuYCDlg6JDNPtJEQa7d0QiF8kfsvgi+FkNVGTkc+VH13FORntQQmsGVENZYGq6p7xGWuOVwQ8dcSo/Ixx2dCRXKs7zsKKj2cn+p05Iq8ownrPGXBgm5EmpK6N6TzszTKDwIKRyvKFlAEWaFfsp4yC9qpRctqr1L05IFki90+EuzTIoidcxNWp8GmbpP87LmCRodpp9SKGp52c3zFdDbVaQr/w+7qUlzlkSKcRA17KPEi9IjSh9Vyo1wxEQQk6gN5qIRv+g/Y4gjpao9ElTiRZGNejp11Qst3F7PsjdUtOhfvszmSMU8X52wXQhZFFJ1V/pI4zIEIipYvDBFWvJSHQpIDe7TLGebq8duEsfhsat9eFuqjOwp9QR9uIeGMyEHWzRqZaRinn8FvF0IcRkLfCWEmfb0VfmcJq4s0J4GLYbQZpbxXo72eISliC7zoL2tXdC9Zt8lFUsht1xONRAawUJxSkzZ8nndem7UCMPZ7VvBeKUiNfJJ553xg9dlQMEsqxwq5je/V66yOGpyo70ka2VUTH1bHYSGPZcFkoya6wbsWRkIQaXR9C9P1WhGcOqDrKep2K0z7e2XJ9djMQv/+Lkgi6ZjSiWmfGQwixhHDGW5ApV074hDjZ61jHFGhxpz/Qwm1V1FlStGXhfyJfdz87FtUZH6qeN1XSt16Yk3mmuCuNKBd+KDrxyBtp+bLt0ihH7qumDhnzi/9jAbIXH8E8fcMBTpnNt/qm8LwhP864njwsO0Zq0f111/uDOudOzYsfm8Tn9bEC6/7ukPT9k+b4y2TInlPm883m7I6qwEcSsQ2gXXRXqPd76W+yMjU+oxCAhKkizuSUlO/DvYgOezI24LwpGsfeLzNR0hH+nIX5oGFIsCjpBhJPbP/fTpaBw9M6Gm/w/C7f3gUyNvdQZOO1WOwAz8L4no3d2XUnzeAAAAAElFTkSuQmCC
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJRSURBVHhe7Z1bTFVXGsdPVci5IZeKUE3TPrRJk6ZOH5s+TGLmsfPQJ2urUjNJ26RvUzPTp5lMO5mXJpPGVJMZ722tWgQFRAFvFbXeEFDuyEWuiiCCKCIiOj/5657dcw6Xczz2rE3PyslynX32xr33b33f+r5vfXttlyteZsEdeBgvjr0Dj7sf538sqBw6dGhgYGCGl/bg4UP7p7Onp39oqLu3t29w8NrAQGNra0tHx+CdO1f6+m6OjLDnyPj47bt3+eNDQ0NjY2NT/y99fX0HDx4MPsNfeQs3pKqqyjrV7u7uCxcunDt3rqGhoaOjo7a2trq6+vLly11dXXwNKG1tbb29vdax/FpSUvL0588fjA7C9vPna4uKmouLWyY+NOoKCqrz88tzc6v37asqKDifk1ORm1uVl0ejKj+/obi44eDBisLCwcHBGzduPHgA06mKmQg5YzpfT0/PtWvXdPajo6P9/f23b9+ett+bhbD16tWSjz4aXr78wrJlZcuWlS9fXv3ee7UffNCyYsVgVlb/qlV8BrKyelet6l658kZW1vWVK6+vWDH0/vsVq1dfam6+N50IcjuuX79On/3JVui/fHv6XhzWXwiQQnGCYlNTExRv3rypLTToc3fu3JkCpFkI9584sf3NN697PKf8/jyvd5/Xe8DrpXHM7+9MSWlLTubTlZxcnpTExlyvN9vjOe7393m9JS+99M2GDXdHR1HXXPbw8DAN6lsTZWRkRDXl6tWrADt16tTJkydPnDhBffz4cRrUpaWlqoGhWsXOe+btqXtGSIR3796FH5LHiIBE3rt3T+SgSLl//35IkGYh7B8bK1ux4rLX25mR0ZuZ2ZeZqfpKZmZrRkbbxOdyRgbt+oULGyc+TQsXdqeklL7xRnVj4/j4OHcBFcTF03NpUAMSctwUtRld4FRWVnb27NkzZ86cP3/+9OnTDEJs4Wt5eTnb+cp2/RqwG1+1P52ABvv8/PPPqilspDfQUM9QrUKfUFG3CImQM+T80ROMCIA8cODAF198kZeXx4VAlPGSCwmmaBbCqra2gqVLu/z+ugUL8lJTf0pLO5qWdiQt7dzzz19OT6+HX3p6e3p6S3p6W3o6bT6PGj5f5dtvj087aEzsEKxI7VrUEkFLKCWjgiE2FOBRA0zwxNVCC2BtUT+w9w99ZTtHYbNISWjMQ3lwbrS3bt2KLUOX+uSTT9asWfPpp5/u27cP02bnzp0YO6YjLDl9etuSJZ0+X21aWsH8+TuTkn5AZ86ffyQlpTs5eccrr/wjNbUsKelSWlp9auqjT1paZWpqi9db+vrrXU8MgSiaMxZdNWauRa097QOkJYj0hiNHjmCRohsZ/5A81Sh/tAVD9dGjR2H82Wefffzxx6tWrTp8+DA9ZseOHQA2HSHm1/F3322YM6cpJYXBr4PxLyWli/b8+aXp6V8tWvT94sWbFy+u9Pu/8/t/8Pv/6/Nt9fnqvd78zMxtO3bMRA6NtUg5eSRS4x8OxqVLl6C4ceNGcKL8m5uboQtjCuOF/UrNUqR1bW2733qrde7c/T5fjs9X6PMV+3zZXu9Zr/fUggX/zsjgk4MUJiVB8WJS0mm/vyYpqSEh4fCrr7ZfueJ0hEBCFrkKIDEchrwcMOMUsqf1q1kISysrN772WtPcuSc9nj1utz673O4jHk+j212GaZqcXOfx1Hi9dV6vVde4XKeWLJnGpX9yxQZKIb6sCq4tCOXaojMxXqyf2KK2ACOLsl352tnZaZBrzwn+9M47IKn3eJo8nksTdbPHw9dKt7vK7a6h9njOuN0n3O4Kt7scrm73xeeeO/jyy109Pc6SwpqaGk4YaZN6hB9U5AtR2I4Vio2jn/iK5Mnf4Cs1jLFR2aG9vd0ghHXt7TuXLNnjcuUmJu5LTNyWkLArISE7IaEoMfFiYmLFxKc6MbEkMXH9vHlb5s3bmpDwzbx5hXPmZCcnb9u+3UEIsVBAiNuAUdPa2spQBwk2FhcXE/8rKirCKKU0Nja2tLQQUQMSdun+/fuxibQ/2zlk165dWLmMl2EFFkLuzN2LQoDtdE3NphdfPORy5bhcuyfq712u71yuAy7XRZer4smn3OUqe/I563JdcLkK09LaurochBCLFB80JyensrKyrq4OnNTcWbYDCYOW7RUVFTgnUMT9oI0dCyp8Fb6yvwpo6+vrYW8KQhgcXr36cGbmsUWL7J8jmZnFGRkHX3iBD41H7czMkokthxcton1o6VLHjYWQYLQDifiJEwE2JIwaMGxUxEASyUYkj1+Byq8cdfHiRcZFrBtk1yCEV3t7+wmSDQ1Zn87u7lqusL6+q7u7p7e3rr6+ura2ubWV677c3s5uhNRGRkdnIoIKVhkyUwEzFKOiOcCA348//rhnzx7CMXjxkj98wXXr1qFsiebs3r07Pz+fGtmV8MF47969sDRLCm8PDwfA6B8chOK1vj7QMqC3dXS0dXbeGh7u6++/NWX8NyRUcxBy69GZkEPCFPcpKChAmAoLC1GkQKW9efNmYkDAxlNkIyChSMNSp8AjZMN2g6QQv4eQoO4+ekYxC2LT3HpsMNr4uVhiNFAg1NPOLgWANAchMiQvHoRgsKJuaEv8egDDiTAbATmKTBu0qNSsdCn4Cetgx5qlSKECNgK+cELRU4DEFqxnarlKcpKoiWVY4XzHKVIgIVJIz5YtW1CP6M9t27atX79++/btKFKMFw142DUIIgKKUs3OzmbP3NxcDFG0Lj+hVKFrliIVJDQMp2VRQTRxYLGtqe1zLvRB5yJEPSqAjhWqKUyIohJhCSdcBQ2QiKlC7Zij7MZtobAbBZuWNiJrliLVJJ99/jqEeN0av3/t9khX+9j9+85FKNeeKQj8PGo0JGYLrh4FPYkKRbz4Cb2KmoUW29nNXoDHX7hy5YpBrj0nhLYkBoF+R5EKHpDYomk/hskHJNZ8dWfgd+tKk5NuNDagZ2eoQrWbOWOhPXdGQ4M98slXIjIEYnTajC+TpQWZFSPlXDlRCooU9WIZNXQ0+iCKFFsGhJ3/Ot7v+kO/6+XBsqrQM9mTUzUWIVdtAbNOH6j0Zk1iTxb4Ng4h50qPY/ITXToZiBN/Xtf8+z/d+eNfbvf2j/1y5mVaiTQWIRcejNDSHOghEIbMvTAOIQoEcxSKDOYIIsO4RjsrC+ZxtJ6APSL78IFzx8IARYqoWVlPMtMQQUY7+pxCMApqB/dR4xByilwMihTbeu3atRs2bBAkroSxHV06ayzSAIQYARoLsbq5UvTn119/nZWV9eWXX3LVqCX6NCZPsB9sIkKuBF8eMwybjZOGmf28actfpGiQmFZ52ncwVpFirGGyIX+4hjiCFLIu4Pfhhx8SRcMU2LRpE56GM6SQK1FQBuOF/oiFTSAD9whPlp4IWrZQU1Avzo3OBEghCBnw6JF0X1wIfkUJwe/zzz/n2nEQuQkBKRfCaaIUMqprVhN+uhgugMAE3RDtCkUcJq6K7Vbu88wF0RwplF9oFeDRcRny2YLiUQYlZwta5VROdo2MkWYF2DhRTlcFIdP0CldLtEniqAg9G3FyZ/6chnX9hiAk1IKq5OropvLfrYkkzfGiOREvPVMhf19BgOBC/zYrwMa9VuauZX3RBxnhuTB1STodbYZ3FA71zOXPMtBNmGyS40tURQUxUuowFri1cYYN+NlzzyOesuD+RGHW3vLlpUsV42aEAJv6IMzolZjaeI10TOeOhQE3WvNHTFYwKfHrP+Chk4kmQkYCsDEYKKimqKkyglSYdVJS5WQBiylE0xBFGhIh/BDE2YAQwxpmXAz6ExjAE7MAMJBGFh1qkQYjxGFgVJslCKECNiZcUJWKy2iONwAhpEMmqE89OhorhXoohxFxNkghDBgIsVZkYdvL1ZGOvNbHifcgdK45EyyFelwmYmPk6Q+M5lgoyWMaE5MalmhLZioYFPv7b27a9c+/rklryt47Nv4oOkpqZciwoePGQnwM+ClB5ulhRPYXoowQW4Y0WdwjzbaAcMJNHPjPlr+v/dvr1d/vGnvwACkk32smjzLbiZqpSEGoRxtnD0LNSwQr0tGHw00jj4MaSOEUE1KTCaKZCCGHLcNwOHsQgoeLQfgo2KXUwQoTKZxNfiEIidfMHoQ49aRTYoiiJ2XaBCNkH8yZ2eFUMHqBkNDM7EGI8aKFDxBHxXzl46tW4VfsnZDBe8eZMyAkfB9DjyLK0RmF6rFfEDKGLigijggiGpUtRNqYZmI7WhS/cHZIodK6I7Mko3VUlC1S/pyWD5DBQkPjIsKHgap0hGkSFSeRRAPNGZQnCfkgjKEWjVAKUY96/jG4sF2ECGrDD4WpVGAkjwazTtSai5niL4T0N8xESIzbkQg1rwvIkIWftIIOsWy5hiDkKzUIpUXhMdnhbOfXYFE0FiF+YVSe9IxYr0aiSFGV1hMwwfca8QIS/CSF7KwnlRkXUaQMjZLCKcbCkPMYZiKEn1MRaoGHkIVhD2BIGzJHsfYBHpP4cJWxM4Xx6SCERNfIwHekFIJQPoOeUbIXZA4Gyj9gsldrCiCLjIJYpKhW6KJX+QvBxyqtzSkIUX2KrjkVodJ7lIdvL3YwWhzJWl9NmbIW+OAD9TdDZtaYpkixQnEHCXDHNkAaoUWKSOlJl6ln+CL4VYwdhBAtilHqPKfi2SGUBDsFIfBQpHGEv5BVxyGMS2GgrnUQQgYh5E+LX8YV6f9BOggh0VGtbxvbmSbjzBlnIdTStHGEjhwLFeCGH1qURlyROk+RwkzPoWmB6DhCpyJksh6EMUwCjjwhP+4XInZER0GIORPbrIu4ORPxDM8x5I+DyQMGYeR/JRpHRjjZ9IwCbE6xSImO6lEmatrRABH534gjDPveQQ7JwymMIwwRBneEFEJO7ysRwqg85hl2P7IdEJfCsO8e5PQ2IRrIYhxhoGvPfJPhMxV6sle+BAjD7gLRPsAsKVTqcMj1sIya8rWsGAcjVNZFBJO6Ux/C3yQtw/6qTWt/cxCiOXEK9SInWEZbqML+e5FIITeaVR9YhET3l2QZHmUiwd56uJ70J+srbS3PprQoar3PTm/f0IEWJ7azXK4eEg4o5iDEi9AEk+VahH3Xo3pAJAi5+zz7wgoyustaOwdOWjVHylCrOvNVbWWNKo9GCTJqUOzLdfKXSSUyOf1J0VGEj/N0MEICbDN8XW24mlYZbCaPhUKIFIIQ7zCGa5VYkhyJFCoV+FmMheb7hSC0QtvORvhbDrBhy8ijoI55BmI8zB2JXYEU6vVMepVsbCcL4wjDQ2hFRznMmriPI3RS4oVdecquie1CCfEp3/BE0JI8Bbgt0zQuhQ6TQrwI+fWKlMY8iTQ+FoYniMKmTAt5FzHPQIwjDA+h0n81uxRHGDpuY7hrT0TNmpoQwphnIMalMDwpRIVag58mfmOegRhHGAZCDYRWUDSO0HmKVF6EpTn5qgzEuFPhGKdCzCzNaSEMQ5Cfza4RzlT8NsPc2DLWcmtCGPMk0vhYGIZc4EswFloHCGHM09eMQ2jscgmKjjLNZB/5HI9QORPTFhKlKOxm1TTIl9FXFS1+whZjFy0RwoBwmglJpJFLIZkvYNCtp9Z77oIL2U0svUZeKCux6YU/NNio5dk4UIfQIGuN7XrHoYG5M/IoAsJpJmQgRo6QrAtuvSRMyWpkmGlxLnthxSeW9YAiLxJnATbenMZr03j5FsuwsgWoOooaotbbEQxMBdbIZ0eoYFsYY+kz2zVCixRs3GitxoXQoGT0xg1WdqTwwkIKX7lIZZpocQ/aDCcqbOSm6AV5oOUCWbANGSWxykCEnB7nb7c/DUkijVAK0XscyUvDioqK6JiIF+lc4NEKHrwQTC8T4yetW00DnBxCm+28yIKv7I8s6kXw1KyExU9s+fbbb0O+3TC2eaRW+q8lS4ZkIEaIEKMDfgUFBRIvVCKvewMki+aRH6yCtgRMU1MTXMk4tYRSIoj8ke8LNo5lbT3WfJZSoqYHhHwLSWwRAowLsetCZyPkFpPjy8qUXIaEjFeF8gIY3i9IlreuU/nqoCU7Oz8/n3eLUNgtLy+Pd5FQ8xMNapnpvPaWv6YMcdPySGWOBuRYGJKBGKEUagF8K1+bvHpMEqRK79PU+7MxVfR0BLoRMIgaNWMeBemkxnjRuwz5azDDHLXe0WyaRap5JXuyGlv0oH3MA6SRI5xiSVncDL1OVMsDo2Ahytqkeme4FnzGbFEmcUhaBiJE09jnlSSXJiIMN38+vr8hd+Dxi2Dj/zj6DvwPp2elWw/PbdIAAAAASUVORK5CYII=
diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/Z7.MDԐ.XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX.3DM.7Z b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/Z7.MDԐ.XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX.3DM.7Z
new file mode 100644
index 00000000..af9d653b
Binary files /dev/null and b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/ⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ◯ⵙ◯ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙ/Z7.MDԐ.XHG..⠀⠀⠀⠀ⵙ옷✤ⓄᙏᔓᔕⵙᙁᗱᗴᗯᗱᗴᙁⵙⵈⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙᗝᗱᗴߦᗩᙏⵙᔓᔕᗱᗴᙏꖴ✤ⵙ∷ⵙИNⓄꖴ✤ꖴᔓᔕИNᗩᴥ✤ⵙᗱᗴᕤᕦᗝᗱᗴⵙᙁᑎꗳⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꗳᑎᙁⵙᗱᗴᗝᕤᕦᗱᗴⵙ✤ᴥᗩИNᔓᔕꖴ✤ꖴⓄИNⵙ∷ⵙ✤ꖴᙏᗱᗴᔓᔕⵙᙏᗩߦᗱᗴᗝⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙⵈⵙᙁᗱᗴᗯᗱᗴᙁⵙᔓᔕᙏⓄ✤옷ⵙ⠀⠀⠀⠀..GHX.3DM.7Z differ