From 124a7c0684ded77a72d7c48b8e1eff3d66b22df3 Mon Sep 17 00:00:00 2001 From: 0000OOOO0000 <63518686+0000OOOO0000@users.noreply.github.com> Date: Mon, 25 Oct 2021 01:23:33 +0300 Subject: [PATCH] Add files via upload --- ...⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX | 548 +++++++++++++++++- 1 file changed, 538 insertions(+), 10 deletions(-) diff --git a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX index 7489ee86..606cac52 100644 --- a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX +++ b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX @@ -48,10 +48,10 @@ - -848 - 473 + -1171 + 333 - 0.847141445 + 0.8392804 @@ -95,9 +95,9 @@ - 48 + 52 - + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 @@ -731,13 +731,14 @@ - + Curve degree 45884fa8-c111-46db-9464-f554212d0881 Degree D false - 0 + 92bd684b-349f-4d67-9a67-d634dc52787c + 1 @@ -3737,8 +3738,8 @@ False for input values on the X Axis which do not intersect a graph curve - 1362.535 - 161.5368 + 1345.854 + 175.8347 80 20 @@ -5737,6 +5738,533 @@ Linear distribution + + + ab14760f-87a6-462e-b481-4a2c26a9a0d7 + Derivatives + + + + + Evaluate the derivatives of a curve at a specified parameter. + fb8cb2d8-5e2f-4911-8f58-208b616136d9 + Derivatives + Derivatives + + + + + + 1915 + 55 + 120 + 144 + + + 1985 + 127 + + + + + + 2 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 7 + fbac3e32-f100-4292-8692-77240a42fd1a + 16ef3e75-e315-4899-b531-d3166b42dac9 + 16ef3e75-e315-4899-b531-d3166b42dac9 + 16ef3e75-e315-4899-b531-d3166b42dac9 + 16ef3e75-e315-4899-b531-d3166b42dac9 + 16ef3e75-e315-4899-b531-d3166b42dac9 + 16ef3e75-e315-4899-b531-d3166b42dac9 + + + + + Curve to evaluate + 3dc5b186-1e03-4a69-9622-08b74979a28c + Curve + Curve + false + 3733e2e8-4bd3-44f1-8b68-31f8853c8921 + 38cf4e17-ca6a-4dad-8a9a-b880812ed23a + 2 + + + + + + 1917 + 57 + 53 + 70 + + + 1945 + 92 + + + + + + + + Parameter on curve domain to evaluate + 01741eba-b1a1-44e2-8a78-2d39e0276d92 + Parameter + Parameter + false + b053445e-c64a-4606-a743-3fed15e4eda2 + 1 + + + + + + 1917 + 127 + 53 + 70 + + + 1945 + 162 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Point on curve at {t} + e41b7d0b-5fce-4572-9731-c958acaaef1a + Point + Point + false + 0 + + + + + + 2000 + 57 + 33 + 20 + + + 2016.5 + 67 + + + + + + + + First curve derivative at t (Velocity) + c3853d1c-8785-4d32-a116-78a4c2bd40f3 + false + First derivative + 1 + false + 0 + + + + + + 2000 + 77 + 33 + 20 + + + 2016.5 + 87 + + + + + + + + Second curve derivative at t (Acceleration) + 1ef2b93c-59a3-4cfb-b040-53e350df25af + false + Second derivative + 2 + false + 0 + + + + + + 2000 + 97 + 33 + 20 + + + 2016.5 + 107 + + + + + + + + Third curve derivative at t (Jolt) + cd4bddee-e52c-4a18-8019-4101cb872d28 + false + Third derivative + 3 + false + 0 + + + + + + 2000 + 117 + 33 + 20 + + + 2016.5 + 127 + + + + + + + + Fourth curve derivative at t (Jounce) + 11bc788a-de41-4086-8edf-817c6e1ec50f + false + Fourth derivative + 4 + false + 0 + + + + + + 2000 + 137 + 33 + 20 + + + 2016.5 + 147 + + + + + + + + Fifth curve derivative at t + 4c755a46-a63c-4de5-b6d6-57bea0b414ac + false + Fifth derivative + 5 + false + 0 + + + + + + 2000 + 157 + 33 + 20 + + + 2016.5 + 167 + + + + + + + + Sixth curve derivative at t + 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd + false + Sixth derivative + 6 + false + 0 + + + + + + 2000 + 177 + 33 + 20 + + + 2016.5 + 187 + + + + + + + + + + + + + + 7f6a9d34-0470-4bb7-aadd-07496bcbe572 + Point On Curve + + + + + Evaluates a curve at a specific location + b053445e-c64a-4606-a743-3fed15e4eda2 + Point On Curve + Point On Curve + false + 3733e2e8-4bd3-44f1-8b68-31f8853c8921 + 1 + 1 + + + + + + 1710.661 + 162.3443 + 120 + 20 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 92bd684b-349f-4d67-9a67-d634dc52787c + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 11.0 + + + + + + 997 + 241 + 250 + 20 + + + 997.3901 + 241.4058 + + + + + + + + + + 2a3f7078-2e25-4dd4-96f7-0efb491bd61c + Vector Display + + + + + false + 0 + Preview vectors in the viewport + 0.1 + 15 + 719b86e4-9e3d-4d67-a04d-952b70090645 + Vector Display + Vector Display + + + + + 3 + false + false + + + + + + 255;255;0;0 + + + 255;255;0;0 + + 0 + 35aca1d7-7d80-4473-b98e-de09d3efd465 + + + + + + 255;255;165;0 + + + 255;255;165;0 + + 0.5 + 0fce01ef-894a-466d-a629-588de6810ff7 + + + + + + 255;124;252;0 + + + 255;124;252;0 + + 1 + 6bcbb8ff-2eb4-44d3-95dc-a10579f6428b + + + + + + + + 2104 + 60 + 70 + 44 + + + 2160 + 82 + + + + + + Anchor point for preview vector + 5e8b1902-1549-4f17-9f38-c774653c5472 + Anchor + Anchor + true + e41b7d0b-5fce-4572-9731-c958acaaef1a + 1 + + + + + + 2106 + 62 + 39 + 20 + + + 2127 + 72 + + + + + + + + Vector to preview + cd8b1052-a424-47d3-8961-105d5b97b077 + Vector + Vector + true + cd4bddee-e52c-4a18-8019-4101cb872d28 + c3853d1c-8785-4d32-a116-78a4c2bd40f3 + 1ef2b93c-59a3-4cfb-b040-53e350df25af + 11bc788a-de41-4086-8edf-817c6e1ec50f + 4c755a46-a63c-4de5-b6d6-57bea0b414ac + 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd + 6 + + + + + + 2106 + 82 + 39 + 20 + + + 2127 + 92 + + + + + + + + + @@ -5744,7 +6272,7 @@ Linear distribution - iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADKJSURBVHhe7Z1ncBVnuudnb+3n++l+nVA7NbtTd7dqb9XUzsz19bXHNuMBjMHkYA8mgwEBEpIA5ZxzzjrKOQcUkIQBkyQRREbYJudgYxvMjMfe3zl/u/cEhaOEx7N+q6vVp/vt7ref/5PfoJ/85MfyD0CBb34sP1gKfMt+tH/vj+UHSAGA+xHCHyBuVk3+EcIfNn60/kcIf4TwB0+BH/wH/CiFP0LoHAXeH60495hJrrVvAsVoCl82wmP279/P1Ulut+3jbKSQ91mXAwcO2J1x8ucHH3xg3W4+sqOjo6WlpXWowvnOzk7qTOl3Oj6cFra1tdXX1zc2NrI3SkNDg/VPx+O6ujrabHxgT08PtzjepZNU5i1TiqINhBXflUpLKSsrq6qq4kB742DIn5w0KpeUlHR0dMIBEA7Uu7q69uzZ09fXd/jw4YMOhZMA3N7ePokoSjJ4NW2An4x3HrIUfrKnVU1NTdeuXbty5crd78qdO3c4c/v2rYcPH7DdunXr5s2bt2/fvnfvno4pDx48oMHNzc28hYeD06lTp3jIRw5lcHCQp/Fp3d3dei/1JRg0b7K+1wbCS9+VCxcunDx5EuIeO3aM9p04cWJgYIAzHFj/5AzndZJjCgdUzM4ujIiIBReajoQlJCScOXPm+PHjUOHzzz9/bFu+/PJL7oIQ42ZVaAFRDKigEZIB4RAvuKqoqCgnJyc9PT05OTk+Pj42NjYyMjIuLm7Lli3l5eX9/f21tbVgibTxs7q6evfu1g8//Li7Bw744O5tALvPw6mze/du8Lt+/ToQ0tqAgACYkoPg4GDw4+qNGzfu378vZnj48OHp06eB7enTp4Dt6+tbXFxcWFgIcyMmNTU1vJEW0k5aK8biYHyg2kDIi1Xgu48//hgmOnv27OXLl0H0ww8/BN+LFy/y8/z58zAcP6lANX6qMoWrg4MXi4urt271dHXdBslCQkI2bNgAK/CRQHX16lUqX712jY2HcAxRYE/I7TyEkjAw48vZQwg0GwBkZmaCEG/08/ODav7+/kFBQeHh4dHR0bBRSkpKWlpaVlYWiObn5wOkyWSC+rAgYEhJsKeRlPnveE+bvTE5q+z4iYHTp07xIlhQ38gngHRqairNcHV19fT0hDjcyJ7Ph3RIHgdwLV/NT+DfuXNnXl4ebMRdSUlJkCUmJiYqKoo20LbExESaxDNhd2kI50lhHxcaZhkCwRGwMNQxThp2WwfWe+ufqIrQ0Bhf3+D29jbq0CBYj5ahowDs2tWrd+7dOwU9jh69DP2uXIEiXIVV1W5rv8dOGUoX0TbUMuyPeEGO0NBQ0PLx8QEt6AKKpaWlXBWPG9Kpe0WgI0eOHD16lD2iACQwKKxJgaUgPUhcuXwpPLbwpZlbpy8NTMkovHnjGi0X16rwcJoKi4AKLUfgUDDUgeMhGm/ho3iU5fuuYAupDH9I2lTkLqDMuR0LlZubC5NFRESAKMfcQn0a74x/YCOFEMW6wKrIvt1JZ35mZ+fs3t1GK9V0vormomb5qrLKSt/Nm1e98EJNQcHHV65ASk6ib/kMPkysw13SwFAKKqN2YAL4FMBg28DAQABDzgAP/i0oKEAHAir3CiTeO6SxoQ1icJwqvAzuhVjgh8yBQW9vL69DlHkjJ8+cPhEZk77wbY/6hubdra2IiBwWtAVg06SNGzciRrQWyeYrUANAy6u9vb137drFi2RcwJJPg4zyDOyKxMDQpfzkLRkZGWgO1AnHUG9U7WoDIS2wLiLHOIrAQAi4l49/7733OAPD8lU7vL3/2z//8yv/8i+tlZWnz50TEam8atUqhAkdiI2hwOBShuzBLCwsDPbEmKGOoAgY6OGSLWesCNXgCcjNw+EAXrR+/XqaJKuPRUcT0lQ8OICULj179nRf7xGMuyjLJZDDkp07dw5Bd3Nzg76cATAMKmzKeZrKQ+AqCicBDAixgnwFlZ0RKUgh+YOZ+GpULndJGIYrUxjaw1/YP/Qb4sIxtgE+hRD/5Z/+6b/+5CcxO3Z8dOUK1gJVhoMHQnw8FEE+oBeiwL2cRxy5V2gZTp2EdVT2NL4Z/CC9h4cHcgMHSGR5Mgwh+CUNUrO8yzijq+x1ydiDEM3jPHfxECSYT4MboDt6AgeH5yOsgMpJ0OWjnNSKRpvlncHi8Bwsy/H3ACHfnI1vWlgoxYjXY/FXBzDvdfX1cl7RYNgP5APtL3kyglEZwu7uLoB0vjiGlzwQnsDvgL7YPyNm5eHYIVjKCKU4UGjkWKqrzWGVavIcNKosNw9HyGg5P7HvACY3no8CV94FirCmdRzpjCwadWgw70JtgOKQqtjenRnT00etLOXJF8KYaCfsGRwNZnwncKK++GYKUCoAsONTKoMr+YDm5lbEUhvHjY3NjY1NdhuXWlp2d3X1cN6uYdARtYmbg8Wyu6TA0chXcAylaAylrc287+jZ29ndvbutDa0go2XcIvxQG3ibQIhcoopxbo3Qi8bDwXwpfi8KFmqMSrEhK3AjTI8yGy6UtFGkSMNECgqKwhP27sUVNPsO2B7cHwybzsNT+kLrAqh8LYJiByE/Gxoam5pa8SHAprsbUe6prKxub+/s6EA0rbc96NrS0vKYmPi2NrMTZOhYPpufXl5e7Ef21LmKrHB7TU1DRUV1ZWVNVW1DQWRMfnxSR2v74SN9jmEPt6AecCMN58X4Lj4TRPleQQiWI9uzkdHlOUQjhEND8oENhLTSKMivfDBjP+pPND56hiekpmagk9CZWDg9EC2kYMCRReSOotMcIUSkiIahwsOHjz755NPPPvsMz+Pu3fsPH35ibA8ePHry5Mtr126kpqbl5pqqq+s6OzsMCBEUPgFzMqrtFIT19U2hoRFlZZU1ze3ZLlvTlr6dFBmTEJd08FDvkJErwNByvBsEBYVpXRBQnURXj9UQ2iFK26Ab3s2Q5t8Gwk++KyQgSDGQVVKuwThwPMklYnMF+xgArDrhU1FRlbd34I4dngRqMA4vho580pBF/rojG0oKMzNzgeH8eVz/0wMDp4gbb968Y7199tmTwcGPwsMjBwc/7OzsKSoqtc64ci+MhRYaAULFjr29R/FQiorID+TuP3DkcP+p2pVrPujc29LRk5Wdv2fP+01NjUPKsRQ+9w5Z0MwEf857XsOJI2QkowQBHbnBBkLAoJBcwBVW0K3g1FIuGz8Vtxp1AA8IAQ+ViCYhaZObW+LqusPFZTOMI88N1Tpc4dKQhhq7gwpIS8veu3cfHj5ZvGPHBs6fH7xxg/THLct28969R9XVtR4enlR4/PiLmppGk6kEUTdIxgdjxvDpkXVHOipjiRjhc6WlpeLy5OUVJyVldHTu6+rcV7ViTVfH3qrqxuTkTFLxw0EI0a3TEUMej88KWt8FhChSvF9H19QGQkT+u1LOAa6X5af2/++nzhtXObB4apU4LPgvpMT9/UNTUjJIlqJhSDp0dXWjEnEOmptb8EfsNtwTpM2RwSFvVVVNeHh8f//A5cs3Ll26+uGHV0nhIfAXLsA0ZLNukMF9553l2dl5N2/e++ija/n5pSkpWTixBlocoL2JL1GS1vzLeYiCAkBACcaVJSDCi49PCwmJrqxursovK172bk1DR05OcXBwdFlZbXMzHo1T6ZKJA+b4BLjNwmdpjubQBkK+c4IFvQFTW7pXiLT2I4JhYaHp6ZkHDvQ3N+/p7z/b13fGbjt69HRpaYVjMACE+BS7doUQ7J46dfHEiXMnT55jb9nOkpc9eLDX2zuAEB9QuXTu3EcpKbkxMcmItbXAIWcEajCTtUMBL8NtpDfxNVB0FkXaiwYGTZetuxIyy5K9w9LeWpyUXREamrB5847Y2AykeYImbSLQ0kJ8e9o8CoSGez3xA0XEGLnt2928vPxyc6u9vMKKihoLCxsKCxuLivBTdNyQn1+Xm1uAB2t8oUJpPLqCgqKdO4OA8PTpi4CkTfh98MFRX1+clIMk3nUeINPS8oKDo+jaspZpvpkEN2kO4+MVAxDp46YSxqkynwz7evuEL5v/ttuqjTv/z797LnnXwzt0/fqtK1duio3NdAx7JgLJWO+lzWhRPNsxSCHyhAwZfbTDddg6duJaunA7kEKoQ7qvoMCEg2oy1YEf6UxBCKL5+bWcYcvLq8nLI4VoTrgougd4wrjAwIAtW7YFBESR2iSYBDm248fPIm3g6+PjT0fNhQsfHz9+RpdQrRkZJje3XXFxsdbZLB6IwsQcGrl4xA6dibtoTQ5LhNAeFBS9cc3WjctWb1q+YeNWr00bPTZscHN19QsIiHb0mccKw0Tq01TiCkyVY3Bio0gV1aqAH/6P4WUZTpe196Vj9iqqDCFSUzMJBvr7+3CiEC98/fT0sqysciDMz69PSsrBU0XpZWdXZWVV5ObWYDiPHDHnc7GomCWMEzdaUAz28iI5R8r4AuCB1rlzH6LzEOu9ew8ii5yxnDdDyKW0tHwPDx+Yxvo7eSyeFAkOvGLJN+l73uLoF4BiUVFxvqkov7DEvOUXshUUFNM3lZ6eMaRDNBFUxnQvX0TiWxkGuxttICTwonzxxRf0barzhUwKDippTPq9OMmB9mYP9fJl+a7UZE8fDT9xaPFICZN27vQLCgp0d3fHFnp44CbkYlEALCQkJiMjPSEhLiEhKzQ02ccnori4eedOn0WLFv75z3+mZ1F5S5jOkjuudXf3QzgHBs6BFq/dt++wt7dZ/gDs2LHTx48b25mzZwcTEzMjIuIRaLuPlEeOOlWek0wpuUc7jQRpkDNyCA0NzaRpySfU1TEgg07jWrTs8eMDY+rRHBM8o1aWU0aSa/S4kB4viqXb1tzZi4UnN610LXBykuDByN5yTAFjruqkrl68eAH16e7uTVyIH1FcXITRQgpTUgoBMj4+jpOoR7RCWhoefEFWVqWvLx2z5qw8QQhhOClKdY/g5gAhAmeB8Gx9fYuPT8CePfvAr7+fGMOMH3ttZ84MJiRkhIbG2rkzEIhH8UzpUgqvQMHYRTKcxyjU1jaGhUVWVqJlG0nTgGJWVm5iYuqBA4e/RwgtpCjFZx49O2P0BeL8UGBbHFkOUMG6pPPWhZNcNc7ws7S0JCgozGQq4pvpHqITn+OEhPzMzPLk5EKMTXBwHIimp5datrKEBFNmZt6xY/2kkRARwhUcDQQC1UrOzM3NF58TCa+vb50xY0ZFRS2yCH79/afZoz9PnjxvsYVmdyYhIZOQwBFCMS+6FCuLUiXGsB6SJM+L0N4SIJZmZOTiQGFu8ZjYNzW10TxC++8RQkw7WgQrM2QAPawtxBziZGtg0lgLkZlFm72P7CN2jH+Iisrw84tOS0PyStmnpBQZW3x8PvG7of1IRtNcTDceaUlJuaur96FDfQcOHMV/AT8LeN9uqFZoXV/f3NrawdbZ2R0UFMmAAUcIwQ/+JULlsWgkxJG9YnDO493ANzh727Zty8tjJEB6R8feri7Sgfu6uwlsGgj2cdG+LwhpJCgMl13j02wgHDXL4HwFHi2tFR0d5eLiGheXGxQUjxQmJdlvsbG5KSmZRIEyCdAU2UVp4A0VFyOR/q2tnYGBId3d+5FFi1OKC2PeiDTIqJEdQ39fuMCQlus5OYX+/iQSbeJCPVZ+KT0GeAQoUkURFHxmXBvGA6BvIBNhJXxQVlZfWdlEupfcbVZWYWBgZElJtSW0n9oRoUMaRUQQz264HLc9hKPa1bFWAPK+vt64uCRf35jQ0JTg4CTHjUtJSWkMENDD0fvQ1NJ304siXbfOdfXqtVhBAvmuLsSCHsRvN9wcOlPpLzp79jw9j4ODl8jm+/qGojUdzb7OAB6ODH1P6jQGM+QS1QqZkH5Ek9B+82bP+PjsxMS8hITcpCQCzbhNm0j2pn8vob3cabwHqY0h6T+FvfZ6H5xL31teHmmQApOp0HHjktEjCmUJSwjaUN2II90dGzd6rlmzzd3df8uWXXbb1q1ekNvNzQdJZaOOi8uuyMgEy8isIb6WByJtZNToHgIz/FK8X5BTZYX2Pj5hS5as3LJlp6ur17Ztu9ivXetCaE+M872E9rQTDQ+fjTBuY8ohFIrfjR/TACWbwiUjNUNDUaF0Ual/AwZEEInMFKI5bjhKnMzLKzC2EfrH5Zdu3ryZAAvjx1twoAy+ppHkx4l5tmzxsuWVne7ugf7+EfirzznBZi2CI+jw5wGhk+oXAuEo4o4aKWlLvoZRM4xbcXYbgcoWkPYQemowlSMkiC/Z++LiUrxs81bIvrSspq6opDwnJ3dS+oycJIWqwdAj9PQaj7KBUA7I+Iqsy5iaaFcZyWPwHX7juMcojPx2mocg4nYyftBRNfHVWLs9exgYUMNWU11X29hSW9+Utt29ubTi5KlzjY3jH28+DrLIpoww3mJoCAlozWOT6up0wKHV/rtzQ/2lg5q70HvjaKtuQbfSaUXXgYasjfs5I9+I5SNhNHv2bD7CLsHGSy05xYbIyFgClZa2roby6ty35sUvX5EQk7D/A8YNN05dwxybLWtNRD/C2DXdZSOFxMvHjtEZNKDYmcHpZD16e09yTAStVCRnLGG1zTYwcAHXn3Ea47MWkAb4d+zY4UyLJ4Iuxo9+3QULFljrDN6uziaSqCZTMaE9abxDJ87WbdjUmZLZuu9wZlZ+RwcDq54fhOghSEFU7YxCsoEQB9rPL8LTMzAlxRQTk+HjE06WmUHujPZn6HNOTmVOTkVJSVNlZXtVVQd7q42u0TI6NsYHIQ3FODnZ4nFDqEB+3rx5TIghb8BzjNCeoBAfZ926dYT2iYnp7R3vM/6mcvmqrp6DlZXk5Rl13/HcIBRDE//gGThDTxsIyXiRU2MjH52RwTE5FPMxPUQuLjvDQpN9fSOpExubFR2dmZhoSkoykfYkfjKZ6nG7s7IyoRFlTKO1xHFTrUIBjBchZ7/73e/o+0YcoRTxPi47MQyRKAcREZGREQn+/uFF9R0lO/wK/ry6rJ4B4Pm+vmGFheYBWs9HkSqdRsDjjAjaK1KQYLN0CdXSB8QBP+nP48B1m09UeJrL5h0JCXkhIYkeHgE7djBkIZzgDApkZ1cmJeWuWrUyIiKcbDUpU3X+jSoxcBmeHl4og9ggKIZwsooSSUYDeDikQYu+/vrrBJ1qG8iRbANXfmImaQldvpv4xrdXp0ybmRCdnpBkCgqK3bjRg9D++fQXAhs+AW6dk/jZQ+jvH0Mmk+51Hx9m4OUgc2yczMmsXL3V9dXCLdN8VoX5J9K3kJFRRtra2JDUsLAkOuoAgNiLCJqEAk0ZdSIBDSXQRolBPuuuR6MP0u5Ao/SpbDe+27G+AkRYBHiwcxwg6K+99hrJbn6CLuChuoFWOuPb0D4getm//XbLCy+7uPls3ua1xWXH6tWb1GuPO+OMWhuVa0eoQIP5NFQoX+f8u2wUqbd3hL9/rIdHkK9vVExMFj/BMjAwjtx0fGJ+RHJWVGI23UOpqcVsKSnmTQdUiIxMa2lptgyoP4CagqY4xEMOFDC+AYAJsaEpZ9D+T548+fTTTzV/lGMK8yt10ijMMGUmJl1g9F8yH1NTMjnDLdbVnj17BjnQz7AUqVGgWrhw4cqVK+mjgLGAkNCQkxpIr/YAKuQLCoz02hHsExyHH+DjHebjF+kXEB0UkhAQQGhvM4BqIlANdy8MTavQYc6LoL0URkdnIXzsw8PT6I9lz0YeMTg4MTQkOSwkJSw0JSRkiDxnSAhmMsI6i6jBmVCKxJp1gzgvYwlmqCaFaGRkILempgIPzdKUbkVyIGQUMINF0NWkOnkyePDB8CzDWa2rMQ6Wan/84x9///vfY/xeeuklwkHYBXFnwgODiBBBWmJn25hOzrDHnr0HEPX2ts6Onn2tDc31RaVduzsOHx56KPAkAsknMwEPKziq6rJ7qY0Ubtq0mbmxqanpJCkYAMjgQlIVdBeOutGryIx8u0crRaDOAQgq949jOgeIeKDm6tWrmbdGu6EvPiF0Z0gA/cYQl34u7kUZAo8GA7BX4Ri01CnN4FWNaLWuQB0QJRED0sBGdyZIkzGYM2cO8x94L/4L0mmnqWieRZN3kpTPyMguqajOQRP9aUbsLp9Qv8C+/pPGVJhJhM14FJyqyd989VgzJDYQQi9IydcygignJ5uH0gfEAAg0j2XIAtOlhtvMMxEdvw1Jon8cr4HbaZz65ZEeTaKAoJCSh7MHWkRQYGiFAgoTgzXv2bpQRyAhkcytpb6mR3Osu7jKjSIEcxvwU0g78F6MNLJOvzEcA4sYDaamdAaKobq6PiMjh+xC35nBpu2e3bmm9/tOpqZn00kChNbD7CYRSCkDZp6glsbkzKsN9gk2C1QHITFYQnFlvFBW8uK46ryZ1Quwiwx2khzQ76WoA13Bk5XlgnDqW4b64AFCRtHYHOsCTgg0TyNKw8iBDRyG9FjmIpnnH1FAFAPJM3F0eYVmP6v96E/N3yRHw11qDBAi7rAaIQWj8RlM3Nq6Z9+R4zUbNneW17a298THpxAXWiCckqHA8ung7LGq0CEgNDhLIQGPRj7o72cEhgiB0lOfi2aiOsOJSl4TTcMQmh7GGdgNbYb7wHMovIUzGrODktTAKi0nYjsp4Aon0Z+ylDwWw8bgHfY0lb16QBj+gxSCGVKO5HGgCbfMb1IClmagzPkinoAZBldcKlQF834TE9OiopIqqxqbW7vLlq9qrGyorGpmJABTCuvqpgRCWJzGQJzx4TeEFNrluOWU883wPgxOvIlI4TXxViRAzueoWJIKgZoQSxDyQFgBmwRxkXUcEyY9Y7R4FLyiWb6MwWFPNRhIKIIrBXjAGIQo6FIJrvQtBeFDCVONvaZwCF2CTrJ3hDpykTgD9yxduhRnipPInwZ0M4Y4JDh66zavhOS89BRT5uwF6ZkldP+6uOyIjk4nDzzk0BVn+HgEF5S24brLVxjfo4adnGY9UY1j8KN3BnUH58LajI2AeQEGD4qrI2dkuAoY4ITZo5XsEQj67WA9zSFFvnE6wIbpopo0CukRHfiJGW4CTwUp5DyuipasoAITcWgYXAI8MBPeEJCjb+EPZI4hoxAIideqG9IfsAViB36wI08T+SgM+cFu/HnpKo9tu/zfnO//+iyfkDgPD7933llL1FtVVT25EPI0iAkZxxQFOsJsA6GRGYErrbMk/NRaSdgPLeUkjxzaIUOsTxIYGIT0DJd/slCn+5133gFsSA9ZFy9ejF2UiEgyeLK1IZQV1BkNjVThPBjQz4DooBKwYWCA2cNQ0Tx4C1ypgxRykoGpuL5YPsRROpYWgis2EjvKLZoUL6JY+le7wsLjV729YeXct9f+6a01q7esWbtt5crNa9e6EiIz72ccvsZwgmW46459JmOVRRsIcetx89hbHxCuoaAwOVrpB+pwjMTg0N+8eaO//xjrUCxfvoIc8QjcBHJ4zAzThrKKXomyZQuhC+RDaEBLr5AhNKygNYRU4LxCQIRSGHNMffbyTqlDI3kgMCPxgKq3ADDSD2y0gfbATziBoGtoMODMzzcVFlUWldYUlNUWFFYUmMoKi6sqalqY9TG5QQW8C3vBzeM2gQbSNhBqFrz2RtFgXwpvheXNa7KcYej0WWYT4n2QwyJT6ucXoDXJRmA6BJGVSdAbSAAUxAihh9nj6JPEwRaCAWgxlFjqDhlFi1KslzbT8jw0gGZoOR8OtDgVxajJo+AnFANNomGGOkUiwZLnU5BaILQeZo926ejYw4RFFohiFQXGfJRX1xbkmaI3bjpz9mJDY+O4zZUdWTTxGn0wcfzs3Rk53NbFPGjJUvAvcGHQfjggFM5oVSHOhIZG8fGj5oRoN1C98sorUE2ZSa3fg1AuX74crYjogAEQgjE/kVRIj+gIHhVkDhXEc1DgVNCIXpgAU0dlGU6qIY5AuGLFCkDC7BEUGupU1ARCTeCWCv0uJ07CaHdyMlMk67oZLbcPr2df4aIlgavWdr1/kEmQkwIhsEE6HGCpn7GqzVFsoWzecEU+nt1VCx7OLrmJYJGoxLnAZ6EpmjtB0SJWwKPlsaQ5JVVa+826IPooAC3fh0RKH1CI4oFf9YEQO42rJeMNsWRxKepjQsGiZolNIaj652gPiWyGUaWn5zQ27D5w5Dgdv7VL326OS07NK2LRO4KKiXc20QwYF1UkNpo4fvZSOClPHOEhEkTyI7iC+JCGgwcfQGtjLT5HzLR+nQpXFS+CEwda2U8pG36qDgcoBlqixfHkNMkZQXDxIJBaOAnFjg7AZUVYsZErVrwbE5PAtOzK2hZ6fSvmL2qMims/cJRF+KqrWUdsWH/NSbrxvVhotAIfO4me0XMdwaYh1cQSa9aswbXBn1Q3HtyNIEqLUow1FhUI6qQKP6EXChzbqfUveQjKVkN+tECaFitECnmFBmFidYhb1DsIBdGf8BDpWX5yr7xTy3Mq6fja5ROWkpxjmjkn2827sLY9N7fM09OftQpZL2UicqPkJ7zC60Y1Ok7yhKrZQCg7P+4yqmanAmpN6S7CMigInFhThldjdKVIUY98JPKKqVPCTKoVDcm6l4gb69ZotSgtiEQQCXX4qUSdZlchhVwlJQR4eEx00xOYInlApQVo4BsMJMAra0Hhq5HV5NScNSs2Bf/uxfh1W2PSi+npjYxMWbduK71vJSVlxqyBMZFY5tYYpT4pLox1A2wghJHHVzSqzZmRlnwALgyWz9w5FxTEAW/ENYXE0opAAjVxfdWLi1eiBWebd7dVxMV2VFWiQHE4lTiVU2oE/jxBa6FxkntBVAl6Q5EClfqBuYqM8nBr84acxCdnr/rTW6umzdzo7r9xo/umTR7r17stW7Y6KCiR3phxQ8hXk43SgI+xwj9qfRsIWUBCW18fo9YYxzbAeDWOjx49bjnJcoEne3tPOG5cYsQ2OmnUXD7kAw/8CEBC7yGIGnsPB0B9hTRau1a+DDghXmEs7hgenuK1q6W25khvL9oPMJSg0UxEbB57oYWDA7Q8HLbAynK7/CYqCDAOEHGMn122BXOZm5O/zc3H1dOfofjG5u7ht2WLZ0mJzYILo1LWqEAjSUKhuidd/oZQpHFx5Fszw8Iw6XkFBTUREfT6JsbHZ9XW7ikpYVkrFqDczXFjI84b6zsyLo85sez3snGVWMoZPlVUCwyICCZQkSJAGvNMrcNTvBezBa0oN7m7llVXd9G/392NeiTCoRBIULQ8j6Y58hPmQC45uWzZMq0NjKJWrzLVeDvvRSYgq+PonqamZjoN8Vxqa+vNGwszNjY3tezuNs/+HU9QAWzEMzRgskKIUYIKyyzc3MhIlrE2j65g7EVUlPmYQVDbtnkzAiMgIJZhbQycoXPfGEHDZF2WP2DWYHIyq6KY1zsY2ZryVdgkTWmgQFaSJsR5iB0JBKIFxEtpUkJ4zhzp64vd4lLo4VaYmlLb0CDNibwSSHBVy/pqZV+OxQfIMVIIolo/GHRJoNP5jPLE+vJ2jvFf7CBkTgXdVsys50NwmBiQX1rbkBEWsWPGzP4TZ8gTj2rs7eirDDs8pC5J5wV3TDVtFGlBQQMbK1IwZC0vr9ayQIVlmYqiRg/3gNigtJ2ugfEJZphdXZlPFLhzZzDQWmZz5TLobeNGF7heC0+PXJAJZWqoDHFJzrEXhCAH9flmLIfSCAB58PARuvUO9XQftyz/ihhpdrgyR+AN6sSFHAt1sES+lf6GS6Rg1dmCg7p161ZGAyMc6viVpRTnNTa2EBeycs7BD3oPnTizt6ahfN6COP/gzh7W4WjEWDpPXJ7J63CAecvk5sft2mADYVhYMtMl2QcGxloG0ZB5SUL4MtJK17q4/Sl72zSvlYHe0YxX0wgoy7jTIg6QS4aVhoaGMxrYWPpiuGXJNAqNblutkMgx4gJBFbODAQWcCP+BSvP9Nauf9VkRL83xBGACBtQme631xxPI6WhmOehSbe3atfSoSBbBSY4MLAK70PeEMkcoUXG4rDwHcWGgQnp6Nt5rfV3L/r6BPeW1VbPntlXUJWXlN9TvHlNoD2Z8F/jBSY7q2nk+cKamDYQI1q5dYdu3Y8x96FRnOQrGi7q7ByQmmCJjMz3TE7wSELEcdKYgtNpKGDTFbCCtPWLX6ej4kzoIB9kTgFSQBMVxQ7RMtooysTppFC3zJr8AGvEcjTGkgpZwRRw5g3QCKh4vSOO24PFa1hHrUmcFHID3RANgJq3RToBPWbduLWN6EuJTS+tam0ylJTNmNRVXNe/ZHxHOZLY6+gtHddZEcelMGBR7P7kh4JCI2kAYFcU/CWCBhwI2IImKYtR2Nvvw8PSoyMzY8KyYiOyISBb/No9ss94iIhgTFstaaM5zHN+JNSLclpJBeYKZARVSqCU07CDkvBbhUAZHuRjZP0OCJbVav1suK6IAQowjBTmAR/gU/wCnFKnc2p6e7qioBNedwXHeIdkvT8uITM4urktPK3Bz846MTMVZc1wOxZGmSuDBN+iDKXJBR1Kk0dFxzItfv34TC8FERxN0Y+GKSBuyBB+DghjXZdkPuaGCsljBd0xZRMWI+BqkK3FnoLu6JoQT8SJcTHONk8IVPFCYqGsNeNG/NAAtJU5VkEKlgZTHUg6ImvhNKDfEbkjhAKGktNwVc9/2+p//O8TDPyg6LTgolvVV3n13PaE9g/lG9bdhC/nb5CueD3722RnsOk47E5Ty8phmTjjB6iJpLHvI2CIusX4B899Rlco42m2cHBN+vJv6yAT+PcNYsE9arN74rzOABFQUreit80BLqAcYoKvVTTF1SrYhr8btWhEb38o6FQlN0ZyzZs1C9PkSR/cSPZmQnLVi1uK35yxduWE7nb0rV7q8++7GZcvWeHnxf0mKRoWQV6Cx4cvnhp89hEoFGYEwrhRGHobCvYTK+qcQaDyqyYsbK2aOaodPJbxDLKA48BgYYPBkEfXfHqzPq7NQ7ih7ZFfuj3U14KSddgtY0lr0J+qUmRW8lFfboQhC9K3lFVQUldYWmJggXl5U0VBUXlde0ZCamsOo2pEdSw1kQgQhzljDD2fcluHqDD3wQqMu0E6yFkqxA6eaSHYRTwQvDjKp82/cTjOfirso/0Kuior6khwL5zV8DTCwpuzxMB3X+wZC6VjrhvEh2Cd4ke+imwKOVCxhkIaWWBZN3U06tBohb2g2BQTlBgTmp6afO39p5NCeVpHmVQg/cc4eE6I2EDouvKxRKhQcdwQFzNS3R2qD5hKew7bYSPTYuFmPj0eL8iikCsy0bL6cTPUF6qTg5Ce6l7cjuKgHYgbwoKYd2MglmhaBs1aktBB1AheiRUELj5EAH9VKAwASZrKMhdzNP3cirm/r3lcVl5S3cElteXVoUBhLhgy57q1ozRNwrbUC+NSF8E5JoYby2RWG+GmcPCSGWOQtUV+c0SgjaB0dnbZ48ZJdu8xDs8fBgEoBI9YYMOGHYGlpfWI+TJ1OGoWrFIGq8FH46aSKILT+Nzvq7wU2rb6m/BEcwFAoXq0cvWUwO2uK5bJo16GT55u9/dsT0/YfO52cbF79abi4EFGGv7G7sMW4tdGYxG4kj1QzE7RCt7FOt7oFgE1OPxBq3Ao+vWU82RFSqS4u5m4d66FEzrcJQcEdRTiQMMFDwQxDEZxS4kWBahQiPyMDh2BxDBPoP54ZiPIoyGq90JpiGMIJHis+k/fISY0GRobWrFkdF5eYmppdVdXQffh4jYtrS3pOew+rSCbV1rbQI+kYF9J45Fj/CmQSe3Gdp569OyO1abceglZPgJQYP2RC/1XT6GJFVtzdfeij0IjpcRQNeuC9SBIPUZF5k5NinNR5TazBsQIhdCnuKMfoVYITDhBfrnIj2h5UDLJyQE3H3glLN6HZ+8DY84F0+fr5haenm0pr2wqWvVuclFVYUuftTYrAZOmHsclzInPILvIHiZwPiMdBopFvGUN/IcgN2Zs48TV10MDwBJiBkCFtMoH81D8XVAFFKK5/qsYBN8ox1hq4Ok/hORgnLJ8BIZWBFo09ZESoMJ8RGsnJWWvXuQaFJcXHZiZPm5EQkxETm8nCwMycJXixDiqUcoJLnJkJO+mwWT9wcnrtJ9JECIFgIUCagiTPQkMxEFAY3xyNWhVwNcY7GSGHwg/DFgIhHhYiYthmkCPSH3KFeaPx5i7fhIzlS1avnv/21hf+sOVPb252Y9C3+5IlKwID41nn2GAIGgjr4JkjuFPRizsmeo557Iz8ggkW6yZCAnqAoS9ih1+Ot0k4j0jhptKrQLet4JMJRCg1I0DTmjReBg5AD2u4hmoCIREFtxtEh+L6744jaDy8nOwck4d7hNuWILetwW47ot3cyBiHe3pGeXpG5+VXvv8+S+0d3NN1sLvncEQE0xCzSHSMidxTUXlsEIKc/o3BRApPsI58kTOoj/Op/3MEABI7DqyFT8fIGXoSkwzMGD8NcwVRfoIZFXQvj8LykU6zhpA0KUIzAoRMMmxursvJfq/AtMGUv9GU/555y3uvrGRTUcH6uhr3mmrPmiqP2mrP8tJtCfGLm5pKCJunApUxPdMpCCVzkENjh+S+WzvxiuQMXx950kh4iY514TyYWS8AIncGFOUs6F3GgWOaQ9kGDSrUnhvllxpfzkn8LOv/GogiJXjAHI7QdYBnU1mR23voj2dOvnb6+B/Pnny999Cr+Tm/qSz9bUPNv5cU/ObwgZcHjr12ou/Vk/2vnjnxh+rKYGLCMZF7KiqPAiEUhExQGfUFRVB39JhDLPWvqm8IF4M98y64JJtESM5MDFZqN5Yw4J9B6ZiTRJM4L4aV4gDR0dKuAIl3MI6CwKF4cbh0LxKJarUOUvkKBF1rLA5HRyCsrso7emjGqePTB47NPHV85rGj0/f1TGuoeam18Q/N9S+f6OPSTC6Zr/a/VlcT9vcOIfgBnpJqeHd4X0yOJTrE9mjkGUEVYEA4fkIjTBoncdzpUMU51IBdIshv/+fTdwPN8PhRfcCmXh6YAy8D14CITRmvsRbuwnbCAShYjTBW5G4NlaVHvlGz7IfLP9CfUVaaU1zwHzUVL1SWvlhR+mJV+YvVFf8JhPXVL9VV/Wd1+YtVZS9WlnHpP0qLflNgYmr85I9IG6ukjiSFctaBDe9ONgbu5kAjdDXJiOhe0xiAlggXdNFpyAHyhO9AfWCGssgExokwDpVLZoCa8ATBHGIB8MjHBFNT8mOxdjxzuCwl5+kEhiOH8yH3HzhcXZXb3v5qa/vLBz94fW/PtPffn9Z/dEZr+yudXa9yvHfvtI49r7Z3vnKsd/rpE9OqfhCKFNIgZ3w53h2ChYFBi6p/FW0pp19ddKhT5IDKCMT27dvBDLDhACqwpyZngFMBO4kuFpvWf0g1guuxcp9dfRgOsZZA8zrHXInGztA2+a5DWdlDDXV59+7Mv3t/7uePFz1+tPDRo4VPPl/84P6Ce/fm3707/+HDBZ88Wnj9xty/frnkm28Wtu+OYETcBJs98dtHd2egBV+LL4e9YXw0UCkaY4+0kZ0iDAAPmsLEXYY4aHwRQConp850Qa60NQ/U/DRoOo6c6sjfDIfp/5bCHI5mD5VLm9ErNFgJNoms4Ny3/3Bdbd6juwu+/suSv36x5Mmni/725dKvnpg3HXz95bK/PlnCMfu/PJnbBoTdf/fujOilr+VA/1JSI6YpDHowRjwoD250Mqg/z7FwLxIAHacuIwyKaH7yXkzIdux61cAy+ihQ5qS5tZ4Cn2buJT3cX1mePjAwvf/k6zevvTV48c1Ll968c3PesYHpp8/OPH9x1tlzb5y7MKvvxPR7t+d9+fituhq/HwyEApKPxONAU6FX6WmioDnRWiocU/BluAqB9L/QVc26SCfbdcZOXJnYPQGcUPv4X8SLjl27fAjCh2InNU8dsERqae3Onb47PNc+uLP40f35D+7Mv397/oO73253bs27eX3u/TvzH95bcO/2/E8fLPjq6cKE+HczM4uewwCnkekzuiK1vh+PhrjiZz/72a9+9av/bls4M3369EWLFjGygWV3X3jhhV/+8pd2dfj505/+FBdGy4FOaZGWpoNXC104amwNTpDLhlNtyQ8UR0R4PLy78PGnC59+tvizRwu//GIxavPThwu/eLzo2RdLvvxiCQby00cL//p0ydd/W5SdtaGsrHHq1ImT9BkbhBgwpPAXv/gFYPwP28KZF198kUm8r776Kouf/fa3v/1flvLrX//auuLPf/5zaAorONm+iVQDHsDjdQDpGGYYT6aawpjDh4+3NJsufzzrzODMB/fm37w59/rNuY8/WXjh0puDH7155dpbl6/OYRs4N/OzTxd+8/X8zjbiwl6lJr7HMjYI+U6iK2bmMUGQIdh2hQHaTOJVmT9//ssvv/zGG29wjJtDYWl67mJ5Hv0TuufzzVhxFClBCwpc82NGeC99FTU1WZ8/nP/N18v+gsPy+ZKvn+G5LP3mL8uQRc5882wZx2xfP1v2t2dz21qDWfDh+XzICG8ZG4SKIoyks2P+TGc0Kldr/8hlxbPQQj5EFM/feGi2IgbPeuk1R6JYPNKsC+dnXL0yGyt45fKcmzfmfnJ/wcXBN69cmXPz+ltXr8zhJD8t7syc1uagH5g7MyZ2U05VrgTBolI8hN7AiR8BnHLoHYOzMb3F+cq0RP9LlGhnuEy3BcLM8+emX782B+SufDzn8uXZt27MHRx88+LgrAsXZ1368M3LH5shvHtr3ldP32pr/YeG0Jq4Ct5RYvRR0LFAulmr8xHAkV0DSK4+h1FDvEWDXBznNKm1KFKk8OGdOX97tuTp48XEhV89NQeIRIFszz5f8hfz8dKvni7969Olt65OJ6jo7vn7TrA5z+NO1pR/ASnpjCWtqtX5kE4CbYgruzWlosnbseVEEUOiyH86qChPuHx5xtlLMx89WHDnzrw7d+c9/XzxxY9mXb46++atuR9fnf3Vs6XffPPON18tKzL9W2KCG2tnOPntU1dtbLZwstoBWhYP0LycIoE22VSSBogm3iOpVCyWkJ703A3t57GgiCzaDVjijdU1TV671ty+PvPWrVn3bxPUz7p7+837d2bfuTXr5vU3blx/g5+PH8z54vHczz95qzDvX5MSt///C6E1Kyi3CQUZA0haHBTBEkTBFXQNJTxZVlNmWOkbY+Yfb+HtAQEsYNzQ2JDZ2JDaUJ9aX5eqA/ZNDWlsHHCyvo5erdTKisTWFpbcmKqJn85Ly/cjhUO2z9oDotMK7YqORdOSzUHr0kkkpCdFNHkUzySLxNPAD5VAXokzZv9rHy4YSXAOLPthtv0HjhJPMgXFeVpPUU0bCPnxY/khUuAnP5Z/AAr8X1+ife8aGXTOAAAAAElFTkSuQmCC + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB97SURBVHhe7Z33V1RZtsfnH5kf3nqrf3hrzfzwetasWc/pnjVOT08HbQVaBbux20i3tiIqINkACJJzDlIURS6goAJJVMSEYgLFhDlMB0Mbnq0z8j6w592pKqAoqiQodRbrrluXG84537P3/u69zz33V79ylbegBwZd5Y3tgX8NP+rf1dW1z7IcPHgwKiqqrKzs+PHjGRkZKSkphw8ftjqnvb29sVGfnJxeXl5lMrUbja1s6+qa4uISOzoONjQ0HDhwwOqSyf65f/9+apWampqZmVlSUnLo0KHJfuI03h/gbEEIYAUFBXFxcSdOnIiPj8/Pz1e6g25i/8iRIy0tLcXFpdnZBXp9y8GDxzo7j7Jtb+9MT88xGvfW1dVPPYSdnZ11dXUMuISEhNbWVqo6jV082Y8eB0L6wmAwhIWFUY/du3eXlpaKpALtMHLF2dnZGzasT0xMSU/PranR0V3NzfvYNjW1JCSk1tcbtdo6bjLZzbC6P9Wjbrt27UIKR6qNKa7MZD9uHAh5PJhFR0dXVFQgi2yRPI7k5uaiYNnW1taq1aUxMQkhIVFZWXtKS2tLSmpUqtrCQk1Q0Pbs7JLaWu3UQ0gNEcHw8PD6+npswWR34vTe3wJC0BlZGzBDl6KRYmNjq6urjx49yj5mBvWIFqWDuColJXv1at+dOxMTE/MSEnLYxsam+/j47diRXFVVPcWdSMVMJtPWrVup59ttBQUsCwhH7WtkSK/XM6IpKNXCwkIG+LFjxxQDg6FJSMj46qt1K1Z89913AevW+bNds2ajt7fPrl0Z5eUVXV1TKgdoTpVK5ePjA5MaSdCmV2Im4+kWEI71AFDcsWOHr68vUhgTE8NPc4IA8Pn5xZs3h2/aFLJpU6jyFxCwzd8/HE07xVIIhAEBAdu3b0dJTEaXzbR72gUhnYLkffvtt6gmtVptRRCAs7GxsaGhsba2Dss39FcHjzE16g3QUSR4KhkpYgcX9fLyQmFM8dCZLmjthRB3YvHixZGRkVTUiqO3trYYDKayssrc3IIydYWmWltWqkn0XpYcsLWv//IUOxX4r4GBgeiM7u7u6erTKX6uvRDi3f/5z3+GxUBnRlSxQ6fTp6dn19c37T94tF3fUuH1ZdW2yKTE1I59XfX1U+faI3ZNTU1ff/11R0fHVIr+FGNm9Ti7IMSoEON47733sIUKx8MiolHpNa1Wm59flJVV0NjY3HXynC4ozBAT39HTl5qWrde3odY6O6ciOgNsxB+CgoLS0tJgW9PbrVP5dLsgRCnBDj788EOGNlqUAngYufT0dFxGRn1CQkpqak51VUNzV0/VyjWG8tpGfVtcXEptrR6Ap8YvZGxVVlZ+8803b70vb0sKBR6rMwAA5Nzc3PAYwJKfSF5WVhYmJzk5uaamRqutjYlJDNi6I7VAU7wlJN9tcVGpNienFDqamlpYXQ0jnfTojIyqlStX4vPMEiKqwGQhhbA4o9Fo5TBAEIhUvf/++/QOEPJf4jLwBdxnOgsGOOTap+Wu+Hrt9r/NT/jg49jo1Nj47MjIxFWr1u/cmVxZWTUFzBDNSfAIzjyaqZ5KrTYNz7KAkIEMQmADVBTAI0a8ZcuWefPmIYIYG5QV+OEagpwCDHKbmJKzfN7ir+fMXb1+6+pvNq9ZvRE339v7G6IzGs2ku/bUCovr6elZVVU1G8IxthTp06dPHz58CB2gEE7z8/NbuHAh1gWbRzi7p6cH7xC/AvzM+R4/8/MLE5Jzsgs1GRkF/GXlqbIL1PmFZfHxqWjaSbWF3JyxtWnTptnjy9uC8NatW3fv3g0NDUVtQl7E/mH2EETyEsS4Q0JC9u7dawUJUqjXG5qbW9VqTS2WsVGvycgsjoouzc3v6+vX6XSTmupB7IjMAuEsCaeN1NQWihQIr1y5ggtIv0gh0r9mzRp/f3+ixsuWLYOFYv8Y9VY3woZmZORkZubq9M1VeUXZ8xdosvN3btvZ2rZfp2ucvHQdlo8QPLkw1MZsI6Kj0xmBkBAacoZF3LNnDz4DQU6wJEC6YcMGKANXihblHI7TcdCZioqqnJzC2lrdkdPnTXHJxujdh/suZQ0ngXHtJwlCno6fisInkYlHP6nqehpYit2PtJDCe/fugWJERAQyh3bC/qE2AYkjOTk5EBz6Cy7D2IfLEBclrcpsjIAA/+jo2JycorKy6o4jp+qDIxoTUlsPHEtOzqitbSLlizNpd33sPRHA0O1QZSpJXne2ORLm3WQB4Y0bN5BCUMG7YIyfPHmSGSioKeDkp4RjcCeSkpIAkuMMf6ClB2Ni4nfsiEtPz6/QtZWuWlsWl6ap1kdE7CIJjF/42uUDsWYMgV95eTmjikrOnnDaOLbw+vXrFy5cwP7hTtAvRUVF+O8gJBQU/Nra2jZu3Oju7o69REDFXp440V1QUOLjszlie3xKtjrjowWpkcmJKYVkDUG5tFTz2v1CZA5uTMyPaQN4q7PWCgqcFlIIhNeuXcNtgHmiPHfu3CmGEAzoJkwjeTgi3dB38FOAwUXMzSte8dW3yxd96feXjzf96QPfLeHr1wd6ei6PiEgoKVG/XgjBDwWOJsBa46S+3pvbq8dn0nkWEILf1atXZdaQ5NtAToQPzUkEGQElDoIuxdtT+g46U1Ss2rI5PNg/IsgvJCgsJig4MihoZ1h4THBwdEFB0ajzORzrBMYTQVcqQK1QoVRjNuTlbfeVBYTgd/78eTw5rCCcRcAjU4jwMeq5kQRlgBMfUek7TB0+mV5v0tY1aOt1dWy19fWNhpqauq4DXbrGJkTWMcCsruLRUBjUA16NRqPBQs9mFjO6UzEwMHDp0iUxM/hbsBXcfISS8BVwCmWQycHwCAVCjuPaazRVMTFxbMvU5eVaXUlmzob/frfV1N7c2oZZdR5CnkIR3c6jUeYE/2YzixkTQgQR2DZv3gyQMAX8LfNwqLiDGEtAlRg3BdUKhIWFKrW68sjh40dO9h00tWu9vszcHqkztDc1GZyXQklE4JXCsE6fPo09ZoS5RHAUOoNHce7cOZkdQxGQwGw4HSFe/CFUK0YRKcQmoc04Gb8iNjauoEBVVKjad7intd5Q5ebRrKrIKdGUl9eiUkdGcyYqlNQEVwfkoMoobYnTTvQmb+v5Frbw8uXLfX19ME9ai+iAFrknugzLx6jHHKJU8fo9PDyYkEg/8hNlGxERHhwcmpaWm55XotNo1Z/Mr80uamzvio9LzctTVVdrnew78KNKPEt8GNQ4o8cF4eiKFEOIIAYHB69fvx7WB05wh23btoEWL1QQ7yYtTjSEf2ERsUNs6coTJ47v2VPqu2VbuF9I7tyPMrftziqu4XUUJiGGhsYWFZU6E51B9ImiUQd0KRobRYqGn4VJQRtiYCGFFy9eRAoJGUMZiGgjglAGoTAiAegx/A2rFxXwGdRllT4rN/j8x3+G+WwM3pkYEoxnGbVsGfHxnfn5JUw7dUwQGR9UgzAQRJSnsxWX1MVixgywEZo5deoUVIXUoDgVVqlB7CKc0Nyj4F50rrqsYuO3/iu8Vvqs3+qzxs/HZxOz8Zcv/y4wMIr3mxybeMGzoLJoAjQ5j0CdMouVadqzPBYzToANW4hfiJ7E8GD8oCr4iFwjM9XoU+QSvmrF5pEJo8GQnpGdk1dMvkn5yy8qjYtPptMdCKCIC0FN4E0yksjI44+68BsHQhQpjFSmVkBeyDSJOZRpTsgloVGZdWF+I/qapCAzN3lFdNivH/prMLYUJiSd7TnT3DJhv1DeXORBylwmkX6U6muPmDum4WfUVRa2sL+/n6mYRNFQpzL28Qf4CZEBSxAlZZiXl8c5kriQRCAz3Ej5FhaWJCWl6nQGJgQ3dRxUh0Vsfvd3ukaT0dQyUb8QncmgwYsQz48tHIo6uBzBUYeOBYSwlbNnzyJ/sHaZ7KTEuBE13g9dtGgRGXwiW+zj9cskDHqWN9Dy8/eoVETdug+d6W9OStN+tSIvv1jbYGSi94QgRNYBDAIsOlPeUUWjyhTWGTX8Z0hlrKcCo0tJUyBt8Hh8PiyQRGfYoksRRPIDCKKiY9G6JKSCgkIKC0tJOe09droxNrHK84v2jq7M3CJNWU1dnc5+116mjXNPHieASTgbZ4bBNEO6bKZVwwJCDCGCiITJy0pABXnBCCEHKE+ED22Gc0Zv0sXIFoKI+6FSlezaFRsdnRSfWVQRHlk4z628qqmixhAZGZeSkltRUWNnmxUXUIRPuC7WF4l0qVB7/UK0KBDiPtODkqNHfaHWyFTADMHS/L1nYJaZ3aR8yyuq124MDXL3yvhwXkpacUpGSXJygZ9fSGBgJKJpzzsVoAX7xeJCd4XBihTKnGMXi7EXwjPDBclTEhH0IxKAaWQ2KSEb9kcaJHpfpS7/Ztm3X73zX76+QRs2oYcDN2zYumTJV/iFubnF40ZnkOnm5mZceMRaUZgSFyUv7xJB22rMQpGCH1JIdMZqoQ+0KG41oVGcvJEoAkBFRWVQ4I6wbXEh4TEhIdFkqEIjYsMidjPxgrVfbPuFMpcX1wWdrLh9HARO5F7hvXZq41l4mgWE5HFACNpCV5pzEPoR/oKXRvhUxMI8xDXsF7JcyV6DsYXE79DW2FKnKtNVa7u7cVEabDBSrhWfD5tnLm1UADLlYjH2jEhrCMnXE9RGcyqiQxdLoJLuRt2BIl6HzIYSpSopX97yJeVbpqlUl1eleCxKX7c+fEtAW+u+lrFde3MX3jxyjS4lhgeErljMhCHEo0dnwukJSyoMgg6F6BNykwQvIkXcBMeD8JuQRuaXKinfoyfOdlTWNqxdf7z/SmFxaX29wUbKF7FjNIycBSpZZVcsxh78OMdaCoFEbJKiSNmno8nrCtGQSdwke0kaQCCxkURSmFE9lPItKt1/pMeQnlMfGHKg+0xWVn5FxdAsmlH9QvDDReHOVmyFn4RnldCMnc2YzadZQIhKRKRABR6vWDuxVeLjKz0lATZ8DDyQ4UmLYampuWlpObqWzqrQHZUh2xpaDvCWb27u6ClfmUiINHMfc4rLQ8kz8zhQd8Vi7ByXFhCiu2A0OBXwCAFM+lQWDRrpnIlE9vScYLKor29waFhMZmlDtveq7C3hGfkVAQERoaGEqlVWTgX4iZcp6QjzivIvXoRjWLisoJ34WStSuAwsBstnzmUg9zB+TOBYYjGU8lWXkyZc4b06ZM2G8N/9IXhzaFBIlLf3qoCAHcROzSEEG/KRckOrMSHhUCyxy5G3Hz9rCHEKAQ9TpAgHPzGNIjFj3RdBLFVrNvltX/PlunWLVq5bvnHthoi1a4NXr/EPDk7IyECkWOHyCNEeqA/vOm3fTsDFOHLyiyQo5NW4CbVhlp9soUgxhIRAmaCm5OWBkKkrRLlsSAbS2dbWnpi0K3Z3eGzCjtj47bExvEkTkZS4PTIyIC9vd0M9L8cU1FQXaGuLIyJ8S1WsaGC9eA33Jyo7Mhk5y+Gxp/kWEOJRIBywROyfqE0gxEeEfNogF8ORlBaTwftk90fdh+fxd+Lo/JrKucamv3a0fWxo/KDV9JfDnX/r2v+3g/s+PNo1V1sb1N5uLWfiYFhN6bCnAa5zLCCEdqLHIDXmtlCWlAXUsXQpEOp0xrYWr/Nn/nqm52P5a6x7vyD39yVFf8jO+F1nxwfnznwix8+dmdtQ59/aagGhiKC4ni5IJtoDFhASGrWCCuEDOXKHqNOx+ncYAGNlucfe1vdbjHOb9XPZInntzUN/baa/tBr/9ddsmNts+B+N2o8XT62IqMsKThQ55fzx1yOFQxIXRUTGyhgMQ2hSFS/QqH5fVf5efe2fytV/NDXN1ZTOYUdb9X51xXsa1Zwy1Rz+1WaaU1ri277331I4NHvKaHQR0dcDoUzXtLoXgoijTWgUZ4NI5kijSKS6vsHQe3r57Ruf3b7m/vSh550b7o8fLGF765r73Zsed667s3+5f8GjHxcPDi45sC/YZPq3wpQwjcsXfD0Q4q5BXkZKGyqUqClLl5DHl5cOzXNAQFhXZ7h4bsXgoNfgiy+ePxna/uvv5Rcvny0d/MeXgy+Hjvzz+dLBV4v2dwQpEMr4QMSZMuoKxziGooUiJa4G+UTaRqKIdMJr+C8wIzHsowCBFjiPHjtmNLYdPbS09+SHl859du+WR++peQ9+WHS259Pek/Mu9M2/2PfZ2ZOfdh/+6NY1t1e/uHe0B7a3H5XA6dA0YrWaiIwrr+sYftauPRKGKCjfBrCioDIbmAC3rJUAnExMgoZkZmUFB2/rOfbFox/dvr/j8cPdz+/ddP/hzudgyc6NKwvv3nBnB136073PX71cVFW+IidHLeQICAnJEmt1RWReD4QSFKVbefWEl/kEM/NbA7CknOCuRG144YiZNampaWvXbjx70vv5k0XPHnk+ebDk6cMl//xlKTv8fP7Y68VTL448vr/4f3/2fPUPz3K1d0JCrkzMgciQF3RgurfDDX77LhxlPVKZL4PZI65GJHNUX4LeV96VOXasu6HBcOrE0oGLn8JfHt9fcu3SQkjNwMUFVy8tvH3dfeDiQnb6Ts9DQAcHPdtbN5mah0gTY4V8BWksV1DbmYE15pKyMv0ey4eBtB20HGKk9YZL/V8PDi6FsPwyTGdePvMSCoMIvvpl6dA+pAaaM7jowL6A5mEIQY6JjVO25qwz3TSTr7W1KjCyKFkFpsbYEJQDnXxby9BzbOnt6/O/v+3x493PsX/ozOuXF94ccLt3E4vowZHL5z/7+y2PVy/c97Ztbm4emumLiKNF7Z8oPJP7cRrrNs7CzkJExdkYC0WBsPuw540r84ZYzE0PWChosb3QO//8mXnQ1P6z86Gpt6+5Db6AkQ5BiJVlfMCGXHkJJ+Eff21ubCEuPzE2IqijogiEdXX6vtNfDL5cgvD9fH/x88ewmKE/tOizR0vYQbu+fOr1y1OojVtbix8QDs0+VamI+7gM4aRDyANAkdgpskg2f6QDx3IKxEhPn/C8cuHTG1fcoDNXLy4ArSv9C24MuKFLr1xYACMdfPXl4KB3R+sfU5KWd3QcATnYrPIpNiebMZsvH18KpXfgnwRQQJF4t5XckPyLjNp9/MhHTx5/9vj+Z88eLXh8f/7wdujnT/fm/fzT/BdPFw7+w2Nw8PNG7W93RXvu3zf0CjErWCDZLo/CyfFnL4SCIu4gGhVP3HzaPMtDxcUlGPSpBkOkyRDV1BhpMkYbDVFsTYboZlP00E99lKEpimkVmrKQiopcAjtAKG+euiCcOghFo+JjMBsKl1z8QoRyeBUYwjpH9+4d/uv4/x35afF3ZP+BboKs+/YNvbxIAIH4gCsuM6UQij8uC9mJUKJaITsOwIAUMgnYfCEwJ1syay+fgCJV+khmgWLJePNvLJo6bocyFIjPEQNyMdJx+8r2CY5AyB1Z1YTveqBCmW7jWA3kZRoisS6/0LEOVK6ygNBqbvVYt+Y0hI9MBbEVznE4z4dlJdcBkC5G4wyKFhDipWHeZK2LsYCR+d3wUuwfjh3K0GExGn4xcegrz84kC2UZBQfKW7P+ggWEvIxCspDQM2lYvEB6dqR8ABiiQ9aQGaek8p385DHDhTsw+dixz9URX0WIKUyAs104h5l5FE5jfjpbWRXJtgqRQK7t4rASckbyzK+1gJDaIIXAw5ROOKd8BV1mWsgMCUAlZY8/J3KDOAKnM20QUSCrhTSPOjHHRju5ljHEC3WPHj36Ybzy008/sWDuzZs3v//+e77l8ODBA1abo3UyTGVVDymKWKNm8KBkITp2IN68XknhiHnhyPRG6i0gpCoUqi4vp9FC5BLOwvu9CCWCQkuAVgYvrWVQA6GTlkwcEmYC4Cayo7x5Ou4gFQh5D+THH3/kO0W2C+cgTLihOLI4Raycy5qP69ato4EMSoYsRoR/YeNpI5hRwImAIthzJpez9jyP+Pvf791/8ODhsxcPHz+9/+yXnx8/ZhyDrjPjeNyWToCRMpzNy4sXL+7cuYNQEn8BSObUoPQkwEYBOd7eJqfo/PxdmSqAOmV8MFzoa4TDhj2WJgmEvERAz/KFDXuKLDLHmp23b9/mHS7GDZEmIkQ8mmYSc6dFbIffmIxlkSSMPZSb5nMaDaexDbrGa1cHrrRpBk4euLev+tqlfr3BCIpOwuDM5RZSeGVggEXy0TYUPhvDuONFGcwG69HgRYAin/1BcfE8BJT2Ayo9qKgg5EnmakiRd89G0o2xqsuwYOwzIRF7zJINeP2MblHjAAyick9hLgIh9gzdwDijqhRBUfZHFv4lTaMAIS1CB9JA7k8r5CkyM49q8C+EFQFFBAV4Vjcb3l64dPnyqZKk07sDLqQGnT/ZozeaZhCE2Hm0h/ACxibL0LAGBuE0+hQvni9qs+gFaz2xNhRrA+OVMzbBUgqDFDU1/FFRLYlA5IP+5YakG8WQ0C9oY1k6gW4SvMUOUeg+CsJHz0oASKQBLHkQw5+bcyuZq8i1nAN4PIId8GDkUehuCj8ZfxQ5KIWfgERzwE9+IoU0DeHjWdQfowAS8socVhn9TE14KMO3t7eXRbGU0j9w9XBOQat/YEfYtlOHDjUOXzhTFCnjmpYwAOks4KEZyBzflVu9evVvfvObd955h+/E4A6i69AthMcwJBR2iNRgyehutvQ7pgVaSwF4dC+0iIITKTtS+JcUTpCTuZbChETuxoQalBt35iqeyBRWPsPHN9yoiRTWwfHx8VmxYgUCBB7YNrbUn2pLoSHy5RT+RWEfMFhwVY4AJHDy5RtUJQ9CozBieByDFaNIBbj/0qVLqQ/ISV4TmOFcVdXVvefPNyUmNhcVMwjO9PUxXqd3EqyFIoWk0U4pKA22SMzwJ7E7aQyiyZxuaTZHUEFIgNhFKfJT5ElUn8LxZD4jFInWIo4IJaLJQBGWjzDxFKQBUaYoko0uRUqgGAg3RegGR+hKVBxBPsSIBwEebBNsqDACBKgYMLZAxXEpSCewASQ7/ESpcgKPphWIPldxH1lmgxWSfv3rX7/77rt8lhQsgVA0PPUXGUU1nT57tvfChbO9vYwDgdAZY+bktdbLJTCylAKidD3tREToQTEYSAnLXTBawcABLmrugyvGkh0xn4pZNdexomnNiwwR+p1BwHH5WhgWC2xE8sz1qmhXjnAJulG4KKfRHFQIKoemoT/QK4gjYwJlg6UAV/oBUBleGBdOo73iY2AdxMWU8Sf8y0kYnLncAkJUv3kRsWCwo+skGE1fC4qMVorCLJypgcPXCiMFQuCBZI5awJXjbMEMSQJ1IOQIWxBCIUtgAQ4FMKjQTz75BNaG+RBeg3ihk3nKWIX/guIM8gtloCmFEUf/YrfMVxISicGGASGNn8Y8A9WgZ5FX8DCnG+b7gIfMXWC14/PnRVLlv8grNUchMwKgRcgcAoebOGfOHJqvuElCncYtDo/C13KhdXTGXNHREvoID8kKJ3qNMctohQVMoyUXCNkOgTSigBOMGmvKTnFuLrElUIRbyolcIsF6mob/jj8qXyrmC9SOhfpeCxiO3WSceaSwGOjDSOddUobYDFrucJjbsRorVwmEjDkUI+RrZIG3pGdk+Pv6Zm/derG3FxcH9q9491AeOC2KFPaLvQBI+Mub+B2hMSGka+Sbd6N6PBwEVz7tRHhzuj78IRCCqKwKP7JcvHy5XatN3bKlvK4OewiXgUAK0+YS6o8twFggdlgHGA1exJuYgh4TQmQL827jM7mcwOBduXIlenVaHFuBECqBYoQ8jyxoThbn7Dl48AwKdNg9Bz92OJNLgA2zB66yHgSshHgFKRrn44VOapeJXj4mhBgJtKjtSYLwcgQRaj4t9kMghNADDGZv1AJcYgIJj4kDJyezZQiCGT4ugQi0KFScwJP5ymUT7crpOt+WIkXPWK0ta1VLLCJhCyyK7ZcuJqltQCir9CNew2JmUSQ6qBT+Jx8fZoeD6FL2CTwReUHsZOVxuAwwO+DsTlID7bzt6BCiZPCaMfW220PjITtYEfmioXnCT5Kl3Mc8FWfluUuA1DygI5mmsdbQk7tJJIgdBhB6D7lBtiRkSgXEQ+AEdszDFLh6CCL4scNxQRTlKUvt4F1QQPFNfFl1dAjpXGIWhJdsu31yGrqITmQqBgEOAJAeZATRuXQxagqMxyoEVGFM+C0SKSXoQ0SbUIh5EFwwk1HFiIFxUDFO5iqipnAujBmskoKHDhJUg+ADVBlBBDAp7MvC34ggP4GQgcJ9uCcnMwSpLRx7Gn0kO2Vu5GljQkgX0DbbECrCKkl8zmftEfqRjiYgQECEEBRjHMMzCtcYTmDxFFnvG2bEVbhxqG60HDocYDBRUCogoa85QjwBesX5jBtUN4FW1DgYcH9uhTyxlQyD7JgXIOQqJA8IOc5PKrZq1Sp5wZGGUAGShRLLfbOKLQgRnXGDL3QKaInOlHAwYoTkkViQj7CR+nn27NnjEeXJkyfMgUCG0HjPnz/H15a4CaqM+5AoQEAZE4g4WUl63zx3KNMjwAD8EFlBRYoCngCpFAAW+ROk0aVUlTtLhotCY8Uuvln4UdvRIRSyZ8/Lf/QmOlAWwOB24i/CVCV9yB2QHpAYVZGCNMsu4FkiZ5J5gAPLuzKSjlcSIKP6LVJJHDuAIeFguwAbNwEqIORMLmFMoAN4BIMG+XNmKt70oj46hBLhxdiMG8ClC3Aq0HhWxIf+RYtifiSLxHbUAqHgOJdLAXhJO3P5uP0iEDJ6ED7wtl3AjIHCzeVktrQRU4oiRTkTlJHxN+5DZ+AJFhDyw1XexB74lau8BT3wf+MBGfIY9HiBAAAAAElFTkSuQmCC